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The competition between quantum and classical magnetization plateaus of S = 1/2 frus-
trated Heisenberg chains with modified exchange couplings is investigated. The conventional
S = 1/2 frustrated Heisenberg chain is known to exhibit a 3-fold degenerate ↑↓↑ -type classical
plateau at 1/3 of the saturation magnetization accompanied by the spontaneous Z3 transla-
tional symmetry breakdown. The stability of this plateau phase against period 3 exchange
modulation which favors the •-• ↑-type quantum plateau state (•-• = singlet dimer) is studied
by bosonization, renormalization group and numerical diagonalization methods. The ground
state phase diagram and the spin configuration in each phase are numerically determined. The
translationally invariant Valence Bond Solid-type model with 4-spin and third neighbor inter-
actions, which has the exact •-• ↑-type quantum plateau state, is also presented. The phase
transition to the classical ↑↓↑ -type ground state is also observed by varying the strength of
4-spin and third neighbor interactions. The relation between these two types of models with
quantum plateau states is discussed.

KEYWORDS: frustrated Heisenberg chain, magnetization plateau, period 3 modulation, 4-spin interaction,
Z2 symmetry breakdown, bosonization, numerical diagonalization

1. Introduction

The phenomenon of magnetization plateau has been
extensively studied as a macroscopic manifestation of the
essentially quantum effect in which the magnetization M
is quantized at fractional values of the saturation mag-
netization Ms in low dimensional magnetism.1–9)

There are at least two types of plateau states that can
occur for magnetization m = M/Ms = 1/3 in S = 1/2
chain models. One is the “classical state” of Fig. 1(a),
which occurs as an adiabatic continuation from the Ising
limit. The other is the •-• ↑ •-• ↑ ... spin configuration
shown in Fig. 1(b) where •-• stands for the singlet pair.
This plateau is essentially of quantum origin, driven by
the tendency of neighboring antiferromagnetically cou-
pled spins to form entangled singlet states. Since these
are, in general, only simple caricatures of the ground
states, we might ask whether they really correspond to
distinct phases. The ground state symmetries are essen-
tially the same in both phases. The unit cell consists of 3
sites, as required by the Oshikawa-Yamanaka-Affleck the-
orem,3) and there are reflection symmetries about every
third site and every third link in both cases. To see that,
nonetheless, that they really are distinct phases note that
in the classical state the local spin expectation value ⟨Sz

i ⟩
is larger on 2 out of 3 sites in a unit cell. On the other
hand, in the quantum state, it is smaller on 2 out of 3
sites, the sites where the dimers are drawn. Clearly this
feature implies distinct phases.

Recently, Okunishi and Tonegawa7,8) and Tonegawa
and coworkers9) investigated the magnetization process
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(a)

(b)

Fig. 1. Two possible spin configurations in the m = 1/3 plateau
state. The classical configuration, (a), is actually observed in the
model (1) and the quantum configuration, (b), in the model (3)

for α > 0, with period 3 exchange modulation and also in the
translationally invariant model (2).

of the strongly frustrated Heisenberg chain,

H = J
L∑

i=1

[SiSi+1 + δSiSi+2] , (1)

where Si is the spin-1/2 operator on the i-th site. In
what follows, we take J = 1 to fix the energy unit and as-
sume the periodic boundary condition SL+1 = S1 unless
specifically mentioned. These authors pointed out that
this model has a classical plateau at m = M/Ms = 1/3
for δ > δc ≡ 0.487.9)

On the other hand, if we allow for the 4-spin interac-
tion, we can also construct a model which has exactly the
quantum plateau by the Valence-Bond-Solid3,11,12)-type
construction as follows,

H =
1
24

L∑
i=1

T 2
i (T

2
i − 2) (2)

where T i = Si + Si+1 + Si+2 + Si+3. Each term of this
Hamiltonian is non-negative definite and projects out the
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4-spin singlet (T = 0) and triplet states (T = 1) where
T (T +1) = T 2

i . Therefore if we arrange the dimers to sit
on every third bond as shown in Fig. 1(b), we obtain a
ground state of this Hamiltonian, since the sum of any 4
neighboring spins has no projection onto T = 2 states in
this configuration.

In the plateau state, one third of the spins remain
undimerized and they can be in an arbitrary state in
zero field. These spins are essentially paramagnetic and
get polarized by an infinitesimal field to yield the 1/3
plateau state. Although this ground state, at zero field,
is macroscopically 2L/3-fold degenerate, this degeneracy
is lifted by any small perturbation. For example, an ad-
ditional small antiferromagnetic third neighbor antifer-
romagnetic interaction leads to the Tomonaga-Luttinger
liquid ground state in the absence of a magnetic field.
These weakly coupled spin are easily magnetized up to
the m = 1/3 plateau state. Conversely, a small ferromag-
netic third neighbor interaction leads to ferrimagnetism
(i.e. a moment of m = 1/3 at zero field).

