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The S = 1/2 Heisenberg chains with bond alternation and randomness on the strong bonds
are studied by the density matrix renormalization group method. It is assumed that the odd-
th bond is antiferromagnetic with strength J and even-th bond can take the values JA and
JF (JA > J > 0 > JF) randomly. The ground state of this model interpolates between the
Haldane and dimer phases via a randomness dominated intermediate phase. Based on the
scaling of the low energy spectrum and mean field treatment of the interchain coupling, it
is found that the magnetic long range order is induced by randomness in the intermediate
regime. In the magnetization curves, there appears a plateau at the fractional value of the
saturated magnetization. The fine structures of the magnetization curves and low energy spec-
trum are understood based on the cluster picture. The relation with the recent experiment for
(CH3)2CHNH3Cu(ClxBr1−x)3 is discussed.

KEYWORDS: random quantum spin chain, bond alternation, DMRG, disorder induced order, magnetiza-
tion plateau

1. Introduction

In the recent studies of quantum many body problem,
the one-dimensional random quantum spin systems have
been attracting a renewed interest from theoretical and
experimental viewpoints.1–15)

Among them, the phenomenon of the disorder in-
duced order have been widely investigated. Experimen-
tally, Uchinokura and coworkers3,4) have found the an-
tiferromagnetic ordered phase in Zn, Mg, Si-doped spin-
Peierls compound CuGeO4 as one of the earliest exam-
ples of this type of phenomenon. The theoretical expla-
nation is given by Fukuyama and coworkers5) using the
bosonization approach.

Similar phenomena are observed in Zn-doped
SrCu2O3

6) which is the quasi-1-dimensional S = 1/2
ladder system and Mg-doped PbNi2V2O8

4,7) which is
the quasi-1-dimensional S = 1 Haldane gap system.
Correspondingly, the effect of the bond and site random-
ness on the spin gapped quasi-1-dimensional S = 1/2
and S = 1 antiferromagnets are studied by the quantum
Monte Carlo method by Yasuda and coworkers.8) They
have also found the randomness induced long range
order for appropriate range of randomness.

Recently, Manaka and coworkers1,2) studied the
magnetic and thermal properties of the quasi-one-
dimensional compound (CH3)2CHNH3Cu(ClxBr1−x)3
(IPACu(ClxBr1−x)). For x = 0, this material is the
S = 1/2 antiferromagnetic-antiferromagnetic alternat-
ing Heisenberg chain (AF-AF chain) whose ground
state is the dimer phase16) while for x = 1 it is
the S = 1/2 ferromagnetic-dominant ferromagnetic-
antiferromagnetic alternating Heisenberg chain (F-AF
chain) with Haldane ground state.17,18) In the intermedi-
ate concentration regime, however, both the Haldane and
dimer phases are destroyed by randomness. Remarkably,
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Manaka and coworkers1) experimentally found the mag-
netically ordered phase for 0.44 < x < 0.87. It should be
also remarked that the energy gap estimated from the
temperature dependence of the specific heat and suscep-
tibilty remains finite even in the close neighbourhood of
the critical concentration.

Modivated by this experiment, we investigate the ran-
dom S = 1/2 Heisenberg chain whose Hamiltonian is
given by,

H =
N∑

i=1

JS2i−1S2i +
N∑

i=1

JiS2iS2i+1, (1)

where J > 0 and Ji = JF(< 0) with probability 1−p and
Ji = JA(> 0) with probability p. The ground state of this
model interpolates between the Haldane phase (p = 0)
and dimer phase (p = 1).

