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Calculation of Optical Conductivity of YbB12 using Realistic Tight-Binding Model
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Based on the previously reported tight-binding model fitted to the LDA+U band calculation,
optical conductivity of the prototypical Kondo insulator YbB12 is calculated theoretically.
Many-body effects are taken into account by the self-consistent second order perturbation
theory. The gross shape of the optical conductivity observed in experiments are well described
by the present calculation, including their temperature-dependences.
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1. Introduction

Many compounds including the rare-earth and ac-
tinide ions exhibit the metallic behaviors with heavy
effective mass. Such behaviors can be understood by
the combination of the local Kondo-like effect due to the
strongly correlated magnetic ions and the periodicity of
their alignment. Some of them, however, become insu-
lator at low temperatures. Examples can be found in
SmB6,1) YbB12,2) Ce3Bi4Pt3,3) CeRhSb,4) CeFe4P12,5)

CeNiSn,6) TmSe,7) etc. Although they exhibit insulating
behavior at low temperatures, the Kondo-like behaviors
(the enhanced electronic specific heat and the paramag-
netic susceptibility, etc.) are often observed at higher
temperatures, too. These materials are called Kondo in-
sulators, Kondo semiconductors or heavy fermion semi-
conductors.8)

The simplest theoretical model to describe the Kondo
insulators is the periodic Anderson model (PAM), which
describes the hybridization between the f and the con-
duction electrons. However, if one does not take proper
account of the orbital degeneracy of f states nor the con-
duction band degeneracy, the hybridization model can
not correctly yield an energy gap.9,10)

In our previous paper,10) we proposed a band model
which takes account of the band and the f-state degen-
eracies for the most typical Kondo insulator, YbB12. It
is the simple tight-binding model constructed from the
(ddσ) overlapping integral between 5dε (xy, yz and zx)
orbitals on Yb ions, and the four-fold 4f states, Γ8, un-
der cubic crystal field. This (ddσ) should be regarded
as the effective hopping through the B12 clusters. The
energy dispersions of the conduction bands are given by
the following simple expressions:

Eαβ
k = Edε + 3(ddσ) cos(kα/2) cos(kβ/2), (1)

where (α, β) = (x, y), (y, z) and (z, x). The lowest band
along Γ-K-X(110) and Γ-X(100) are doubly degenerated
(in addition to the spin degeneracy). Introducing the hy-
bridization between these d bands and the 4f Γ8 states,
we obtained the energy bands describing the LDA+U
calculation rather well. It was clarified that the proper
account of both the conduction band and the f-state de-
generacies are indispensable for the correct explanation
of the opening of the energy gap in YbB12.

In the present paper, we will apply the same model to
the calculation of the optical conductivity of YbB12. A
possible form of the Coulomb interactions is discussed,
and the effect is taken into account via the self-consistent
second-order perturbation theory together with the local
approximation. Some problems inherent in the calcula-
tion of the optical conductivity are also discussed. Then
the calculation of the optical conductivity spectra will be
shown, which exhibits notable temperature-dependences
as a result of the many-dody effect. Comparison will
be made with the experimental results by Okamura, et
al.11) Future problems are discussed in the last section.

2. Tight-Binding Energy Bands

In eq.(1), we locate the energy level of 5dε orbitals
at Edε=1.0 Ryd, and set (ddσ)= 0.06 Ryd. Usually,
(ddσ) is negative, but it is set positive here in order to
reproduce the LDA+U band calculation. This choice is
justified since the hopping through B12 clusters reverses
the sign of the effective overlapping integral.

The hybridization between these 5d bands and the 4f
states is described by the effective (dfσ) integrals be-
tween the nearest-neighbor Yb sites. These matrix ele-
ments (Slater-Koster integrals12)) have so far been given
only for the d and f states under cubic CEF and with-
out the spin-orbit interaction.13) For an efficient numer-
ical calculation in later sections, we need the direct ex-
pressions for the hybridization between the f-states with
the spin-orbit interaction and the d-states under the cu-
bic crystalline field. Namely, the Γ8 states under cu-
bic CEF in the subspace of the total angular momen-
tum J = 7/2 (for Yb) are expressed in terms of the
spherical harmonics Y m

� ’s with � = 3 and the spinors
χ±’s. Then we write down the expression for |Γ(1,2)

