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Emergence of Long Period Antiferromagnetic Orders from Haldane Phase in S = 1

Heisenberg Chains with D-Modulation
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The effect of spatial modulation of the single-site anisotropy D on the ground state of the
S = 1 Heisenberg chains is investigated. In the case of period 2 modulation, it is found that the
phase diagram contains the Haldane phase, large-D phase, Néel phase of udud-type and u0d0-
type. It is shown that the hidden antiferromagnetic order in the Haldane phase compatible
with the spatial modulation of D-term get frozen resulting in the emergence of various types
of Néel orders. The investigation of the model with longer period D-modulation also confirms
this picture.
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1. Introduction

Antiferromagnetic quantum spin chains have been con-
tinually the subject of experimental and theoretical re-
search in the past two decades. Among them, the Hal-
dane ground state of the S = 1 antiferromagnetic Heisen-
berg chain with a gap to the first excited state1) has
been extensively studied by many authors. This state is
characterized by the hidden antiferromagnetic string or-
der accompanied by the Z2 × Z2 symmetry breakdown.
The easy plane single-site anisotropy D(> 0) destroys
the Haldane ground state leading to the large-D state
without specific order. On the other hand, the easy axis
single-site anisotropy (D < 0) drives the Haldane state
into the Néel state.2–4)

In this context, it is an interesting issue to investigate
how the Haldane phase is modified if the easy-axis and
easy-plane D-terms coexist in a single chain. As a sim-
plest example of such competition, we first investigate
the ground state phase diagram of the S = 1 antiferro-
magnetic Heisenberg chain with alternating D-term,

H =
N∑

l=1

JSlSl+1 + D+

N/2∑
l=1

Sz2
2l−1

+ D−

N/2∑
l=1

Sz2
2l , (J > 0) (1)

where D+ = D0+δD,D− = D0−δD and Si is the spin-1
operator on the i-th site. The parameters D0 and δD rep-
resent uniform and alternating components of uniaxial
single-ion anisotropy, respectively. The periodic bound-
ary condition is assumed unless specifically mentioned.

The most remarkable conclusion on the ground state of
this model obtained in the present work is that the u0d0-
type long period Néel state emerges for large δD although
this type of order is not compatible with the short range
order in the Haldane phase at D+ = D− = 0. Here u, 0
and d stand for the single-site states |Sz

i ⟩ with Sz
i = 1, 0
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and −1, respectively. This implies that the single-site
anisotropy can reverse the sign of spin-spin correlation in
the corresponding isotropic model. This phenomenon can
be understood as a selection of the specific antiferromag-
netic order compatible with the D-alternation among the
components of the Haldane state which is the superposi-
tion of various states with the hidden antiferromagnetic
order. We also confirm this idea by investigating the sim-
ilar model with long period D-modulation.

This paper is organized as follows. In the next section,
the effective Hamiltonians in various limiting cases are
derived and the overall feature of the phase diagram is
explained. The numerical exact diagonalization results
and the quantitative phase diagram are presented in §3
. The model with long period D-modulation is discussed
in §4. In the final section, we summarize our results.

2. Effective Hamiltonians

Let us first consider the various limiting cases of the
Hamiltonian (1) in which the ground states can be de-
termined by the effective Hamiltonians derived perturba-
tionally. In the simplest limiting case of D+, D− >> J ,
all spins are confined to the state |0⟩ and the ground
state is obviously the large-D phase.

For D+, D− << −J , all spins are allowed to be in the
states |±1⟩. The effective coupling between these spins
are given by

H(1)
eff = J∆

N∑
l=1

Sz
l Sz

l+1, (Sz
l = ±1) (2)

up to the lowest order in J . Therefore we expect the
udud-type Néel phase.