As discussed by Manaka and coworkers,2) the relation
between x and p is not trivial because the exchange
paths between two Cu ions are bibridged bonds. For
x = 1, the ferromagnetic bonds are Cu <Cl

Cl> Cu bonds,
and for x = 0, the strong antiferromagnetic bonds are
Cu <Br

Br> Cu bonds. The addition of the Br ions into the

x = 1 chain induces the Cu <Br
Cl> Cu bonds which are

absent in the pure chains. We assume, however, that the
Cu <Br

Cl> Cu bonds are strongly antiferromagnetic be-
cause otherwise the Haldane phase cannot be destroyed
and no magnetic order can take place for relatively small
Br concentration (1 − x ≃ 0.13) as observed in the ex-
periment. In this case, the concentration of the ferromag-
netic bond 1−p is equal to x2. Further, we may safely ig-
nore the Cu <Br

Br> Cu bonds in the concentration regime
1 − x << 1 which we are mainly concerned in this pa-
per. Actually at the critical concentration x = 0.87, the
concentration of Cu <Br

Br> Cu bonds is (1− x)2 ∼ 0.017
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Fig. 1. The system size-dependence of < ln∆ > for (a) JA = 2

and (b) JA = 4 with JF = −2. The solid line is the fit to the
relation ln∆ = const. − zlnN.

which is sufficiently small. We can therefore set p = 1−x2

in this regime. In the following, we take JF = −2J fol-
lowing the experimental estimation1) and J = 1 to fix
the energy unit.

In the present system, the spin gap state in the pure
system is intrinsic. Therefore the mechanism of the disor-
der induced order is not related with the lattice degrees of
freedom as in the spin-Peierls systems.3–5) The situation
is somewhat similar to the site depleted 2-dimensional
S = 1 antiferromagnet studied by Yasuda and cowork-
ers8) if JF and JA bonds are infinitely strong. However, as
explained later, the finiteness of these bonds introduces
interesting fine structures in the single chain properties
which should be observable in experiments.

This paper is organized as follows. In the next section,
the single chain properties of the present model are dis-
cussed. In subsection 2.1, the low energy spectrum of the
single chain is calculated and shown to have quantum
Griffiths singularity. The physical origin of this behav-
ior is also explained in the cluster picture. In subsection
2.2, the magnetization curve of this model is presented
and the randomness induced plateau is shown to appear.
The fine structures of the magnetization curve are also
explained in terms of the cluster picture. In the third sec-
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Fig. 2. The p-dependence of the dynamical exponent z. The cir-
cles are the estimation from the system size dependence of
< ln∆ >. The lines are z = α/ | lnp | where α is determined

from the q dependence of ∆q .

tion, the effect of interchain coupling is studied by means
of the interchain mean field approximation. It is shown
that the disorder induced magnetic order takes place in
appropriate concentration regime. The final section is de-
voted to summary and discussion. The brief report on the
main results of this work is published in ref. 11.

2. Single Chain Properties

2.1 Low Energy Excitation Spectrum
To support the long range order in the coupled chain

systems, enough number of low energy states are re-
quired in the spectrum of the constituent single chains.
We therefore calculate the size dependence of the energy
gap ∆ of the random ensemble of spin chains described
by Eq. (1). Due to computational reason, we concen-
trate on the regime of small p (small 1 − x) in the fol-
lowing. Figure 1 shows the system size dependence of
the average of the logarithm of the energy gaps ∆ with
JF = −2 and (a) JA = 2 and (b) 4 for 10 ≤ 2N ≤ 80
calculated by the density matrix renormalization group
(DMRG) method.10,19) The average is taken over 400
samples. In this parameter range, these curves are fitted
well by < ln∆ >∼ const. − zlnN where z defines the
dynamical exponent. This implies that the energy gap is
scaled by N−z which is a typical behavior of the quan-
tum Griffiths phase.9,10) If we assume such scaling holds
for all low energy excitation spectrum, the distribution
function of the low lying excitation energies scales as

P (∆)d∆ = Nzf(Nz∆)d∆ (2)

where P (∆)d∆ is the number of states with excitation
energy in the range [∆, ∆ + d∆]. For large N , P (∆)
should be proportional to the system size N , so that
f(x) → x1/z−1 as x → ∞. Thus, in the thermodynamic
limit, we have

P (∆)d∆ ∝ N∆1/z−1d∆. (3)

Therefore the number of the low energy states diverges if
z > 1. As shown in Fig. 2, z increases with p and becomes
larger than unity above a critical value pc where pc ≃ 0.3
for JA = 2 and pc ≃ 0.1 for JA = 4. We can expect that
the long range order would be stabilized for p > pc if the
interchain coupling is switched on.

