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We propose the mechanism for the magnetic field induced AFM state in a two-dimensional
Hubbard model in the vicinity of the antiferromagnetic (AFM) quantum critical point (QCP),
using the fluctuation-exchange (FLEX) approximation by taking the Zeeman energy due to
magnetic field B into account. In the vicinity of the QCP, we find that the AFM correlation
perpendicular to B is enhanced, whereas that parallel to B is reduced. This fact means that
the finite magnetic field enhances TN, with the AFM order perpendicular to B. The increment
of TN can be understood in terms of the reduction of both the quantum and the thermal fluc-
tuations due to the magnetic field, which is brought by the self-energy effect within the FLEX
approximation. The present study naturally explains the increment of TN in CeRhIn5 under the
magnetic field found recently.
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Recently, critical phenomena in the vicinity of the
magnetic quantum critical point (QCP) attract much
interest in strongly correlated metals. Experimentally,
outer magnetic field is frequently used to change the dis-
tance from the QCP. As for the antiferromagnetic (AFM)
QCP, the magnetic field is believed to enlarge the dis-
tance to the QCP in general. Spin fluctuation theories
such as the SCR theory1) or the fluctuation-exchange
(FLEX) approximation,2) have been succeeded in de-
scribing various critical phenomena in metals close to the
AFM-QCP, such as the non-Fermi liquid like behaviors
of various transport coefficients.3, 4) However, previous
studies on the effect of the magnetic field based on the
spin fluctuation theory were limited.5)

CeMIn5 (M=Rh, Co, Ir) is a well-known quasi two-
dimensional heavy fermion compounds, where single con-
ductive CeIn-layers stack perpendicular to the c-axis.
CeCoIn5 is a superconductor with Tc = 2.3K at am-
bient pressure.6) In CeRhIn5, the AFM order emerges
at TN = 3.8K at ambient pressure, and the supercon-
ductivity emerges at Tc ≈ 2K below P = 1.6GPa.7, 8)

Recent experiments reveals that the TN increases under
the magnetic filed along a(b)-axis. When B = 9T, the
increment of TN is about 0.15K. A tiny increment of TN

is also observed in Ce2RhIn8 which is composed of dou-
ble CeIn-layers. However, there has been no theoretical
explanation for this phenomenon.

In the present letter, we study the two-dimensional
Hubbard model under the uniform magnetic field B
along x-axis, based on the FLEX approximation. In
the vicinity of the AFM-QCP, we find that the AFM
spin correlation of y(z)-component is enhanced by the
applied magnetic field. In the obtained phase diagram,
the magnetic transition temperature TN, below which
the staggered magnetism emerges on the yz-plane, in-
creases with the magnetic field. The mechanism of the

field induced antiferromagnetism proposed in the present
work will be universal in low-dimensional metals close to
the AFM-QCP, contrary to the fact that the magnetic
field suppresses TN in usual models by the mean-field ap-
proximation. The present study naturally explains the
enhancement of TN under the magnetic field in CeRhIn5.

Here we analyze the following two-dimensional Hub-
bard model:

H =
∑

kσ

εkσc†kσckσ + U
∑

kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑, (1)

where σ = 1(−1) corresponds to the ↑- (↓-) spin state
and εkσ = εk + σB, where the factor σB represents the
Zeeman energy. The spin quantization axis is x-axis.
Here, we study the square lattice tight-binding model
with the nearest neighbor hopping (t) and the next-
nearest one (t′). The dispersion of the electron is given
by εk = −2t(coskx + cos ky) − 4t′ cos kxky. Hereafter,
we study the case of (t, t′) = (1,−0.25) with the electron
density n = 0.90 (n = 1.20) per site, which corresponds
to a hole-doped (electron-doped) high-Tc cuprates. In
the case of n = 0.90, the Fermi surface (FS) is very close
to the van-Hove singular point (at (π, 0) in this case; see
Fig.3), and it is similar to the largest (main) cylindri-
cal FS in CeMIn5 (M=Co,Ir,Rh).9) Assuming a similar
single cylindrical FS, many aspects of CeMIn5, especially
the dx2-y2 -wave superconductivity, are reproduced by the
perturbation study.10, 11)