8 ±〉
in terms of the � = 3 cubic harmonics states (A2u: |xyz〉,
T1u: |x(5x2 − 3r2)〉, |y(5y2 − 3r2)〉, |z(5z2 − 3r2)〉, T2u:
|x(y2−z2)〉, |y(z2−x2)〉, |z(x2−y2)〉). Finally, using the
mixing matrix elements between the cubic harmonics for
d and f states given in ref.13, we obtain the necessary
matrix elements between the d and f states at k point as
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follows:

Γ(1)
8 + Γ(1)

8 −
xy ↑ 5it1(cxsy − isxcy) 0
yz ↑ −4t1cysz it1sycz

zx ↑ −4it1szcx it1czsx

xy ↓ 0 −5it1(cxsy + isxcy)
yz ↓ it1sycz −4t1cysz

zx ↓ it1czsx 4it1szcx

(2)

and

Γ(2)
8 + Γ(2)

8 −
xy ↑ 0 it2(cxsy + isxcy)
yz ↑ −3it2sycz 2t2cysz

zx ↑ 3it2czsx −2it2szcx

xy ↓ −it2(cxsy − isxcy) 0
yz ↓ 2t2cysz −3it2sycz

zx ↓ 2it2szcx 3it2czsx

(3)

where cα = cos(ka/2), sα = sin(kα/2) (α = x, y, z),
t1 =

√
5/56(dfσ) and t2 =

√
15/56(dfσ). Note that

we have retained only the nearest neighbor (dfσ) bonds
as the simplest model. We locate the Γ8 states at
EΓ8 = 0.88 Ryd and choose (dfσ)=0.015 Ryd. We also
include (dfπ) = −0.0075 Ryd and (ffσ) = −0.003 Ryd.
These transfer integrals are chosen slightly larger than
those in our previous paper10) to fit the experiments on
the optical conductivity. Furthermore, the filled bands
below the gap are shifted down by ∆E = −0.011 Ryd
(which is also larger than in ref.10) relative to the bands
above the gap. This treatment is in accord with the spirit
of the LDA+U treatment. Using these parameters, we
obtain the dispersion curves shown in Fig.1 which have
an indirect gap of about 0.0069 Ryd between X and L
points and the direct gap of 0.018Ryd. These values
are larger than the experiments. The reason will be ex-
plained later. The bands are labeled as 1 to 5 from the
bottom to the top, each of which has the Kramers de-
generacy. The density of states (DOS) and the partial
DOS are shown in Fig.2.

3. Coulomb Interactions

We consider the effective tight-binding model men-
tioned above as a free (mean field) system, and intro-
duce the effective Coulomb and exchange interactions as
follows:14)

H = Hband + Hint, (4)

Hband =
∑
kασ

Ekαc+
kασckασ, (5)

Hint = U
∑
iα

niα↑niα↓ + U2

∑
i,α>α′,σ

niασniα′−σ

+U3

∑
i,α>α′,σ

niασniα′σ

−J
∑

i,α>α′,σ

c+
iασciα−σc+

iα′−σciα′σ , (6)
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Fig. 1. The tight-binding band for YbB12. The X points in the
left and right denote the equivalent (110) and (100) points (in
unit of 2π/a), respectively.
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Fig. 2. The density of states calculated from the tight-binding
band for YbB12. The inset shows the contribution from each
band (partial DOS) near the gap. The band index number is
attached to each curve.

where Ekα denotes the diagonalized tight-binding band
energy for the α-th band. We denote the annihilation
(creation) operator for the α-th band in the momen-
tum and the site representations as ckασ (c+

kασ) and ciασ

(c+
iασ), respectively. Here the index σ denotes a pair of

the time-reversal states which we call spin hereafter. The
parameters U , U2, U3 and J correspond to the intra-
band, the inter-band anti-parallel spin, the inter-band
parallel spin Coulomb interactions, and the inter-band
exchange interaction, respectively. These parameters
should be taken as the effective (reduced) ones because
of the uncertainty due to the LDA+U treatment and the
renormalization of the higher-order processes of interac-
tions. We regard their values as the low energy limits of
the renormalized interactions.