These features of the low energy spectrum can be un-
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Fig. 3. The q-dependence of ∆q . The inset shows the q-cluster.

derstood in the following way. Let us consider a cluster
consisting of q JA-bonds and q−1 J-bonds embedded in
the F-AF chain as depicted in the inset of Fig. 3. This
is called ’q-cluster’ in the following. The middle 2q spins
form a tightly bound singlet cluster. The two spins con-
nected to both ends of this cluster by J-bonds are almost
free but weakly coupled with each other mediated by the
quantum fluctuation within the strongly coupled cluster.
For small p, we can regard the whole system as a random
assembly of q-clusters. The q-dependence of the singlet
triplet gaps ∆q of q-clusters calculated by the DMRG
method is well fitted by ∆q ≃ ∆0e−αq as shown in Fig.
3. On the other hand, the number of q-clusters in a chain
is proportional to Npq(1 − p)2. Eliminating q, the num-
ber P (∆)d∆ of the q-clusters with energy gap between
∆ and ∆ + d∆ behaves as Eq. (3) with

z = α/ | lnp | . (4)

This value of z is plotted by the solid and dotted lines
in Fig. 2. The agreement with the values obtained by fit-
ting the numerical data of energy gap in Fig. 1 is good
for small p. As p becomes larger, the interference between
the clusters would prevent the above simple-minded in-
terpretation.

Using the formula (4), we can estimate the parameter
regime in which the low energy spectrum has divergent
singularity as p > pc ≡ exp(−α). The critical value pc is
plotted against JA in Fig. 4 using the values of α obtained
from Fig. 3. For p > pc, it is possible that the long range
order is stabilized in the presence of interchain coupling.

The above picture explicitly demonstrates that the low
energy excitation of the present model is dominated by
the large size clusters and the characteristic size of the
clusters increases by the power law with the decrease of
the energy scale. This is a typical feature of the Griffiths
phase. This singular excitation spectrum is reflected in
the low temperature magnetic susceptibility χ and mag-
netic specific heat C as χ ∼ T 1/z−1 and C ∼ T 1/z.
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Fig. 4. The parameter regime in which the low energy spectrum
has divergent singularity.

2.2 Magnetization Curve
The magnetization curves at T = 0 is calculated by

the finite size DMRG method for 2N = 100 for JA = 2
and 4 with JF = −2 as shown in Fig. 5(a) and (b), re-
spectively. The average is taken over 100 samples. A big
plateau appears at M = Ms(1 − p) where Ms is the
saturated magnetization and small jumps appear below
and above the main plateau. Again, the physical inter-
pretation of this structure can be given in terms of the
q-clusters. On the main plateau the spins connected by
JA-bonds form singlet clusters and remaining spins are
polarized along the direction of the magnetic field. These
plateaux are well quantized so that it must be useful
to determine p directly from experimental data. Similar
fractional plateaux has been also found in random poly-
merized XXZ chains.12)

Recently, Totsuka13) analytically discussed the effect
of randomness on the magnetization plateaux. At first
sight, our fractional plateau appears to contradict with
his criterion (Eq. (36) of ref. 13). However, his argument
concerns the fate of the plateaux which already exist in
the regular system and does not rule out the plateaux
induced by the bond randomness in our model as well as
in the model in ref. 12 as commented by Totsuka himself
at the end of his paper.13)