It is also interesting to interpret these two types of
plateau states in terms of the Jordan-Wigner fermions.
In the fermionic language, the classical plateau state cor-
responds to the usual site-centered CDW phase in which
particles sit on two successive sites and every third site
is empty, while the quantum plateau phase is a sort of a
bond-centered CDW or ’bond order wave’ (BOW) state
where the fermion is not localized on a single site but
tunnels back and forth between a pair of sites and the
third site is filled. In this context, the distinction between
classical and quantum plateau states is reminiscent of
the distinction between CDW and BOW states in iten-
erant electronic system both of which seem to occur in
the phase diagram of the half-filled extended Hubbard
model in one dimension and related models.10) Consid-
ering the difference of the nature of these two types of
plateau states, it is an interesting issue how these two
plateau states transform into each other.

The quantum plateau state was actually first
discovered, over a decade ago in the ferromagnetic-
ferromagnetic-antiferromagetic (F-F-AF) chain
model.1,2, 4, 5) This is a special case of a more gen-
eral class of models with period 3 space inversion
invariant exchange modulation:

H =
L/3∑
l=1

[(1 − α) (S3l−1S3l + S3lS3l+1)

+ (1 + α)S3l+1S3l+2] . (3)

For α > 1 we obtain the F-F-AF model. The dimers now
form uniquely on the antiferromagetic links. In this case,
of course, there is no spontaneous breaking of transla-
tional symmetry since it is already explicitly broken by
the Hamiltonian. A more general model with arbitrary
periodicity is investigated by Cabra and Grynberg.6)

The competition between quantum and classical
plateaus is naively realized in the frustrated Heisenberg
chain with period 3 space inversion invariant exchange

modulation described by the Hamiltonian,

H =
L/3∑
l=1

[(1 − α) (S3l−1S3l + S3lS3l+1)

+ (1 + α)S3l+1S3l+2] + δ

L∑
i=1

SiSi+2. (4)

It is obvious that this model shows a quantum plateau
for large enough positive α and a classical plateau for
α = 0 and large enough δ.

This paper is organized as follows. In the next section,
the low energy effective boson theory for the m = 1/3
plateau state of the translationally invariant frustrated
Heisenberg model is presented. The effect of the period 3
exchange modulation is analyzed using the renormaliza-
tion group method in §3. The quantitative ground state
phase diagram at m = 1/3 is obtained by the numerical
diagonalization method in §4. The nature of each phase is
also discussed. In §5, the VBS-type model with 4-spin in-
teraction which has a m = 1/3 plateau is discussed. The
phase transition to the classical plateau state is investi-
gated varying the strength of the 4-spin and the third
neighbor exchange interaction. The physical interpreta-
tion of the mechanism of the quantum plateau and the
relationship to the frustrated period 3 model is given on
the basis of the decoupling approximation. The possible
universality classes of the transition between quantum
and classical plateaus in translationally invariant mod-
els are analysed. In the last section, we summarize our
results.

2. Bosonization for Translationally Invariant
Models

In order to observe the low energy properties of
the above models semi-quantitatively, we employ the
bosonization method13,14) which is generally powerful for
the description of the one-dimensional spin chains. As
usual, we first apply the exact Jordan-Wigner transfor-
mation to lattice fermions, ψj , then write the low energy
degrees of freedom in terms of left and right-moving con-
tinuum fermions with a Fermi wave-vector, kF a = π/3.
(a is the lattice spacing).

ψj ≈ eiπj/3ψR(aj) + e−iπj/3ψL(aj). (5)

We see that under the symmetry transformation of trans-
lation by one site:

ψR → eiπ/3ψR, ψL → e−iπ/3ψL. (6)

This symmetry forbids the usual umklapp term, ∝
(ψ†

R)2(ψL)2, or more accurately and in accord with Fermi
statistics: ∝ ψ†

R∂xψ†
RψL∂xψL. However the “triple umk-

lapp” term ∝ (ψ†
R)3(ψL)3 is allowed by all symmetries

and is expected to occur in the low energy effective
Hamiltonian for the uniform frustrated Heisenberg chain
(1) and (2) at m = 1/3. Upon bosonizing, we obtain the
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0

y3>0

y3<0

√2φ π−π

Fig. 2. The behavior of the nonlinear term of the bosonized
Hamiltonian (7).

sine-Gordon model,

H0 =
1
2π

∫
dx

[
K(πΠ)2 +

(
1
K

)
(∂xϕ)2 − y3

a2
cos 3

√
2ϕ

]
,

(7)
where ϕ is a boson field, defined on a circle, ϕ ↔ ϕ+

√
2π,

Π is the momentum density field conjugate to ϕ, and K,
is the Tomonaga-Luttinger liquid parameter. The spin
wave velocity is set equal to unity. A similar expression
is also derived in ref. 15. The last term in the Hamil-
tonian, arising from triple umklapp processes, is rele-
vant for K < Kc = 4/9. If this term is relevant, the
Z3-symmetry is spontaneously broken and the ground
state is 3-fold degenerate as ϕ = 0,± 2π

3
√

2
for y3 > 0

and ϕ = π√
2
,± π

3
√

2
for y3 < 0 as shown in Fig. 2. On the

other hand, if the cos 3
√

2ϕ-term is irrelevant, the ground
state is the gapless Tomonaga-Luttinger liquid with no
degeneracy.