In the limit of D+ >> J,D− << −J , the spins on the
odd-th sites are confined into the state |0⟩ and those on
the even-th sites can take |±1⟩ states. The latter spins
are coupled via the Ising type antiferromagnetic coupling
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within the third order perturbation in J as,

H(2)
eff = Jeff

N/2∑
i=1

Sz
2iS

z
2(i+1), Jeff =

J3

2δD2
, (Sz

l = ±1)

(3)
although the spins S2i and S2(i+1) are ferromagnetically
correlated in the absence of D-terms. The origin of the
antiferromagnetic interaction is as follows. Let us denote
the spin state of 3 successive sites of the original Hamil-
tonian (1) by

∣∣∣Sz
2i Sz

2i+1 Sz
2(i+1)

〉
. In the absence of the

exchange term J , the ground states are |±1 0 ± 1⟩ which
are 4-fold degenerate. Due to the spin flip term in (1), the
|1 0 1⟩ state is mixed with the |1 1 0⟩ and |0 1 1⟩ states
while the |1 0 −1⟩ state is mixed with the |1 −1 0⟩ and
|0 1 −1⟩ states. Therefore the energy of the |1 0 1⟩ state
is raised by the nearest neighbour pair of up spins in
the intermediate state while the energy of the |1 0 −1⟩
state is lowered by the nearest neighbour pair of up and
down spins in the intermediate state. This means that
the effective interaction between Sz

2i and Sz
2(i+1) is anti-

ferromagnetic. It should be noted that the spin flip terms
in the effective Hamiltonian appear only in the 4-th or-
der perturbation in J . Therefore we expect the u0d0-type
Néel phase in this regime.

This can be also interpreted using the concept of the
hidden antiferromagnetic string order in the following
way. In the absence of the D-terms, the ground state has
a hidden string order which implies that the spins with
|±1⟩ are arranged antiferromagnetically if the sites with
|0⟩ are skipped.2,3) The position of the sites with |±1⟩
and |0⟩ strongly fluctuate quantum mechanically and this
antiferromagnetic order remains hidden because it is im-
possible to observe the correlation between only the sites
with |±1⟩ experimentally. In the presence of strong D-
terms, only the states consistent with the constraint set
by the D-terms survive among all states with hidden or-
der. For D+, D− << −J , no |0⟩ sites are allowed, so that
the hidden order is frozen into the explicit udud order.
For D+ >> J and D− << J , the odd-th site must be in
the state |0⟩ and the even-th sites |±1⟩. To be compatible
with the string order, spins must be arranged with u0d0
order which is no more hidden. Thus the strong D-term
selects the spin states among the states with hidden order
to realize the explicit Néel order of various periodicity.

Near the line D0 ∼ δD >> J , we can also derive the
effective Hamiltonian. The spins on the odd-th sites are
confined into the state |0⟩ and those on the even-th sites
can take all |±1⟩ and |0⟩ states. The effective coupling
between the latter spins are obtained within the second
order perturbation in J and first order in D0 − δD as,

H(3)
eff = Jeff

N/2∑
i=1

{1
2

[
S+

2iS
−
2(i+1) + S−

2iS
+
2(i+1)

]
+ DeffSz2

2(i+1)

}
(4)

where

Jeff =
2J2

D0 + δD
, Deff = D0 − δD +

2J2

D0 + δD
. (5)

For the model (4), it is known that the large-D phase is
stable for Deff/Jeff > 0.35. For 0.35 > Deff/Jeff > −2.0,
the ground state is on the critical line between the Hal-
dane and XY phase. For Deff/Jeff < −2.0, the ground
state is on the critical line between the Néel phase and
the XY phase.2–5) In the latter two cases, considering
the continuity to other parts of the phase diagram, we
may expect that the ground state is actually the Hal-
dane phase or the Néel phase due to the Ising compo-
nent of the effective exchange interaction which appear
as higher order corrections in J . It should be noted that
this Néel phase is the u0d0 phase in the original Hamilto-
nian (1). The large-D-Haldane phase boundary is given
by Deff/Jeff = 0.35 which gives,

D2
0 − δD2 = −1.3J2. (6)

The u0d0-Haldane phase boundary is given by
Deff/Jeff = −2.0 which gives,

D2
0 − δD2 = −6.0J2. (7)

These lines are plotted by the broken and dotted lines
in the ground state phase diagram in Fig. 1 along with
the numerical results obtained in the next section. We
thus expect that the Haldane phase shrinks but does not
vanish even in the limit of large D0 ≃ δD.

On the other hand, for large negative D0, the ground
state is the almost perfect udud state for D0 < δD and
the almost perfect u0d0 state for D0 > δD. The ground
state energy for the former case is given by

Eudud = N(D0 − J) (8)

and in the latter phase

Eu0d0 =
N

2
(D0 − δD). (9)

Therefore the transition between these two phases should
take place around δD ≃ −D0+2J . Around this line, how-
ever, the hidden antiferromagnetic order cannot freeze,
because the correlation between the 2i-th spin and 2i+2-
th spin can be ferromagnetic or antiferromagnetic de-
pending on whether the 2i + 1-th spin is |0⟩ or |±1⟩.
Therefore the hidden order remains hidden. Accordingly
a narrow Haldane phase should survive in the neighbour-
hood of the line δD ≃ −D0 +2J for arbitrarily large δD.

