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The ground state phase transition in the distorted S = 1 kagomé Heisenberg antiferromagnet
(KHAF) is studied by means of the perturbational calculation and numerical exact diagonaliza-
tion method. For strong

√
3×

√
3 lattice distortion, the hexgonal singlet solid (HSS) ground state

of the uniform KHAF is destroyed and a new singlet state, the large HSS (LHSS) state, which
is globally different from the HSS state is realized. The quantum phase transition between these
two singlet states is analogous to the Haldane-dimer transition in the S = 1 antiferromagnetic
Heisenberg chain. The presence of this transition is fully consistent with the HSS picture of the
ground state of the uniform S = 1 KHAF and supports the validity of this picture.
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The kagomé Heisenberg antiferromagnet (KHAF) has
been extensively studied theoretically and experimen-
tally because of the interest in the interplay of the strong
thermal and quantum fluctuation and the highly frus-
trated nature of the lattice structure1-9). To date, most
attempts have been focused on the ground state and low-
lying excitations of the uniform KHAF. In both S = 1/2
2-7) and S = 18) cases, it is expected that the ground
state is a spin singlet state and the magnetic excitation
has a finite energy gap. In the S = 1/2 case, there are a
number of singlet excitations below the first triplet ex-
citation possibly down to zero energy in the thermody-
namic limit5). On the other hand, the singlet excitations
also have finite energy gaps in the S = 1 case8).

The present author proposed the hexagonal singlet
solid (HSS) picture for the ground state of S = 1 KHAF8)

which is analogous to the valence bond solid (VBS) pic-
ture of the ground state of the S = 1 antiferromagnetic
Heisenberg chain (AFHC)10, 11). In both HSS and VBS
pictures, the S = 1 spins are decomposed into sym-
metrized pairs of two S = 1/2 spins. In the HSS state,
six S = 1/2 spins are assigned for each hexagon and they
form a six-spin singlet state around each hexagon. This
is analogous to the VBS state in which these S = 1/2
spins form a two-spin singlet state on each bond. The
HSS state was explicitly constructed in the previous pa-
per and shown to give a good variational energy8). A
similar physical picture has also been proposed for the
S = 1 pyrochlore system12).

As a real material, Wada and coworkers13-15) have
investigated the magnetic behavior of m-MPYNN·BF4

which can be regarded as the S = 1 kagome antiferro-
magnet. Therefore, if the HSS picture of the ground state
of S = 1 KHAF is verified, this material is the first re-
alistic example of the VBS-like state in two-dimensional
S = 1 magnetic systems. In this context, it is important
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to check the validity of the HSS picture for the ground
state of the S = 1 KHAF from various points of view.
In the present work, we investigate the stability of the
ground state against the lattice distortion which destroys
the characteristic magnetic structure of the HSS state.
The obtained results are consistent with the assumption
that the ground state of the undistorted S = 1 KHAF is
the HSS state.

It should also be noted that the material m-MPYNN·BF4

actually undergoes a structual transformation around
128K to a distorted phase with a

√
3 ×

√
3 structure16).

This is another motivation of the present study, although
the strength of the distortion might not be strong enough
to induce a ground state phase transition.

Let us consider the S = 1
√

3 ×
√

3 distorted KHAF
given by

H = HA + HB + HC, (1)

Hµ = Jµ

∑
<i,j>∈µ

SiSj , (2)

where Si is the spin operator with S = 1 and
∑

<i,j>∈µ

represents the summation over the bonds around the
type-µ (µ = A, B or C) hexgons, which are depicted in
Fig. 1. In the following, we mainly consider the case
JB = JC = αJA, unless otherwise specified.

If the ground state of the S = 1 KHAF is the HSS
state, this state should be destroyed for JA >> JB = JC,
because the S = 1 spins around each A-hexagon form
a singlet cluster as a whole and no decomposition into
S = 1/2 spin pairs can take place in this limit. A phase
transition should therefore take place at an intermediate
value of α. A corresponding phenomenon has been well
established for S = 1 AFHC, in which the VBS state
is destabilized by strong dimerization17-19). This obser-
vation elucidated that the ground state of the uniform
S = 1 AFHC is the VBS state which is essentially differ-
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Fig. 1.
√

3 ×
√

3 distorted kagomé lattice.

ent from the dimer phase in the dimerized S = 1 AFHC.
Therefore, it is important to verify the presence of this
transition in order to substantiate the HSS picture of the
uniform S = 1 KHAF.
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Fig. 2. Strongly distorted KHAF. Open circles represent the
’alive’ spins. Strongest effective bonds for case JA >> JB = JC

are shown by thick lines.