The spin operator Sz
j on the j-th site and the dimer

operator on the j-th bond are represented by the boson
field ϕ as,4,5)

Sz
j − 1

6
∼ −C cos

(
2πj/3 +

√
2ϕ

)
Sj · Sj+1 ∼ const. + A cos

[
2π(j − 1)

3
+

√
2ϕ

]
,(8)

where C and A are positive constants of the order of
unity. Therefore these three ground states correspond to
the three degenerate ↑↓↑ -type and •-• ↑-type configura-
tions for y3 > 0 and y3 < 0 as shown in Fig. 1(a) and (b),
respectively. Note that for y3 > 0, the ϕ = 0 ground state
has two larger values of

⟨
Sz

j

⟩
(for j = 3l ± 1) and one

smaller value of
⟨
Sz

j

⟩
and also two more negative values

of ⟨Sj · Sj+1⟩ (for j = 3l and 3l−1) and one less negative
value. This is precisely what is expected for the classical
plateau state of Fig. 1(a): ⟨Sj · Sj+1⟩ is more negative
on the bonds joining spins ordered in opposite directions.
Conversely, for y3 < 0, the ϕ = π/

√
2 ground state has

only one larger value of
⟨
Sz

j

⟩
(for j = 3l) and one more

negative value of ⟨Sj · Sj+1⟩ (for j = 3l+1), correspond-
ing to the quantum plateau state of Fig. 1(b). Although
the sign of y3 cannot be analytically determined, we may
conclude y3 > 0 for the Hamiltonian (1) for large enough
δ, because ↑↑↓↑↑↓ ... structure is actually observed by
Okunishi and Tonegawa.7) On the other hand, the case

0

y1>0

y1<0

√2φ π−π

Fig. 3. The behavior of the nonlinear terms of the bosonized
Hamiltonian (7)+(9).

or

1+α 1+α1−α 1−α 1−α

1+α 1+α1−α 1−α 1−α

1−α1−α1+α 1−α 1+α

1−α1−α1+α 1−α 1+α

(a)

(b)

(c)

Fig. 4. The spin configuration in each phase: (a) y1 > y1c, (b) 0 <

y1 < y1c, (c)y1 < 0. The pairs of spins connected by thick lines
form singlet pairs. The three spins in rectangles form doublets.

y3 < 0 corresponds to the model (2) which we argued
exhibits the quantum plateau.

3. Period-3 Exchange Modulation

3.1 Bosonized Hamiltonian
Now we consider the effect of period 3 exchange mod-

ulation in the models (3) and (4). Since these models
exhibit the classical plateau at α = 0 and large enough
δ, we assume that the parameter, y3 > 0. Exchange mod-
ulation is included in the bosonized Hamiltonian by the
perturbation,2,4, 6)

H1 =
y1

2πa2

∫
dx cos

√
2ϕ, (9)

where y1 = 4παaA/3 ∝ α in terms of the boson field.
This term reduces the 3-fold degeneracy to 2-fold degen-
eracy for y1 > 0 as long as |y1| is small as depicted in Fig.
3. For y1 < 0, this term totally removes the degeneracy.

In the former case y1 > 0(α > 0), the ground states are

ϕ = ± 1√
2
atan

(
−

√
9y3−y1
3y3+y1

)
which are close to ϕ = ± 2π

3
√

2

for small |y1|. Here the branch of arctangent is taken as



4 J. Phys. Soc. Jpn. Full Paper Kazuo Hida and Ian Affleck

atanx ∈ (0, π]. The spin configurations of these two de-
generate states for small |y1| are nearly ↓↑↑↓↑↑ ... and
↑↓↑↑↓↑ ... according to (8) as shown in Fig. 4(b). This
implies that the Z2 translational symmetry is sponta-
neously broken in this state. If y1 exceeds y1c = 9y3,
these two ground states merge to a nondegenerate ground
state ϕ = π/

√
2. This state is the quantum plateau state

with •-• ↑ •-• ↑ ... spin configuration shown in Fig. 4(a)
according to the expression (8) which is essentially the
same as the ground state of (3) with α > 0

In the latter case y1 < 0(α < 0), the ground state
is ϕ = 0. According to the expression (8), this phase is
the classical plateau state with spin configuration ↑↑↓↑↑↓
... as shown in Fig. 4(c). In this phase, the three spins
coupled via stronger exchange interaction (1 − α) form
antiferromagnetic trimers whose ground state is the S =
1/2 doublet ↑↓↑ and ↓↑↓. In the plateau state, the whole
system is covered by the ↑↓↑ trimers resulting in the
classical plateau state with the symmetries of the simple
↑↑↓↑↑↓ ... state.