3. Numerical Analysis

3.1 Haldane-Large-D transition line
This phase transition is a Gaussian transition. In or-

der to determine the phase boundary with high accu-
racy, we use the twisted boundary method of Kitazawa
and Nomura.6,7) The Hamiltonian is numerically diag-
onalized to calculate the two low lying energy levels
with the twisted boundary condition (Sx

N+1 = −Sx
1 ,

Sy
N+1 = −Sy

1 , Sz
N+1 = Sz

1 ) for N = 8, 12 and 16 by
the Lanczos method.

For small D0 and δD, the ground state is the Haldane
phase with a valence bond solid (VBS) structure.8) Under
the twisted boundary condition, the eigenvalue of the
spin reversal T (Sz

i → −Sz
i , S±

i → −S∓
i ) is equal to −1

in this phase.6,7) As D0 increases with positive value,
a phase transition takes place from the Haldane to the
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Fig. 1. Ground state phase diagram of the Hamiltonian (1). The
error bars are within the size of the symbols. The solid lines
are the guide for eye. The broken and dotted lines represent the

approximate phase boundary given by Eqs. (6) and (7), respec-
tively. The dash-dotted line is the line δD = −D0 + 2J .

large-D phase for which T = 1. Because the quantum
number T of Haldane and large-D phases are different for
twisted boundary condition, the ground state energy of
these two phases cross each other at the phase boundary.
For example, if δD is fixed, the two levels cross at the
finite size critical point D0c(N). Extrapolation to the
thermodynamic limit is carried out assuming the formula
D0c(N) = D0c(∞) + aN−2 + bN−4.

3.2 Haldane-udud and Haldane-u0d0 transition lines
From symmetry consideration, these transitions are

Ising type transitions. We therefore employ the phe-
nomenological renormalization group (PRG) method to
determine the transition lines. The Hamiltonian is nu-
merically diagonalized to calculate the lowest energy gap
∆E(N,D0, δD) with total Sz = 0 in the periodic bound-
ary condition using the Lanczos algorithm. Both Néel
type states have Sz = 0 and are two fold degenerate in
the thermodynamic limit. For finite N , this degeneracy is
lifted and the energy difference between them gives the
smallest gap ∆E(N,D0, δD) which decreases exponen-
tially with N . On the other hand, in the Haldane phase,
the energy gap ∆E(N,D0, δD) remains finite in the ther-
modynamic limit. Thus the product N∆E(N,D0, δD)
increases (decreases) with N in the Haldane(udud or
u0d0) phase. The intersection of N∆E(N,D0, δD) for
two successive sizes N = N1 and N2 defines the fi-
nite size critical point δDc(N1, N2) for fixed D0. Tak-
ing into account the Ising universality class, these val-
ues are extrapolated using the formula δDc(N1, N2) =
δDc(∞)+2C1/(N1 +N2)3.9,10) The same procedure can
be also carried out interchanging the roles of δD and D0.
For the Haldane-udud phase boundary, the system sizes
N = 8, 10, 12, 14 and 16 are used. For the Haldane-u0d0
phase boundary, only the sizes of multiples of 4 are com-
patible with the u0d0 order. We therefore use the data

0 0.1 0.2 0.3

1

1.2

1.4

δD∆E

N=8
N=12
N=16

J/δD

Fig. 2. Energy gap ∆E on the line δD = −D0 + 2J plotted

against δD. The vertical axis is multiplied by δD to clarify the
δD-dependence of ∆E The data for N = 12 and N = 16 over-
wrap within the size of the symbols.

for N = 4, 8, 12 and 16 to determine this phase boundary.
The numerical phase diagram also shows that there

exists an intermediate phase between the u0d0 phase and
the udud phase which is continuously connected with
the Haldane phase. This is consistent with the analytical
argument in the preceding section. To further confirm
the presence of this phase, we calculate the energy gap
∆E to the lowest excited state which has total Sz = 1
along the line δD = −D0 +2J up to δD = 40J as shown
in Fig. 2 for N = 8, 12 and 16. It is clear that the energy
gap does not depend on the system size significantly and
behaves as δD−1 for large δD. We have also checked
that the parity T with respect to the spin inversion is
always −1 with twisted boundary condition along the
line δD = −D0 + 2J . This confirms the VBS nature of
this phase.