Let us start our calculation with the strong distortion
limit including the case JB ̸= JC. As explained above,
the six S = 1 spins around each A-hexagon approxi-
mately form a six-spin singlet state for JA >> JB, JC.
The number of remaining spins is N/3. These N/3 ’alive’
spins, in turn, form a larger kagomé lattice as depicted by
the open circles in Fig. 2. Even in the strong distortion
limit, signs of the effective interactions between ’alive’
spins are not generally obvious, because there are var-
ious paths which mediate the effective interaction. We
therefore explicitly carry out the perturbation calcula-
tion up to the second order in JB and JC to obtain the
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Fig. 3. Effective exchange coupling constants between ’alive’
spins (open circles). Filled circles represent ’dead’ spins con-

nected by A-bonds.

effective Hamiltonian for the ’alive’ spins as

Heff = JnnB

∑
<nnB>

SiSj

+ JnnC

∑
<nnC>

SiSj

+ Jnnn

∑
<nnn>

SiSj

+ Jnnnn

∑
<nnnn>

SiSj , (3)

where Si is the spin operator with S = 1 and the summa-
tions

∑
<nnB>

,
∑

<nnC>

,
∑

<nnn>

and
∑

<nnnn>

are taken over the

nearest neighbour pairs within B-hexagons, those within
C-hexagons, next nearest neighbour pairs and next to
next nearest neighbour pairs of ’alive’ sites, respectively,
as depicted in Fig. 3.

Using the numerically obtained eigenvalues and eigen-
states of the six-spin hexagon cluster, the effective ex-
change couplings are calculated as

JnnB = 1.190573JBJC − 0.669519J2
B − 0.519357J2

C,

JnnC = 1.190573JBJC − 0.519357J2
B − 0.669519J2

C,

Jnnn = 1.112947JBJC − 0.519357(J2
B + J2

C),

Jnnnn = 1.035321JBJC − 0.519357(J2
B + J2

C), (4)

up to the second order in JB and JC. Here, we have set
JA = 1.

If we set JB = JC = α, we have JnnB = JnnC =
0.001697α2, Jnnn = 0.074233α2, Jnnnn = −0.003394α2.
In this case, the strongest effective interaction is the next
nearest neighbour interaction. If we neglect other inter-
actions, the entire lattice of ’alive’ spins is decomposed
into three equivalent sublattices of kagomé type which
are depicted by thick solid lines, thick dotted lines and
thick broken lines in Fig. 2. If the ground state of the
uniform S = 1 KHAF is the HSS state, the alive spins
again form three HSS states on large hexagons which
are three times larger than the original kagomé lattice.
Thus, the ground state for small α is a tensorial product
of three large HSS states constructed from ’alive’ S = 1
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spins and almost isolated singlet clusters of six S = 1
spins around A-hexagons. We call this state the ’large
hexagonal singlet solid’ (LHSS) state. As explained ear-
lier, this state is an analog of the dimer phase of the
S = 1 dimerized AFHC in which none of the S = 1 spins
are decomposed into S = 1/2 spins but paired into a local
singlet state on the strong bonds as a whole. In contrast
to the latter, however, the ’alive’ spins in the LHSS state
are again decomposed into two S = 1/2 spins and form a
six-spin singlet state on enlarged sublattices. Thus, the
LHSS state is a singlet state whose structure is globally
different from the HSS state of the undistorted kagomé
lattice.

N=18

N=27

Fig. 4. Clusters used for numerical diagonalization.

To confirm that the ground state of the uniform S = 1
KHAF is destroyed by the lattice distortion with JB =
JC = αJA, a numerical diagonalization calculation is car-
ried out for the finite-size cluster with N = 18 shown in
the upper half of Fig. 4 using the original Hamiltonian
(1). Unfortunately, this size of cluster is not sufficiently
large to support the LHSS structure. The minimum clus-
ter size to support the LHSS structure is N = 54 which is
far from tractable by the presently available computers.
However, the HSS structure itself can be constructed on
the N = 18 cluster. Therefore, the limit of stability of
the HSS state can be analyzed using the cluster of this
size.

Actually, the α-dependence of the singlet-triplet gap
∆E plotted in Fig. 5(a) shows a minimum ∆E ≃ 0.016JA

around α ≃ 0.50. Although we cannot analyze the sys-
tem size dependence of the gap due to the limitation of
size, this result indicates that the ground state at α = 1 is
destroyed around α ≃ 0.5 by distortion. This fragility of
the ground state of the undistorted S = 1 KHAF is con-
sistent with the HSS picture. Taking into account that
the HSS picture is also supported by the variational cal-
culation8), it is highly plausible that the ground state of
the undistorted S = 1 KHAF is the HSS state, although
there is no final proof. Furthermore, if this picture is
valid, the ground state of the strongly distorted KHAF
is the LHSS state and the HSS-LHSS phase transition is

expected at α = αc ∼ 0.5 in the thermodynamic limit.
Just for comparison, we calculated the magnetic ex-

citation gap of the S = 1/2 KHAF for N = 18 and 27
with the clusters shown in Fig. 4. As shown in Fig. 5(b),
the phase transition is not observed in the S = 1/2 case.
This is also consistent with our senario because neither
HSS nor LHSS states can be constructed for the S = 1/2
case.