The transition between the phase with spontaneously
broken Z2 symmetry and the •-• ↑ •-• ↑ ... -phase is ex-
pected to be of the Ising type from symmetry consider-
ations. On the other hand, the transition at y1 = 0 is
a first order transition if y3 is relevant (δ > δc) because
the value of ϕ jumps at the transition point. If y3 is ir-
relevant (δ < δc), the transition at y1 = 0 is a Gaussian
transition because the relevant nonlinear term is absent
in this case.

3.2 Renormalization Group Treatment
For y1 < 0, the cos

√
2ϕ-term and cos 3

√
2ϕ-term do

not compete. Therefore the ground state is obviously
unique ϕ = π√

2
and gapful as long as cos

√
2ϕ-term is rel-

evant. However, for y1 > 0, these two terms compete with
each other and drive the Ising type phase transition. To
describe this competition, it is necessary to resort to the
renormalization group analysis. Up to the second order
in y1 and y3, we find the renormalization group equation,

d

dl

1
K

=
9
8
y2
3 , (10)

dy3

dl
= (2 − 9K

2
)y3, (11)

dy1

dl
= (2 − K

2
)y1, (12)

taking into account the scaling dimensions and the coef-
ficients of the operator product expansion(OPE) of the
operators (∂xϕ)2, cos

√
2ϕ and cos 3

√
2ϕ. Confining our-

selves to the region of small y1 ∝ α, we have neglected
the terms of the order of y2

1 . Because we are interested in
the behavior near the plateau-non-plateau critical point,
we set K = 4

9 (1 + 1
2y0) and keep the lowest order terms

in y0.

dy0

dl
= −y2

3 , (13)

dy3

dl
= −y0y3, (14)

dy1

dl
= (

16
9

− y0

9
)y1. (15)

Similar set of equations are obtained and analyzed by
Kadanoff16) and Kitazawa and Nomura17) for the double
sine-Gordon model with cos

√
2ϕ and cos 2

√
2ϕ-terms. In

the present case, the coupling between y3 and y1 does not
appear in the rhs of (15), because the operator cos

√
2ϕ

does not appear in the operator product expansion of
cos

√
2ϕ and cos 3

√
2ϕ. The first two equations are the

well-known Brezinskii-Kosterlitz-Thouless renormaliza-
tion group equations. The solution which describes the
plateau state is given by

y2
3 − y2

0 = t > 0, (16)

y0 = −
√

t tan[
√

t(l − l0)], (17)

y3 =
√

t

cos[
√

t(l − l0)]
. (18)

where t measures the distance from the critical separatrix
y2
3−y2

0 = 0. In the present case t ∝ δ−δc. The bare values
of y1, y0 and y3 are denoted by y10 ∼ α and y30, y00 ∼
O(1).

The integration constant l0 is determined by the initial
condition,

y30 =
√

t

cos[
√

tl0]
∼ O(1) (19)

This implies cos
√

tl0 ∼ O(
√

t) and l0 ≃ π/2
√

t + O(1)
for t << 1. Equation (15) can be integrated using these
solutions to give

ln(y1/y10) ≈
16l

9
+

1
9

ln(y3/y30). (20)

for t << 1. The phase transition takes place by the com-
petition between y1 and y3. Therefore the phase bound-
ary αc(δ) can be estimated by setting y1 ∼ y3 ∼ O(1)
after enough steps of renormalization, that is at some
value of l. Since y1(l) grows exponentially with l, from
Eq. (20) but y3(l) grows more slowly, from Eq. (18), be-
coming O(1) at l ≈ π/

√
t, we see that y1(π/

√
t) must be

O(1) on the phase boundary. This implies:

αce
16π/9

√
t ∝ 1 (21)

or

αc ≈ C ′e−C/
√

δ−δc , (22)

where C and C ′ are constants of the order of unity.

3.3 Numerical Diagonalization Studies
3.3.1 Ising Transition (δ > δc, α = αc(δ) > 0)

To confirm the phase diagram quantitatively, we carry
out the numerical diagonalization studies of finite size
chains.

As discussed earlier, the transition between the Z2-
symmetry broken intermediate phase and nondegener-
ate phase for large α belongs to the Ising universality
class. The energy gap between the ground state and
the lowest excited state with M = Ms/3 should be-
have as ∆ ∝ const. in the non-degenerate phase and
∝ exp(−const. × L) in the Z2-broken phase. (The expo-
nentially small energy gap for a finite system results from
tunnelling between the two degenerate ground states.)
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On the other hand, at the critical point, ∆ ∝ 1/L.
This implies that the phase boundary can be success-
fully determined by the phenomenological renormaliza-
tion group (PRG) method.18) The finite size critical point
αc(δ; L,L + 6) can be determined by,

L∆(αc(δ; L,L + 6), L)

= (L + 6)∆(αc(δ; L,L + 6), L + 6) (23)

for fixed δ. We take the system size L as multiples of
6 (L = 12, 18, 24 and 30). The critical point αc(δ) in
the thermodynamic limit is determined by extrapolating
αc(δ; L,L + 6) to L → ∞ as shown in Fig. 5 assuming
the formula,18,19)

αc(δ; L,L + 6) ≃ αc(δ) +
const

(L + 3)3
, (24)

as plotted in Fig. 6. Here we have taken into account
that the present transition is expected to belong to Ising
universality class from symmetry consideration.

