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The ground state phase transitions in the distorted S = 1 kagomé Heisenberg antiferromag-
net (KHAF) with single-site anisotropy D are studied by the numerical exact diagonalization
method. For strong easy plane anisotropy, the hexgonal singlet solid (HSS) ground state of
the uniform KHAF is destroyed and large-D state is realized. The quantum phase transition
between these two states is analogous to the Haldane-large-D transition in the S = 1 antiferro-
magnetic Heisenberg chain. The combined effect of the

√
3×

√
3 lattice distortion and single site

anisotropy is also investigated. The ground state phase diagram expected from the numerical
results is presented. The presence of this transition is consistent with the HSS picture of the
ground state of the uniform S = 1 KHAF and supports its validity.

KEYWORDS: kagomé Heisenberg antiferromagnet, single-site anisotropy, lattice distortion, hexagonal sin-
glet solid state, large-D state

1. Introduction

The kagomé Heisenberg antiferromagnet (KHAF) has
been extensively studied theoretically and experimen-
tally because of the interest in the interplay of the strong
thermal and quantum fluctuation and highly frustrated
nature of the lattice structure.1–10) So far, most of the
attempts have been focused on the ground state and low
lying excitations of the uniform KHAF.

The present author proposed the hexagonal singlet
solid (HSS) picture for the ground state of S = 1 KHAF8)

which is analogous to the valence bond solid (VBS) pic-
ture of the ground state of the S = 1 antiferromagnetic
Heisenberg chains (AFHC).11) In both HSS and VBS pic-
tures, the S = 1 spins are decomposed into symmetrized
pairs of two S = 1/2 spins. In the HSS state, six S = 1/2
spins are assigned for each hexagon and they form a 6-
spin singlet state around each hexagon. This is in con-
trast to the VBS state in which these S = 1/2 spins form
2-spin singlet state on each bond. The HSS state is ex-
plicitly constructed in ref. 8 and shown to give a good
variational energy. Similar physical picture has been also
proposed for the S = 1 pyrochlore system.12)

As a real material, Wada and coworkers13–15)

have investigated the magnetic behavior of m-
MPYNN·BF4which can be regarded as the S = 1 KHAF.
Therefore, if the HSS picture of the ground state of S = 1
KHAF is verified, this material is the first realistic ex-
ample of the VBS-like state in 2-dimensional S = 1 mag-
netic systems. In this context, it is quite important to
check the validity of the HSS picture from various points
of view. Especially, it is important to verify what kind
of perturbations destroy the ground state of the unifom
S = 1 KHAF. In the previous work, we investigated the
effect of the

√
3 ×

√
3 lattice distortion.10) It is shown

such distortion destroys the ground state of the uniform
S = 1 KHAF as the VBS state is destroyed by dimeriza-
tion. The ground state in the strongly distorted regime is
the lagre-HSS state which has the large scale HSS struc-

ture.
In the present work, we investigate the stability of the

ground state against the single-site uniaxial anisotropy
D. In analogy with the VBS state, if the ground state
of the S = 1 KHAF is the HSS state, it should be also
destroyed by easy plane single-site anisotropy, because
the strong anisotropy projects out the Sz = ±1 states in
each site. We also investigate the combined effect of the√

3 ×
√

3 lattice distortion and single site anisotropy D.
This paper is organized as follows. The model Hamilto-

nian is presented in the next section. The effect of single-
site anisotropy is investigated in §3. The combined effect
of single-site anisotropy and lattice distortion is discussed
in §4. The ground state phase diagram is also presented.
The last section is devoted to summary and discussion.

2. Model Hamiltonian

We consider the anisotropic distorted S = 1 KHAF
given by,

H = HA + HB + HC +
∑

i

DSz2
i ,

Hα = Jα

∑
<i,j>∈α

SiSj ,

where Si is the spin operator with S = 1 and
∑

<i,j>∈α

represent the summation over the bonds around the type-
α (α = A, B or C) hexgons, which are depicted in Fig.
1. We take JA = 1 and JB = JC = α with 0 < α < 1.

3. Effect of Single-Site Anisotropy D

Let us first concentrate on the case α = 1 and D >
0. The HSS state is obviously destroyed for D >> J ,
because each spin can take only the single state Sz

i = 0
and no HSS state can be constructed. If the ground state
of the uniform S = 1 KHAF is the HSS state, a phase
transition should therefore take place at an intermediate
value of D.

1



2 J. Phys. Soc. Jpn. Full Paper Kazuo Hida

A B CCB

CBA A

B CA A

C A B CB

BACB C CC

Fig. 1.
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3 distorted kagomé lattice.
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Fig. 2. Clusters used for numerical diagonalization.

Corresponding phenomenon is well established for S =
1 AFHC, in which the VBS state is destabilized by large
easy plane single site anisotropy16,17) resulting in the
”large-D” phase. This observation elucidated that the
ground state of the uniform S = 1 AFHC has the VBS
structure. Therefore, in the present case also, the pres-
ence of this transition is a strong support for the HSS
picture of the uniform S = 1 KHAF.