In the Hamiltonian (6), the Coulomb and exchange in-
teractions are introduced bewteen the band-diagonalized
states. We retained only the simplest terms and ne-
glected the more complicated matrix elements. Further-
more, we neglected the orbital dependence of the inter-
action parameters and assumed that the interactions act
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on all the orbitals equally. Of course, the Coulomb re-
pulsion acts most strongly on the f-states. However, the
interactions act more strongly on the electrons in the re-
gion of the high density of states, so that the f-componets
will be more affected than the others even in this form.
The other reason to choose the above form is that if we
use the extended periodic Anderson-like model and in-
troduce the interaction on the f-states only, the Green’s
function, and hence the density of states, can not be ex-
pressed by the DOS of the unperturbed Hamiltonian.
Instead, one has to perform the three-dimensional k-
summation in each time of the iterative calculation as

Gf
α(k, ε) =

1
N

∑
k

1

ε − Efα − Σf
α(k, ε) −

∑
ν

|Vkνα|2
ε − εkν

,

(7)

to obtain the local f-electron Greenian or the renormal-
ized local DOS, unless the the hybridization Vkνα can be
expressed merely by εkν , the energy of the conduction
electrons before the hybridization is introduced.

On the other hand, the above form of the interactions
in (6) allows one to express the local Green’s function
for the α-th band by the unperturbed DOS of the α-th
band ρ0

α(ε):

Gα(ε) =
∫

dν
ρ0

α(ν)
ε + iδ − ν − Σα(ε)

, (8)

ρ0
α(ν) =

1
N

∑
k

δ(ν − Eα
k ), (9)

where Σα(ε) denotes the self-energy for the α-th band
(diagonal in α in the present model) and is assumed k-
independent (the local approximation), N the number
of sites and δ → 0+. Since the three-dimensional k-
summation is needed only once at the beginning for the
calculation of ρ0

α(ν), the present treatment reduces the
computational time to the tractable range even for real-
istic systems.

For simplicity and in order to reduce the number of
parameters, the following relations are further assumed;
U2 = U − J and U3 = U − 2J .14) In this case, Hint can
be expressed as

Hint =
U

2

∑
iαα′σσ′

c+
α′iσ′c

+
αiσcαiσcα′iσ′

− J

2

∑
iαα′σ

c+
α′iσc+

αiσ̄cαiσ̄cα′iσ, (10)

which has a rotational symmetry in both the orbital and
the spin states.

To take account of the correlation effect, we apply
the self-consistent second-order perturbation theory (SC-
SOPT) to the present model together with the local ap-
proximation for the self-energy part of the Green’s func-
tion. (See ref.15, 16 for example.) Renormalized (re-
duced) values will be assumed for the interaction param-
eters, so that we expect that the SCSOPT may be valid
to investigate the correlation effect in the low-energy and
low temperature region.

+ + +U U U2 U2 U3 U3 J J

Fig. 3. The second-order processes for the self-energy are shown.

The self energy Σα(ε) consists of the constant Hartree
term and the second-order perturbation term Σ(2)

α (ε).
The former is absorbed into the chemical potential,
which is determined at each temperature to compensate
the electron and hole numbers. The latter is calculated
from the full local Green’s function as shown in Fig.3
and given in the imaginary time expression by

Σ(2)
α (τ) = U2Gα(τ)2Gα(−τ)

+(U2
2 + U2

3 + J2)Gα(τ)
∑

α′ �=α

Gα′(τ)Gα′(−τ). (11)

The actual calculation is performed on the real energy
axis.16,17) The quasi-particle density of states is calcu-
lated by ρα(ε) = −(1/π)ImGα(ε).

It is noted that the second-order self-energy disappears
at T → 0 in the present model, since all the carriers
die out. Therefore, the gap is not renormalized at T =
0.15) This is in contrast to the periodic Anderson-like
model, in which the self-energy is finite at T = 0, so
that the gap size is renormalized to a value of the order
of the Kondo temperature.16) At finite temperatures in
the present model, the self-energy becomes finite and
has the imaginary-part due to the scattering between the
thermally excited carriers, so that the gap in the quasi-
particle DOS is filled up gradually. Effects will be more
enhanced in the optical conductivity (see eq.(13)).