The exponent ν of the energy gap ∆ defined by ∆ ∼
(αc − α)ν is also estimated by the PRG method as,

ν(L,L + 6) =
ln((L + 6)/L)

ln
(

(L + 6)∆′(αc(δ; L,L + 6), L + 6)
L∆′(αc(δ;L,L + 6), L)

)
(25)

Here ∆′ is the derivative of the energy gap with respect
to α at fixed L. Extrapolation to L → ∞ is carried out
assuming the formula,18,19)

ν(L,L + 6) ≃ ν +
const

(L + 3)2
. (26)

as plotted in Fig. 7. Although the size dependence is
rather strong, we have verified that the value of ν is close
to the Ising value (ν = 1) as long as the value of δ is away
from δc.

In Fig. 8, ln αc(δ) is plotted against 1/
√

δ − δc with
δc = 0.487. This plot shows that the δ-dependence of
the numerically obtained value of αc is well described
by the formula exp(−const./

√
|δ − δc|) derived by the

renormalization group method in the preceding section.

3.3.2 First Order Transition (δ > δc, α = 0)
For δ > δc, the numerically obtained ground state

energy of the finite size system shows an almost level
crossing-like behavior at α = 0 as shown in Fig. 9 sug-
gesting the first order transition. Although this is not
an exact level crossing for finite L, the energy eigen-
values per site of two low lying states are almost size-
independent near the transition point. Therefore we can
interpret these two states as two macroscopically distinct
states which are adiabatically connected to the ground
states for α > 0 and α < 0 and the first order transition
takes place between these two states. This is consistent
with the bosonization argument in the preceding section.

3.3.3 Gaussian Transition (δ < δc, α = 0)
For δ < δc, no level crossing between two macroscopi-

cally distinct states takes place suggesting the continuous
transition as shown in Fig. 10. We have studied the π-
twist boundary condition which corresponds to changing

0 0.0002 0.0004
0

0.2

0.4

0.6

1/(L+3)3

αc

Fig. 5. Extrapolation procedure of the finite size critical points
αc(δ; L, L + 6) to L → ∞. The dominant size dependence is
assumed to be 1/(L + 3)3. The values of δ are 1, 0.95, 0.9, 0.85,

0.8, 0.75, 0.7, 0.65, 0.6 and 0.55 from top to bottom.

0 0.5 1

0

0.4

0.8
α

δ

non−plateau
δ=0.487

or

Fig. 6. The ground state phase diagram at m = 1/3.

0 0.002 0.004
0

1

2

1/(L+3)2

ν 1.0 ≥ δ ≥ 0.65

Fig. 7. Extrapolation procedure of the finite size critical exponent

ν(L, L+6) to L → ∞. The dominant size dependence is assumed
to be 1/(L + 3)2.

the sign of the (S+
L S−

1 +S+
1 S−

L ), (S+
L−1S

−
1 +S+

1 S−
L−1) and

(S+
L S−

2 + S+
2 S−

L ) terms in the Hamtilonian, finding that
the space inversion parity of the ground state reverses at
α = 0. This is a clear indication of the Gaussian transi-
tion driven by the term (9) as discussed by Kitazawa20)

and Kitazawa and Nomura.17) We have also numerically
checked that the conformal charge c is close to unity
along the line α = 0 and δ < δc as shown in Fig. 11.
Therefore this transition is confirmed to be the Gaussian
transition.



6 J. Phys. Soc. Jpn. Full Paper Kazuo Hida and Ian Affleck

2 3

−4

−3

−2

−1
ln αc

|δ−δc|
−1/2

Fig. 8. The critical value of ln α plotted against 1/
√

δ − δc.

−0.01 0 0.01
−0.29

−0.285

−0.28

α

E/L δ=0.7

Fig. 9. The lowest two energy eigenvalues per site at δ = 0.7 for
L = 30(open circles) L = 24(open squares) and L = 18 (filled
squares). The data points for L = 24 and L = 18 are almost
covered by those for L = 30.

−0.01 0 0.01

−0.29

E/L δ=0.3

α

Fig. 10. The lowest two energy eigenvalues per site at δ = 0.3 for

L = 30(open circles) L = 24(open squares) and L = 18 (filled
squares).

3.3.4 Nature of the Z2-broken phase
To verify the nature of each phase described in §2,

we numerically calculate the spin configuration in the
plateau state.