4. Long Period Modulation

The mechanism of the selection of u0d0-phase given
in §2 suggests that the similar mechanism also works for
a variety of modulation patterns of D-terms producing
a variety of long range Néel order. To confirm this idea,
we also carried out the numerical calculation with the
Hamiltonian with period p modulation of the D-terms.

Hp =
N∑

l=1

JSlSl+1 − δD

N/p∑
l=1

Sz2
pl

+ δD

N/p∑
l=1

p−1∑
q=1

Sz2
pl+q, (10)

where Sl are spin-1 operators. For p = 2, this reduces
to the Hamiltonian (1) with D0 = 0. The Haldane-Néel-
type transition takes place at δDc ≃ 2.69 for p = 4 (es-
timated from N = 8 and 16), δDc ≃ 2.75 for p = 3
(estimated from N = 6, 12 and 18) and δDc ≃ 3.29 for
p = 2 (estimated from N = 4, 8, 12 and 16).

For δD > δDc, only the spins Spl are alive. The spin-
spin correlation functions among these alive spins are
plotted in Fig. 3 for δD = 4. It is clear that the alive
spins are aligned antiferromagnetically with period p ir-
respective of the short range correlation expected in the



4 J. Phys. Soc. Jpn. Full Paper Kazuo Hida and Wei Chen

0 5 10 15
−1

0

1

p|i−j|

<Sz
pS

z
pi>

Fig. 3. Correlation functions between the alive spins
D

Sz
pSz
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E

for

p = 1(N = 16, circles), p = 2(N = 16, squares), p = 3(N = 18,
diamonds) and p = 4(N = 16, triangles). δD = 4.

absence of δD-term.

5. Summary

The ground state phase diagram of the spin-1 Heisen-
berg chains with alternating single-site anisotropy is
determined by analyzing the numerical diagonalization
data and the perturbation analysis of various limiting
cases. In addition to the Haldane, large-D and conven-
tional udud Néel phases, the Néel phase with u0d0 spin
configuration is found. The emergence of these two types
of Néel phases is explained as a selection of spin con-
figuration compatible with the spatial modulation of D-
terms among various spin configurations with hidden an-
tiferromagnetic string order in the Haldane phase.

We find no direct transition between the udud and
u0d0 phase and the intermediate gapful phase is always
present. This gapful phase is continuously connected
with the Haldane phase. Between the large-D phase and
the u0d0 phase, we also find the Haldane phase. This ro-
bustness of the Haldane phase is also understood by the
above picture.

The case of longer period D-modulation is also inves-
tigated to confirm the above picture. It is natural to ex-
pect various types of Néel order emerge from the Haldane
state in the presence of various types of spatial modula-
tion of D.

So far, it is impossible to observe the string order it-

self experimentally, because the spatial spin structure
corresponding to the string order is fluctuating quan-
tum mechanically. However, if the S = 1 chain material
with spatially modulated single-site anisotropy D whose
magnitude is larger than the exchange coupling J is re-
alized, the observation of the Néel order in such ma-
terial can be regarded as the observation of the frozen
string order. Unfortunately, the anisotropy parameter
D is smaller than the exchange coupling J for typical
quasi-one-dimensional magnetic materials which are so
far available. However, it is well known that the exchange
coupling is quite sensitive to the bond angle. Therefore it
would be still possible to synthesize the material with J
smaller than |D| by fine tuning. If the D-term is spatially
modulated by choosing the magnetic ions and their en-
vironment appropriately, the frozen string order should
be observable. The investigation in this direction would
be a challenging attempt for the experimentalists.

The computation in this work has been done using
the facilities of the Supercomputer Center, Institute for
Solid State Physics, University of Tokyo, the Information
Processing Center of Saitama University. The diagonal-
ization program is based on the TITPACK ver.2 coded
by H. Nishimori. This work is supported by a research
grant from a Grant-in-Aid for Scientific Research from
the Ministry of Education, Science, Sports and Culture
of Japan.
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