To confirm the presence of the phase transition be-
tween the HSS and large-D states, the numerical diag-
onalization calculation is carried out for the finite size
clusters with N = 12 and 18. The clusters used for the
calculation are shown in Fig. 2. The gap ∆E between
the ground state and the first excited state with z com-
ponent of the total spin Sz

tot = 0 is plotted in Fig. 3
against D for N = 12, 15 and 18. The excitations with
higher spins have larger excitation energy. It is evident
that the gap has a minimum at D ∼ 0.82 for N = 18
(a) type cluster, at D ∼ 0.79 for N = 18 (b) type cluster
and at D ∼ 0.88 for N = 12 cluster. Although we cannot
analyze the system size dependence of the gap in detail
due to the limitation of the size, this result indicates the
presence of the phase transition in the thermodynamic
limit around D ≃ 0.8.
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Fig. 3. The D-dependence of the lowest energy gap with Sz
tot = 0

of S = 1 anisotropic KHAF N = 18 (cluster a), N = 18 (cluster
b) and N = 12.

4. Ground State Phase Diagram

Let us consider the general case of D > 0 and 0 <
α < 1. In this case, the unit cell contains 9 spins and
only N = 18 cluster of type (a) is compatible with this
type of lattice distortion with periodic boundary condi-
tion. Therefore we cannot check the size dependence of
the energy gaps. We nevertheless roughly estimate the
phase boundary from the point at which the energy gap
takes a minimum for this cluster. The qualitative phase
diagram expected from these finite size data is shown
in Fig. 4. Strictly speaking, we find a slight reentrant
behavior around α ∼ D ∼ 0.8 and a small intermedi-
ate phase between the HSS and large-D phases around
α ∼ 0.5 and D ∼ 0.1. Considering the crudeness of the
method used for the determination of the phase bound-
ary, it is not clear whether these singular parts of the
phase boundary are physically meaningful or artifacts of
the finite size calculation.

Even for α<∼0.5, where the ground state for D = 0
is the large HSS state, the gap takes a minimum with
the increase of D as shown in Fig 5. Although the N =
18 cluster does not support the large-HSS structure, the
presence of the minimum of the gap at finite D implies
that the ”alive” spins are killed by D term at this value
of D. Therefore we may roughly estimate the large-HSS-
large-D transition point from this minimum point of the
energy gap. The double minima in the case of α = 0.48
implies the possible presence of the intermediate phase.

It should be remarked that the large-HSS phase is very
fragile against D. As seen from the physical picture of
the large-HSS phase explained in ref. 10, the effective
interactions between the ”alive” spins are of the order
of α2 for small α. Therefore we may expect that the
large-HSS state is destabilized around D ∼ O(α2). As
explained in ref. 10, the dominant effective interaction
between the ’alive’ spins is the next nearest neighbour
interaction of the enlarged kagomé lattice of the ’alive’
spins. If we retain only this term and D-term, the large-
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Fig. 4. The phase diagram expected from the numerical data

with N = 18. The solid and dotted lines are guides for eye. The
broken line is the result in the strong distortion limit α << 1.
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Fig. 5. The D-dependence of the lowest energy gap with Sz
tot = 0

of S = 1 distoorted anisotropic KHAF with N = 18 (cluster a)
at α = 0.4 and 0.48. The ground state is the large-HSS state for
D = 0.

D-large HSS transition point can be estimated from that
of the uniform S = 1 KHAF for small α. The result is
Dc ≃ 0.06α2. This is plotted by the broken line in Fig.
4. The solid and dotted curves are the guide for eye.

5. Summary and Discussion

In summary, we have found that the ground state of
the distorted S = 1 KHAF with single site anisotropy
D undergoes the phase transition to the large-D phase
for large enough D. The presence of this phase transi-
tion is consistent with the HSS picture for the isotropic
S = 1 KHAF which is analogous to the VBS picture of
the Haldane phase.8,11) In this context, this transition

Table I. Correponding phases of the S = 1 KHAF and S = 1

antiferromagnetic Heisenberg chain (AFHC).

S = 1 AFHC S = 1 KHAF

small D small δ(= 1 − α) VBS-phase HSS-phase

large δ dimer-phase large-HSS phase

large D large-D phase large-D phase

corresponds to the Haldane-large-D phase transition in
the S = 1 AFHC.16,17)

The effect of the
√

3 ×
√

3 lattice distortion on this
phase transition is also investigated. The obtained phase
diagram is remniscent of the corresponding phase dia-
gram of the S = 1 AFHC with dimerization and single-
site anisotropy.18,19) The correspondence between these
two models is summarized in table I. The important dif-
ference is, however, that there exists a phase transition
between the large HSS phase and the large-D phase un-
like the case of S = 1 AFHC in which no phase transi-
tion between the dimer phase and large-D phase takes
place.18,19)

The numerical calculation is performed using the HI-
TAC SR8000 at the Supercomputer Center, Institute for
Solid State Physics, the University of Tokyo and the
HITAC SR8000 at the Information Processing Center,
Saitama University. The numerical diagonalization pro-
gram is based on the TITPACK ver.2 coded by H. Nishi-
mori and KOBEPACK/1 coded by T. Tonegawa, M.
Kaburagi and T. Nishino. This work is supported by the
Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology,
Japan.
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