In Fig. 12, we plot the expectation value ⟨Sz
i ⟩ for

(δ, α) = (0.8, 0.4), (0.8, 0.1) and (0.8,−0.1) against i for
L = 30. The spin configuration for (δ, α) = (0.8,−0.1)
shows a clear ↑↑↓↑↑↓ ... structure. On the other hand,
those for (δ, α) = (0.8, 0.1) and (0.8, 0.4) look quite sim-
ilar indicating the •-• ↑ •-• ↑ ... structure at first sight.
However, even in the Z2-symmetry broken phase, the
ground state of the finite size system does not break
the symmetry but is the antisymmetric linear combi-
nation of the symmetry broken states |↓↑↑↓↑↑ ... ⟩ and
|↑↓↑↑↓↑ ... ⟩. Therefore it is difficult to distinguish these
two phases by naive numerical calculation for the finite

0 0.2 0.4 0.6
0

0.5

1
c

δ

Fig. 11. The δ-dependence of the numerically estimated confor-
mal charge for α = 0. Finite values of c for δ > δc are numerical
artifacts.

10 20 30

−0.2

0

0.2

0.4

<Sz
i>

i

α=0.4

α=−0.1
δ=0.8 L=30α=0.1

Fig. 12. The spatial variation of
˙

Sz
i

¸

in the ground state of the
finite chain with L = 30 for (δ, α) = (0.8,−0.1)(open circles),
(δ, α) = (0.8, 0.1)(filled squares) and (0.8, 0.1)(open squares).

1+α 1−α1−α
i = L 1 2 3

Local field Hloc

1−α
4

Fig. 13. Local field applied to the end spin.

size systems.
In order to single out the Z2-symmetry broken phase,

we apply the local upward field magnetic field Hloc on
the i = 1 site as shown in Fig. 13. The calculated ex-
pectation values of ⟨Sz

i ⟩ are shown in Fig. 14. The Z2-
symmetry broken state |↑↓↑↑↓↑ ... ⟩ is clearly singled out
for (δ, α) = (0.8, 0.1) with weak local field Hloc = 0.02.
On the other hand, the •-• ↑ •-• ↑ ... spin configuration
for (δ, α) = (0.8, 0.4) and the ↑↑↓↑↑↓ ... spin configura-
tion for (δ, α) = (0.8,−0.1) are stable against local field
except for the tiny polarization. It should be noted that
no spatial periodicity is imposed by the local magnetic
field in the present calculation.

In Figs. 15 and 16, the local field dependence of the
magnetization on the central sites i = L/2 + 1 and
L/2 + 2, which are furthest from the position of the lo-
cal field, are presented for (δ, α) =(0.8,0.1) and (0.8,0.4),
respectively. For (δ, α) = (0.8, 0.1), the magnetization
saturates for small local field and this saturation value is
insensitive to the system size. This implies these are the
bulk values of local magnetization. On the other hand,
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Fig. 14. The spatial variation of
˙

Sz
i

¸

in the ground state of the

finite chain with L = 30 for (δ, α) = (0.8,−0.1)(open circles),
(δ, α) = (0.8, 0.1)(filled squares) and (0.8, 0.4)(open squares)
with small upward local field Hloc = 0.02 at i = 1 site.
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Fig. 15. The local field dependence of
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for (δ, α) = (0.8, 0.1). The filled symbols are
D
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.
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Fig. 16. The local field dependence of
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for (δ, α) = (0.8, 0.4). The filled symbols are
D

Sz
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D
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.

for (δ, α) = (0.8, 0.4), the magnetization does not satu-
rate for small local field. Fig. 17 shows the system size
dependence of the initial slope of the Hloc-dependence
of

⟨
Sz

L/2+1

⟩
and

⟨
Sz

L/2+2

⟩
for (δ, α) = (0.8, 0.4). It is

evident that the slope decreases exponentially with the
system size. This confirms that the bulk ground state is
actually the |•-• ↑ •-• ↑ ... ⟩ state in this phase.

20 30

−1

−0.8

−0.6

d<Sz
i>

 dHloc

L

ln

Fig. 17. The size dependence of the initial slope
d

˙

Sz
i

¸

/dHloc|Hloc=0 for (δ, α) = (0.8, 0.4). The symbols

for i = L/2 + 1 and i = L/2 + 2 overlap within the size of the
symbols.

4. VBS-type Model

Another way to have a quantum plateau is to reverse
the sign of the cos 3

√
2ϕ term in the bosonized language.

In this case, the quantum plateau is induced by the spon-
taneous symmetry breaking in the uniform Hamiltonian.
However, within the two-spin exchange interaction we
do not find the appropriate model in which quantum
plateau is realized. Instead, as explained in section 2,
we can construct a translationally invariant VBS-type
model (2) with 4-spin interaction which exactly shows
the 1/3 quantum plateau with spontaneously broken
translational invariance.