For the S = 1 case, the energy gap with N = 18 shows
a maximum around α ≃ 0.41. This is due to the level
crossing of the first excited state. We expect that this
behavior persists in the thermodynamic limit in the fol-
lowing way. In the LHSS phase, there are two different
types of singlet clusters. One is the cluster composed
of six S = 1 spins around A-hexagons. The other is the
large hexagon cluster of six S = 1/2 spins which are gen-
erated by decompostion of the S = 1 ’alive’ spins. Even
in the LHSS phase, it is convenient to discuss this prob-
lem in terms of the decomposed S = 1/2 spins for all
spins. Among twelve S = 1/2 spins around A-hexagons,
only six spins participate the formation of the HSS-type
clusters around A-hexagons in the HSS phase. The re-
maining six S = 1/2 spins belong to the HSS-type clus-
ters around B- or C-hexagons. They come into the S = 1
A-hexagon cluster in the LHSS phase. For α<∼αc, how-
ever, these spins are bound to A-hexagons only weakly.
Thus, the excitation energy required to break up such
a singlet cluster is small and gives the lowest excitation
gap. This gap vanishes as α reaches αc. For α << αc,
the S = 1 spins around A-hexagons are tightly bound,
so that the lowest energy gap is that of the large HSS
cluster of ’alive’ spins. Therefore, the level crossing be-
tween these two types of excitations takes place within
the LHSS phase. However, this does not cause the global
change of the ground state structure and the intermedi-
ate phase is not expected between the HSS and LHSS
phases. For the N = 18 cluster also, the numerically
found crossover behavior is understood as the level cross-
ing between the excitation around A-hexagons and that
of the cluster of ’alive’ spins, even though the latter does
not form the complete LHSS state.

In summary, we have found that the ground state of
the undistorted S = 1 KHAF is destroyed by

√
3 ×

√
3

lattice distortion with JB = JC < JA at an intermedi-
ate strength of distortion. The fragility of the uniform
ground state against this type of lattice distortion rein-
forces the HSS picture of the uniform ground state which
has been proposed on the basis of the variational argu-
ment in ref. 8. Of course, the present calculation is
far from the complete proof of the HSS picture, so that
further efforts to substantiate this picture from various
aspects are necessary in future studies.

Based on the perturbational calculation, the structure
of the strongly distorted phase is shown to be the LHSS
state which is globally different from the HSS ground
state of the undistorted S = 1 KHAF. Therefore, the
HSS-LHSS phase transition is expected in the thermody-
namic limit. This transition corresponds to the Haldane-
dimer phase transition in the S = 1 AFHC17-19).

In this paper, we have discussed the ground state phase
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Fig. 5. α-dependence of the gap of the magnetic excitation for
distorted KHAF with JA = 1, JB = JC = α for (a) S = 1, N =

18 and (b) S = 1/2, N = 18, 27. For N = 18, the ground
state has total spin 0 and the excited state has total spin 1. For
N = 27 and S = 1/2, the ground state has total spin 1/2 and
the excited state has total spin 3/2.

transition in detail only for the case JA > JB = JC, be-
cause this is the simplest case in which the ground state
remains singlet even in the strong distortion limit. There
remains, however, the possibility of many other kinds of
ground states for a general choice of JA, JB and JC. Even
in the strong distortion limit, the expressions of the ef-
fective coupling constants (4) show that there is strong
competition between the contributions from different in-
teraction paths. Therefore, we may expect a rich variety
of ground state phases for the distorted KHAF.

For example, if we set JA = 1, JB = α and JC = 0,
we have JnnB = −0.669519α2, JnnC = −0.519357α2,
Jnnn = −0.519357α2 and Jnnnn = −0.519357α2. There-
fore, all effective bonds are ferromagnetic and the ground
state is ferrimagnetic with 1/3 of full magnetization. It
is numerically verified that the ground state is always the
ferrimagnetic state with the same value of magnetization
for JA = 1, JB = α and JC = 0 with 0 < α < 1 by exact
diagonalization of clusters with N = 18 for the origi-
nal Hamiltonian (1).9) The determination of the ground
state phase diagram in the entire parameter plane is an
interesting issue although it requires a huge computa-
tional effort.

The numerical calculation is performed using the HI-
TAC SR8000 at the Supercomputer Center, Institute for
Solid State Physics, the University of Tokyo and the
HITAC SR8000 at the Information Processing Center,
Saitama University. The numerical diagonalization pro-
gram is based on the TITPACK ver.2 coded by H. Nishi-
mori and KOBEPACK/1 coded by T. Tonegawa, M.
Kaburagi and T. Nishino. This work is supported by
a Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology.
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