In the presence of the magnetic field along x-axis, the
dynamical spin susceptibilities within the FLEX approx-
imation (or random phase approximation (RPA)), χs

x(q)
and χs

y(z)(q), are given by

χy(q) = χz(q) = (χ↑,↓(q) + χ↓,↑(q)) /4 (2)

χx(q) = [χ↑,↑(q) + χ↓,↓(q)]/4 + Uχ↑,↑(q)χ0
↓,↓(q)/2, (3)
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χσ,−σ(q) =
χ0

σ,−σ(q)
1 − Uχ0

σ,−σ(q)
, (4)

χσ,σ(q) =
χ0

σ,σ(q)
1 − U2χ0

σ,σ(q)χ0−σ,−σ(q)
, (5)

χ0
σ,σ′(q) = −T

∑

k

Gσ(k + q)Gσ′(k). (6)

We note that χ↑,↓(q) = {χ↓,↑(q)}∗. Here and here-
after, we promise that q ≡ (q, iωn) = (q, 2πin) and
k ≡ (k, iεn) = (k, πi(2n + 1)). Apparently, both χx(q)
and χy(z)(q) are even-functions of B, reflecting the reflec-
tional symmetry in the spin space. Apparently, χx(q) =
χy(q) when B = 0.

The self-energy in the FLEX approximation is given
by

Σσ(k) = U2T
∑

q

[Gσ(k − q)(χ−σ,−σ(q) − χ0
−σ,−σ(q))

+G−σ(k − q)χσ,−σ(q)] + Un−σ, (7)

where nσ = T
∑

k ImGσ(k)e−iεn·0+
/π is the density of

electrons with σ-spin. Here, we solve the eqs. (2)-(7)
together with the Dyson equation G−1

σ (k) = iεn + µ −
εk − σB − Σσ(k) numerically, by adjusting the chemical
potential µ so as to n =

∑
σ nσ.

Here, we discuss the numerical results obtained by the
FLEX approximation. We use 64×64 k-meshes and 1028
Matsubara frequencies in the present numerical study by
FLEX approximation. Figure 1 shows obtained static
staggered spin susceptibilities: χmax

α ≡ maxq χα(q, 0)
where α = x, y, z. αS ≡ maxq Uχ0(q, 0) is the Stoner
factor without B. In the FLEX approximation, αS < 1
is always satisfied at finite T in two-dimensional sys-
tems, so the Marmin-Wagner-Hohenberg theorem is sat-
isfied.12, 13) The momentum dependence of χα(q, 0)
(α = x, z) and the splitting of the FS under the mag-
netic field are given in figs.2 and 3, respectively, in the
case of n = 0.90.

In fig. 1, χmax
x decreases whereas χmax

y increases with
B ‖ x̂ in both cases of n = 0.90 and n = 1.20 by FLEX
approximation. Their field dependence becomes more
prominent as U increases, that is, as αS approaches to
one. This results mean that the distance to the AFM-
QCP decreases owing to the uniform magnetic field. In
the FLEX approximation, the field dependence of the
susceptibility is caused by (i) the change of the nest-
ing conditions owing to the Zeeman splitting of the FS,
and (ii) the self-energy effect (or mode-mode coupling
effect) which represents the reduction of χmax and its
Curie-Weiss like temperature dependence owing to the
spin-fluctuations. In the FLEX approximation, large
ImΣ(k,−iδ) caused by spin fluctuations reduces density
of states (DOS) at µ, which makes χFLEX � χRPA. Be-
low, we will discuss that the effect (ii), which is absent in
the RPAs is important to explain why χmax

y(z) is enhanced
under the magnetic field parallel to x-axis.

We discuss the physical reason for the field enhance-
ment of the AFM correlation: First, the uniform mag-
netization induced by B ‖ x̂ will reduce the AFM cor-
relation along x-direction. It leads to the enhancement

of χmax
y by contraries, as a result of solving the con-

fliction between spin-fluctuations with different compo-
nents. The enhancement of χmax

y will be more promi-
nent in lower dimensional systems because the reduction
of TN due to fluctuations is large in general. Note that
the reduction of the staggered moment at T = 0 owing
to the quantum fluctuations is about 40%(15%) in two
(three) dimensional S = 1/2 Heisenberg model without
magnetic field.