In terms of the original spin operators Si, the Hamil-
tonian (2) is rewritten as,

H =
1
24

L∑
i=1

[30SiSi+1 + 20SiSi+2 + 10SiSi+3]

+ 8[(SiSi+1)(Si+2Si+3)

+ (SiSi+2)(Si+1Si+3)

+ (SiSi+3)(Si+1Si+2)] (27)

except for the constant term.
In order to make clear that this quantum plateau state

is a distinct phase from the classical plateau found in
model (1), we consider the Hamiltonian which continu-
ously interpolate between the Hamiltonians (1) and (27)
as follows,

H =
1
24

L∑
i=1

[30SiSi+1 + 20SiSi+2 + 10θSiSi+3]

+ 8θ[(SiSi+1)(Si+2Si+3)

+ (SiSi+2)(Si+1Si+3)

+ (SiSi+3)(Si+1Si+2)] (28)

and investigate the ground state transition with respect
to θ. In the present case, however, the phases on both
sides of the transition are phases with spontaneously bro-
ken Z3 symmetry. Therefore the lowest energy gap de-
pends on the system size as ∆ ∼ exp(−const.×L). This
implies that the naive application of the phenomenolog-
ical renormalization group analysis is not possible. How-
ever, consider the effect of open boundary conditions,
for a chain of length L = 6n, in the two phases. In the
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classical plateau phase we expect that open boundary
conditions will favour a unique plateau state, raising the
energy of the other two by an L-independent amount.
The favoured state is the one drawn in Fig. 18(a) in the
case n = 1, L = 6. Note that only 2n − 1 energetically
costly parallel neighboring spins occur in this state. The
other two classical plateau states have 2n parallel spins.
On the other hand, consider the quantum plateau states
with open boundary conditions. We expect that the en-
ergy will be lowest if no singlet bonds are broken. In this
case a singlet bond will occur at one end of the system
and a polarized spin at the other, as indicated in Fig.
18(b) for L = 6. This allows two degenerate states, re-
lated to each other by space inversion. For a finite open
system we expect tunnelling process to mix the two low
energy quantum plateau states, of Fig. 18(b) leading to
an exponentially low energy excited state. On the other
hand, in the classical plateau state the gap should be
O(1).

Therefore the energy gap within the m = 1/3-sector
behaves as ∆ ∼ const. in the former phase and ∆ ∼
exp(−const.L) in the latter phase and PRG analysis is
possible. The extrapolation procedure of the finite size
critical point θc(L,L + 6) determined from the cross-
ing point of L∆ for the sizes L and L + 6 is shown in
Fig.19. The transition point in the thermodynamic limit
is θc ≃ 0.57. Although the precise value of the critical
point is not accurate enough due to the relatively large
size dependence of finite size critical point, this analy-
sis clearly shows that the •-• ↑ and ↑↓↑ states are two
distinct phases even in the uniform chain.

This transition can be interpreted in terms of the
bosonized language. At θ = θc, the coefficient y3 van-
ishes. Therefore, the higher order umklapp term

H =
y6

2πa2

∫
dx cos 6

√
2ϕ (29)

comes into play. This term is irrelevant or relevant de-
pending on whether K > 1/9 or K < 1/9. If this term
is irrelevant, the transition is expected to be the second
order Gaussian transition with conformal charge c = 1.
If this term is relevant and y6 < 0, the ground state is 6-
fold degenerate at the transition point. This corresponds
to coexisting classical and quantum plateaus. Turning
on y3, with either sign, either the classical or quantum
plateau states are favored. In this case, the transition is
a first order transition and level crossing behavior is ex-
pected. If this term is relevant and y6 > 0, the y3 and
y6 terms compete near the point y3 = 0 and two Ising
type transitions should take place as discussed in the
competition between cos

√
2ϕ and cos 2

√
2ϕ terms in the

Ashkin-Teller model.16,17)

Numerically we find only a single transition and the
smallest energy gap ∆ with periodic boundary conditions
scales as L∆ ∼ const. near the critical point. We also
find the conformal charge c ≃ 1.0 extrapolating from
L = 12, 18 and 24. Therefore we conclude that the first
one of the above three senarios is valid in the present case
and the transition is a Gaussian transition. In order to
confirm that y6 is irrelevant and y3 is relevant near the
transition point, we determine K using the relationship

(b)

(a)

Fig. 18. The ground state spin configurations of the Hamiltonian
(28) with open boundary conditions and 6 sites.

0 0.05 0.1
0

0.5

1

θc

2/(L+3)

Fig. 19. Extrapolation procedure of the finite size critical point
θc(L, L + 6) to L → ∞.

between the excitation spectrum and K. Here we employ
the relation which contains the lowest excitation energy
of the mode with wave number k = 2π/3,

K

2
=

L∆(k = 2π/3,M = Ms/3)
2πvs

(30)

where vs is the spin wave velocity given by,

vs =
L∆(k = 2π/L,M = Ms/3)

2π
. (31)

Extrapolating the value of K(L) estimated for finite size
L to L → ∞ as K(L) ≃ K + C/L2 from L = 12, 18
and 24, we find K ≃ 0.368 which is between 4/9 and
1/9. Therefore y3 is relevant and y6 is irrelevant and the
condition for the Gaussian transition is fulfilled.