4. Optical Conductivity

The optical conductivity is usually calculated by the
Kubo formula

Reσ(ω) ∝
∫ ∞

−∞
dε

f(ε) − f(ε + ω)
ω

×
∑
kαβ

|vαβ
k |2ImGα

k(ε)ImGβ
k(ε + ω), (12)

where vαβ
k is the velocity matrix element and α, β de-

note the band indices. Note that the momentum k is
conserved in this formula since only the direct transitions
are included here. It is well known that this formula can
describe the optical conductivity of ordinary semicon-
ductors well.18) Neglecting the k-dependence of vαβ

k , we
have calculated this formula for the tight-binding band
constructed in §2. The result is displayed in Fig.4, which
does not reproduce the experiment11) (the dotted line in
the same figure) at all.

Mahan wrote in his famous textbook19) that the for-
mula (12) is a very definite prediction, but is not ob-
served (in experiments), warning an importance of the
effect of the Coulomb interaction (excitons). In ad-
dition, indirect transitions may occur due to impuri-
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Fig. 4. The frequency dependence of the optical conductivity for
U = J = 0 and T = 0 based on the direct-transition formula
(12). The dotted line indicates the observed spectrum at T = 20
K.11)

ties, phonon-assisted process, etc. in the real situations.
Especially, the impurity effects may not be neglected
in YbB12 since the resistivity increases at low temper-
atures but saturates at finite values.20) The thresh-
old shape of the absorption is modified by the exciton
absorption and enhanced by the Sommerfeld factor21)

C(ω) ∝ (�ω − Eg)−1/2 at the threshold). It was also
pointed out that the mutual Coulomb interaction yields
an effect similar to the indirect transitions.22)

We have previously experienced15) that the neglect
of the momentum conservation yields a much better
agreement with experiments in the case of FeSi (another
Kondo insulator with the transition metal element in-
stead of the rare-earth). Therefore, we use the joint-
DOS-type formula

Reσ(ω) ∝
∑
αβ

∫ ∞

−∞
dε

f(ε) − f(ε + ω)
ω

ρα(ε)ρβ (ε + ω),

(13)

which completely neglects the momentum conservation.
Use of this formula is partially motivated by the possi-
ble violation of the momentum conservation mentioned
above. This formula is not correct in the ω → 0 limit
of metals, but yielded a reasonable result for finite fre-
quencies.15) We show the contribution of each transi-
tion between the bands for U = J = 0 and T = 0 in
Fig.5. Compared with the experiment at the lowest tem-
perature T = 20K (Fig.4, dotted line), the contribution
from the 2 → 3 band transition is slightly lower in po-
sition, making a redundant shoulder at 0.013 Ryd, but
the gross structure including the position of the mid-
IR peak is reproduced. We tried various combination of
the tight-binding parameters, and found impossible to
simultaneously reproduce (1) the tail extending to the
low frequency part ω < 0.01 Ryd (or the threshold of
the gap at 0.0022 Ryd), (2) the mid-IR peak width ∼
0.02 Ryd, and (3) the mid-IR peak position at 0.02 Ryd.
Namely, if we fit the calculation to the observed thresh-
old of the spectrum at 0.0022Ryd and the position of the
mid-IR pea at 0.02 Ryd, we have to choose a much larger
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Fig. 5. Contribution of each band-to-band transition to the optical
conductivity when T = U = J = 0.

value of (ffσ) and hence a larger width of the mid-IR
peak. In other words, a long low-frequency tail can not
be reproduced within the present tight-binding model.
Another possible reasons for this disagreement might be
the present scheme for the treatment of the many-body
interaction, the present formula (13) for the optical con-
ductivity, or the neglect of the impurity effect. Despite
these deficiencies, we consider that the present choice of
the parameters are the best within the present model
and the scheme.

5. Comparison with Experiments

Optical conductivity spectra measured by Okamura,
et al.11) at finite temperatures, T =20, 78, 160 and 290
K, are displayed in the upper panel of Fig.6, and our the-
oretical results based on the formula (13) for the corre-
sponding temperatures in the lower panel. A calculation
for an intermediate temperature T =220 K is added. In-
teraction parameters are chosen as U =0.002 Ryd and
J = 0.2U , respectively to fit the experiments. As was
mentioned in the last section, the low frequency parts at
ω < 0.01 Ryd are not well fitted, but the over-all spec-
tra and the temperature-variations are reproduced with
the present parameters. Namely, (1) the mid-IR peak
originates from the transition between the hybridized f-
d bands (often called as the f-d transition in the local
picture), (2) the threshold may better correspond to the
indirect gap than the direct gap, although an origin of
the low frequency part ω < 0.01 Ryd is not clear.