The small jumps above the plateau are the contribu-
tion from the spins connected by the JA bond and those
below the plateau are the contribution from the pairs of
almost free spins which support the low energy magnetic
exciations. The position of these jumps are identified by
the DMRG calculation for the q-clusters as indicated by
the up and down directed triangles in Fig. 5(a) and (b)
for each q. The position of the main jumps above the
plateau Haq and those below the plateau Hbq due to the
q-cluster are depicted in Fig. 6 against JA for q = 1 and
2. Because Ha1 is sensitive to JA, we could determine
JA from experimental value of Ha1. However, consider-
ing that the saturation field of the x = 1 compound
(p = 0) is already above 40T,18) the observation of this
jump would be rather difficult within the presently avail-
able pulse magnetic field ∼ 80T unless JA is relatively
small. Although less precise, JA could be also determined
from experimental data for Hb1 which should be observ-
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Fig. 5. Magnetization curves for (a) JA = 4 and (b) JA = 2 with
JF = −2 and 2N = 100 for various values of p. The magnetic

field and the magnetization per site are plotted in units of J/gµB

and gµB, respectively.

able within the presently available magnetic field. In re-
cent magnetization measurement,2) however, no promi-
nant structure is observed in real IPACu(ClxBr1−x) for
x ≥ 0.87 in the low field regime. The origin of this dis-
crepancy is unclear at present.

3. Effect of Three Dimensionality - Disorder In-
duced Magnetic Order

As demonstrated above, the low energy sectors of the
present model is dominated by the almost free spins in
q-clusters with large q. In the presence of the interchain
coupling, we therefore expect that the 3 dimensional net-
work of these spins sustain the magnetic order observed
in the experiment mediated by the interaction with spins
in neighbouring chains. Let us assume the Hamiltonian
with the interchain coupling as follows,

H =
∑

j

[
N∑

i=1

JS2i−1,jS2i,j +
N∑

i=1

JiS2i,jS2i+1,j ]
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Fig. 6. The JA-dependence of the magnetic fields where the

jumps due to q = 1, 2 clusters take place (a) above the plateau
(solid line: Ha1, two dotted lines: Ha2) and (b) below the plateau
(solid line: Hb1, dotted line: Hb2). JF = −2.

+
2N∑
i=1

∑
<j,j′>

J⊥Si,jSi,j′ , (5)

where j and j′ distinguish the chains and
∑

<j,j′> de-
notes the summation over nearest neighbour chains. We
assume that the correlation between two almost free
spins separated by the JA bonds is mainly mediated
by the F-AF part of the neighbouring chains, because
the correlation length of the AF-AF part is small com-
pared to that of the F-AF part. Furthermore, for small p,
the probability to find the JA bonds on the neighbour-
ing chains between two almost free spins is small. As
a result, the interchain interaction and the short range
correlation within the neighbouring chains support the
↑↑↓↓-type long range order as far as p is small.

For quasi-one-dimensional systems, the mean field ap-
proximation for the interchain coupling gives reliable re-
sults,20) because a large number of spins are envolved
in the low energy long wave length fluctuations in each
chain. These fluctuations are frozen by interchain inter-
action resulting in the three dimensional ordering. We
therefore employ the interchain mean field approxima-
tion assuming the ↑↑↓↓ order to obtain the single chain
mean field Hamiltonian given by,

HMF =
N∑

i=1

JS2i−1S2i +
N∑

i=1

JiS2iS2i+1−
2N∑
i=1

hiS
z
i (6)

with hi = −zcJ⊥ < Sz
i > and zc is the number of near-

est neighbour chains. Reflecting the ↑↑↓↓ order, we take
h4i = h4i+1 = h and h4i+2 = h4i+3 = −h. In Fig. 7, the
staggered magnetization mst ≡< 1

2N

∑N
i=1(−1)i(Sz

2i +
Sz

2i+1) > is plotted against λ ≡ zcJ⊥ for (a) JA = 2 and
(b) JA = 4 with JF = −2. The chain length is 2N = 200
and finite size DMRG method is used. The average is
taken over 200 samples. For p = 0, mst vanishes unless
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Fig. 7. The λ-dependence of staggered magnetization for (a)JA =
2 and (b)JA = 4 with JF = −2. The solid line is the staggered
magnetization for p = 0.