Consistently with the above discussion, χmax
y(z) increases

whereas χmax
x decreases under B ‖ x̂ in the present

model by the FLEX approximation. We have checked
that it is an universal behavior in two-dimensional sys-
tems close to the AFM-CQP, by studying various types
of the Hubbard models. Here, we briefly discuss the
self-energy effect for susceptibilities, which will give the
dominant field-dependence of the magnetic susceptibil-
ity when 1 − αS � 1. When B = 0, the modification of
χ0
↑,↓(q, 0) from the RPA’s result within the lowest order

with respect to the self-energy, under the condition that
1 − αS � 1, is given by

δ′χ0
↑,↓(q, 0) ≈ −T 2

∑

k,q′
G0(k)2G0(k + q)G0(k + q′)

×2U2(χx(q′) + 2χy(q′)), (8)

which is mainly brought by the reduction of DOS owing
to the large ImΣ caused by spin-fluctuations. Because
δ′χ0

↑,↓(Q, 0) < 0, χmax
y in the FLEX approximation be-

comes smaller than that in RPA. The reduction of χx(q′)
owing to the field-induced uniform magnetization along
x-axis will make |δ′χ0

↑,↓(Q, 0)| smaller. As a result, χmax
y

is expected to increase in proportion to B2 as far as only
the self-energy effect is taken into account.

On the other hand, unphysical results are obtained
by RPA, where all G’s in eqs.(2)-(7) are replaced with
G0’s. In the case n = 0.90, both χmax

x and χmax
y by RPA

increases with B as shown in fig.1, possibly reflecting
the fact that the FS is close to the van-Hove singularity.
On the contrary, both χmax

x and χmax
y decreases with B

when n = 1.20. Thus, results given by the RPA are not
universal, depending sensitively on the shape of the FS.
As a result, the self-energy effect included in the FLEX
approximation is indispensable to reproduce a physically
reasonable behavior of the two-dimensional nearly AFM
metals (i.e., αS

>∼ 0.98) under the magnetic field.
In the next stage, we study the magnetic-filed de-

pendence of the Néel temperature TN by assuming a
weak three-dimensional coupling.12, 13) To simplify the
analysis, we define TN in the presence of the magnetic
field under the condition that maxq Uχ0

↑,↓(q, 0) = α0
S,

where α0
S is a constant which is slightly smaller than

one. By putting α0
S = 1 − J⊥/U ∼ 0.99 (J⊥ denotes

the inter-layer magnetic coupling strength), we obtained
the reasonable Néel temperature of κ-(BEDT-TTF)2X
and TMTSF based on the dimer model.12, 13) Figure 4
shows the field dependence of TN given by the FLEX
approximation, for several choice of α0

S’s. We find that
the field-enhancement of the Néel temperature in nearly
AFM metals in two dimensions, which has been pointed
out in the present work for the first time. In Fig. 4,



TN starts to increase in proportion to B2, and it almost
saturates around B∗ ∼ 0.3. This result also means that
the system approaches to the AFM-QCP by applying the
magnetic field.

Here, we comment that in the antiferromagnetic
isotropic Heisenberg chain under the magnetic field along
x-axis, 〈Sx

i Sx
j 〉−M2 ∝ (−1)i−j |i−j|−1/η cos(2πM(i−j))

and 〈Sy
i Sy

j 〉 ∝ (−1)i−j |i − j|−η, where η decreases from
1 with the magnetic field.14) Their field dependencies
are consistent with the present study on a two dimen-
sional Hubbard model. In the XXZ-Heisenberg chain,
an infinitely small magnetic field along x-axis induces
the staggered magnetization of y-component in the case
of Jz < Jx.15, 16) In the opposite case, Jz > Jx, the
staggered magnetization along z-axis, which exists with-
out the field, is enhanced by B ‖ x̂.17) We also point
out that Ref. 18 studied a localized electron model with
interactions between quadrupole moments by a local ap-
proximation, and found the field enhancement of TQ due
to the suppression of fluctuations.