To understand the physical origin of the •-• ↑ phase in
the 4-spin Hamiltonian, we decouple the 4-spin terms in
(27) as,

(SiSj)(SkSl) → ⟨(SiSj)⟩ (SkSl)

+ (SiSj) ⟨(SkSl)⟩ − ⟨(SiSj)⟩ ⟨(SkSl)⟩ (32)

Assuming the complete •-• ↑ •-• ↑ ... state, we take

⟨(S3l+1S3l+2)⟩ = −3
4

⟨(S3lS3l+3)⟩ =
1
4

⟨(SiSj)⟩ = 0 other terms (33)

Then we have

HMF =
1
24

L/3∑
l=1

[24(S3l−1S3l + S3lS3l+1)
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Fig. 20. The spatial variation of
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in the ground state of the

decoupled model HMF with L = 30 with small upward local field
Hloc = 0.02 at i = 1 site.
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in the ground state of the decoupled model HMF. The filled
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Sz
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.

+ 32S3l+1S3l+2

+ 20(S3l−1S3l+1 + S3lS3l+2 + S3l−2S3l)

+ 10(S3l−2S3l+1 + S3l−1S3l+2)

+ 4S3lS3l+3] (34)

except for the constant terms. If the last term is ne-
glected, this Hamiltonian is equivalent to the Hamilto-
nian (4) with α = 1

7 ≃ 0.143 and δ = 5
7 ≃ 0.714 which

belongs to the •-• ↑ phase in the phase diagram Fig. 6.
To demonstrate that the last term is not harmful to the
•-• ↑ •-• ↑ ... structure of the plateau, we carried out the
numerical diagonalization of the Hamiltonian (34) and
calculated the local spin configuration in the ground state
with local field at i = 1. The result is shown in Fig. 20 for
L = 30. The expectation values of the dimer spins almost
vanishes and the polarized spins are almost equal to 1/2.
We also calculated the spin-spin correlation functions

which we have assumed in Eq. (33) as,

⟨(S3l+1S3l+2)⟩ = −0.74294967

⟨(S3lS3l+3)⟩ = 0.24014714

| ⟨(SiSj)⟩ | ≤ 0.04020856 other terms (35)

for L = 30. The results agree with the assumed set of
values (33) quite well. Therefore we may conclude our
assumptions (33) are self-consistent and we can describe
the physical picture of the quantum plateau state in the

following way.
The periodic array of dimers induce the effective pe-

riod 3 exchange modulation via the 4-spin term self-
consistently, resulting in the quantum magnetization
plateau with spontaneous Z3-translational symmetry
breakdown at m = 1/3. This implies the 4-spin inter-
action can be generally the source of dimer type order in
low dimensional magnets.

5. Summary

The competition between the m = 1/3 classical and
quantum magnetization plateau states in the S = 1/2
frustrated Heisenberg chains with space inversion invari-
ant period 3 exchange modulation and 4-body interac-
tion is investigated by the renormalization group and
numerical diagonalization method.

The conventional S = 1/2 frustrated Heisenberg
chains is known to exhibit the 3-fold degenerate ↑↓↑ -
type classical plateau accompanied by the spontaneous
Z3 translational symmetry breakdown. Two of them
(|↓↑↑↓↑↑ ... ⟩ and |↑↓↑↑↓↑ ... ⟩) turned out to be robust
against the period 3 exchange modulation which favors
the •-• ↑ •-• ↑ ... phase up to a critical value of the mod-
ulation amplitude (•-• = singlet dimer) resulting in the
Z2 translational symmetry broken phase. Another ↑↓↑ -
type state |↑↑↓↑↑↓ ... ⟩ is stabilized for period 3 mod-
ulation with opposite sign. The transition between the
•-• ↑ •-• ↑ ... -phase and Z2-broken phase is the Ising
transition and that between the ↑↑↓↑↑↓ ... -phase and
Z2 broken phase is the first order transition. The spin
configuration in each phase is numerically verified.

A translationally invariant Hamiltonian with the ex-
act •-• ↑-type quantum plateau ground state is also pre-
sented based on the VBS-type construction. The sponta-
neous Z3 translational symmetry breakdown takes place
in the ground state. The phase transition from the •-• ↑-
type phase to the ↑↓↑ -type phase takes place as the
strength of the 4-spin term and third neighbor interac-
tion is varied. This implies that these two phases are
distinct phases. The universality class of this transition
is discussed in bosonized language. From numerical anal-
ysis, this transition turned out to be the Guassian tran-
sition. A physical picture of the quantum plateau phase
is presented based on the decoupling approximation.
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