Furthermore, the effect of many-body interaction
should be underlined here. Namely, the gap Eg ∼ 350K
seen in the observed spectra at the lowest temperature
is filled up quickly at T = 78 K and the mid-IR peak
is shifted to the lower frequencies. The present calcula-
tion reproduces these features partly, although the gap
is filled up more slowly with increasing temperature. It
may be due to the fact that the interaction is not effective
at low temperatures in our model Hamiltonian (4). This
is also seen in the temperature dependence of the DOS.
Higher order process of interactions and consideration of
vertex corrections may be important. Other important
effect of interaction is the shift of the mid-IR peak posi-
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Fig. 6. Lower panel: the calculated temperature dependence of
the optical conductivity spectra for U = 0.02 Ryd and T =0, 80,
160, 220 and 290 K, respectively). Upper panel: Correspond-
ing experimental results for T =20, 78, 160 and 290 K by H.
Okamura, et al.11)

tions. They shift to low frequencies as the temperature
increases.

To see these effects more in detail, we display the cal-
culation for Reσ(ω) without the self-energy in Fig.7. It
has a similar temperature dependences with Fig.6 for
T ≤160K but the filling-up of the gap region is slow for
higher temperatures. Namely, the many-body effect be-
comes effective and noticeable at T >160 K in the present
calculation. It should also be noted that the shift of the
mid-IR peak can not be explained at all without the in-
teractions as shown in Fig.7.

6. Conclusions

In the present paper, we have calculated the optical
conductivity spectra for the most typical Kondo insu-
lator YbB12, based on the previously proposed tight-
binding model fitted to the LDA+U calculation. The
Coulomb and exchange interaction parameters are intro-
duced onto the states in which the hybridizations are
diagonalized. As a result, the second-order perturbation
theory was easily perfomred iteratively for the realistic
band model. The calculated optical conductivity spectra
reproduced the gross features of the experiments: 1) The
mid-IR peak at 0.02 Ryd, 2)The shift of its position to
low frequencies as the temperature increases, and 3) the
gap is filled up faster than expected from the gap size as
T increases.

The following issues are to be improved in the future:
1) The low energy part ω < 0.01 Ryd of the spectra is not
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Fig. 7. The temperature dependence of the optical conductivity
for U = J = 0 and for the same temperature as in Fig.6.

reproduced. 2) The temperature variation of the spectra
is weaker than the experiments. The cause of the latter
will be that the interactions are not effective enough at
low temperatures in the present model Hamiltonian.

In the present paper, we have neglected the effect of
the matrix element vαβ

k in the optical conductivity. It is
important to take this factor into account for more re-
alistic calculation, but we point out that the local sym-
metries are mixed up at the general k-point. Thus the
neglect of the matrix element may not be crucial.

Despite these issues to be solved, the present direc-
tion of the reasearch will be very useful for the study of
the strongly correlated systems. Recently, proposal has
been made on the unified ab initio treatment of the LDA
band calculation and the correlation effect.23) We con-
sider, however, a more practical approach starting from
a simple but realistic tight-binding model followed by the
self-energy calculations will be still useful in the present
stage. It is important to construct a theory with corre-
lation effect, which can consistently explain all the ther-
mal,2) thermoelectric,24) transport20) and magnetic25)

properties of YbB12 based on the curren approach.
To improve the present calculation further, one has to

include the full anisotropy in the k-space and perform the
three-dimensional k-summation in each iteration steps
based on eq.(7) and an approapriate self-energy. The
correlation effects may be taken into account beyond
the SCSOPT via the FLEX approximation.27) A ver-
tex correction to eq.(12) and (13) will be also important.
Such higher processes may produce the indirect transi-
tions (possiblly combined with disorder), rendering the
optical absorption at the indirect transition threshold.
These calculations, if possible, may improve an agree-
ment with the experiments, but full calculations are still
hard at present. On the other hand, the present band
model must be also improved. Precise band structure
parameters might be determined through the compari-
son between the theory and experiments, e.g. a detailed
transport measurement at high magnetic field.26)
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