We also comment that the field-induced SDW is real-
ized in quasi-one dimensional metal, TMTSF, owing to
the orbital motion of electrons, free from the Zeeman ef-
fect.19) However, various characters of the field induced
magnetism in CeRhIn5 do not coincide with that ob-
served in TMTSF. In fact, CeRhIn5 possesses both cylin-
drical and spherical FS’s. They are naturally explained
in terms of the Zeeman effect as discussed in the present
study.

From now on, we discuss experimental results of
CeMIn5 based on the present study. The bandwidth of
the present model is ∼ 10. If we estimate the renormal-
ized quasiparticle bandwidth of CeMIn5 is ∼1000K,20)

the temperature T = 0.02 corresponds to ∼2K, which is
close to Tc in CeCoIn5.21) The magnetic field B = 0.1 in
the present work corresponds to ∼ 5T for the M = ±5/2
Kramers doublet (KD), because the Zeeman energy for
Ce3+ is (6/7)µBMH (6/7 is the g-value of Ce3+). Note
that the renormalization factor averaged over the FS is
0.217 in the present FLEX approximation for U = 5 at
T = 0.02. References 7, 8 reports that TN in CeRhIn5

continues to increase with the magnetic field parallel
to ab-plane, at least below 9T. TN = 3.8K at 0T,
and TN(9T ) − TN(0T ) ≈ 0.15K. Whereas TN decreases
monotonously when B ‖ ĉ as is observed in usual 3D
heavy Fermion systems. It is naturally understood be-
cause the orbital motion of electrons, which is absent in
the present study where B is parallel to the 2D system,
will destroy the AF state to earn the energy due to the
Landau diamagnetism.

Furthermore, we discuss the anisotropy of χ̂(q) in
CeRhIn5: The lowest KD of Ce3+-ion in CeRhIn5 is
Γ(2)

7 ; |z;±〉 ≡ β|Mz =±5/2〉−α|Mz =∓3/2〉,22, 23) which
is about 70K lower than the second lowest KD. If we
put (α, β) ≈ (0.44, 0.9),23) 〈z;±|Jz|z;±〉 = ±(2.5β2 −
1.5α2) ≈ ±1.74. On the other hand, 〈x;±|Jx|x;±〉 =
±√

5αβ ≈ ±0.885 where |x;±〉 ≡ (|z; +〉 ∓ |z;−〉)/√2.
Then, the anisotropy of the susceptibility of a single
Ce3+-ion is χa/χc ≈ 1.74/0.885 = 1.97, which is simi-
lar to the experimental ratio. On the other hand, sev-

eral neutron experiments on CeRhIn5 revealed that the
magnetic moments on Ce sites lie on the ab-plane below
TN, whose effective moment is µeff = 0.264µB.22, 23) It
will suggest that the antiferromagnetic RKKY interac-
tion between nearest neighbor Ce sites is XY-like; Ja,b >
Jc.24) Then, the magnetic filed along a-axis will enhance
the AFM correlation along b-axis as a result of the re-
duction of fluctuations, which is similar to the behavior
of the XXZ-Heisenberg chain under B.15, 16) In fact, µeff

is much smaller than (6/7)µB〈x; +|Jx|x; +〉 ≈ 0.76µB,
which suggests that the quantum fluctuations are strong
in CeRhIn5, reflecting its two-dimensionality. As a re-
sult, the field-enhancement of TN observed in CeRhIn5

is well understood in terms of the reduction of the spin-
fluctuations by the magnetic field.

In summary, based on the FLEX approximation, we
found the field-induced antiferromagnetism in a two-
dimensional Hubbard model, as a result of solving the
confliction of fluctuation by magnetic field. This phe-
nomenon is expected to be prominent and universal in
the vicinity of the QCP, irrespective of the fact that the
field-induced uniform magnetization tends to reduce the
AFM moment. The induced AFM moments are almost
on the plane perpendicular to the applied magnetic field,
to earn the Zeeman energy by canting. Experimentally,
the enhancement of TN will be realized in two dimen-
sional systems under B parallel to the system, because
the reduction of TN caused by the orbital motion effect
(Landau quantization) is absent.
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