λ is larger than a critical value λc. For finite p, however,
mst takes a finite value even for small λ < λc. The mag-
nitude of mst increases with p and JA, namely with the
increase of randomness. It should be noted that the long
range order for λ < λc starts to appear around p ∼ 0.3
for JA = 2 and around p ∼ 0.1 for JA = 4. Theses val-
ues are approximately consistent with the estimation of
pc from the energy gap scaling. Therefore the ↑↑↓↓-type
long range order is stabilized for appropriate strength of
the interchain coupling if the low energy density of state
has divergent singularity as expected.

In the experiment, the long range order is observed for
x < 0.87. If we assume p = 1 − x2, the regime x < 0.87
corresponds to p>∼0.24. Although the exact value of JA

is unknown, we find from Fig 7 that the long range order
is stabilized in this concentration range even for λ < λc

both for JA = 2 and 4. These results explain the qual-
itative features of the experimental observation of the
magnetic ordered state. For the quantitative compari-
son with experiments, the strength of the Cu <Br

Cl> Cu
bonds need to be determined. Similar analysis is made

for the random S = 1 Heisenberg antiferromagnet by
Villar et al.14)

4. Summary and Discussion

The S = 1/2 Heisenberg chains with bond alternation
and randomness on the strong bonds are studied by the
DMRG method. The low energy spectrum is shown to
have the Griffiths type singularity and the physical ori-
gin of this behavior is explained based on the q-cluster
picture. In the magnetization curves, there appears a
randomness induced plateau at the fractional value of
the saturated magnetization. This plateau and the fine
sructures of the magnetization curves are also under-
stood based on the q-cluster picture. By the mean field
treatment of the interchain coupling, the magnetic long
range order is shown to be stabilized by randomness
in the intermediate concentration regime. The results
are discussed in relation with the recent experiment for
(CH3)2CHNH3Cu(ClxBr1−x)3.

We carried out the interchain mean field calculation
assuming the ↑↑↓↓ type long range order. However, the
possibility of different type of ordering such as spin glass
ordering cannot be excluded. From this viewpoint, the
experimental determination of the magnetic structure by
neutron scattering experiment is also hoped to elucidate
the nature of the long range order.

Recently, Nakamura15) has shown that the ↑↓↑↓ corre-
lation becomes most critical in the intermediate concen-
tration regime in the present model from the nonequilib-
rium relaxation method analysis of the quantum Monte
Carlo data. We have also checked the possibility of the
↑↓↑↓ order within the DMRG and interchain mean field
approximation. According to our calculation, the stag-
gered magnetization for ↑↓↑↓ order is much lower than
that for the ↑↑↓↓ order. For example, for JA = −JF = 2
and p = 0.4, the staggered magnetization for the ↑↓↑↓
order is approximately one order of magnitude smaller
than that for the ↑↑↓↓ order. For other values of param-
eters JA, JF and p, the ratio of ↑↓↑↓ order to ↑↑↓↓ order is
even smaller. Especially, the ↑↓↑↓ order decreases rapidly
with the decrease of p and becomes less than 10−3 for
p ≤ 0.3 with JA = −JF = 2 and for p ≤ 0.2 with JA = 4,
JF = −2 within the regime λ < λc. Therefore we may
conclude that the dominant order is of the ↑↑↓↓ type al-
though it is possible that the weak ↑↓↑↓ order also coex-
ist. It should be noted that Nakamura’s calculation does
not explicitly include the effect of interchain coupling. In
the random systems, the criticality of the correlation in
a single chain does not always imply the corresponding
long range order in its quasi-1-dimensional counterpart.

The absence of the fine structure in the low field mag-
netization curve of the real IPACu(ClxBr1−x) is not un-
derstood in the present calculation. In the presence of
interchain coupling, however, it is possible that the al-
most free spins form localized singlet clusters mediated
by interchain coupling. This can suppress the low field
structure in the magnetization curve. However, such lo-
cal correlation effect is not properly described within the
present interchain mean field approximation. This prob-
lem is left for future studies.

In this work, we concentrated on the ground state
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properties due to the limitation of the numerical method
(DMRG). The finite temperature effects must be impor-
tant for the direct comparison with experiments. This is
left for future studies.
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