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On the Multiuser Detection Using a Neural Network in
Code-Division Multiple-Access Communications
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SUMMARY In this paper we consider multiuser detection
using a neural network in a synchronous code-division multiple-
access channel. In a code-division multiple-access channel, a
matched filter is widely used as a receiver. However, when the
relative powers of the interfering signals are large, i.e. the near-far
problem, the performances of the matched filter receiver degrade.
Although the optimum receiver for multiuser detection is supe-
rior to the matched filter receiver in such situations, the optimum
receiver is too complex to be implemented. A simple technique
to implement the optimum multiuser detection is required.
Recurrent neural networks which consist of a number of simple
processing units can rapidly provide a collectively-computed
solution. Moreover, the network can seek out a minimum in the
energy function. On the other hand, the optimum multiuser
detection in a synchronous channel is carried out by the maxi-
mization of a likelihood function. In this paper, it is shown that
the energy function of the neural network is identical to the
likelihood function of the optimum multiuser detection and the
neural network can be used to implement the optimum multiuser
detection.  Performance comparisons among the optimum
receiver, the matched filter one and the neural network one are
carried out by computer simulations. It is shown that the neural
network receiver has a capability to achieve near-optimum
performance in several situations and local minimum problems
are few serious.

key words: recurreni neural networks, code-division multiple-
access, near-far problem, optimum multiuser detection.

1. Introduction

In a code-division multiple-access(CDMA) system,
several independent users share simultaneously a com-
mon channel using preassigned code waveforms. The
conventional signal detection technique in a multiuser
channel uses matched filters because the filters are
simple to implement. It is known that when the
relative powers of the interfering signals are large, i.e.
the near-far problem, the performance of the conven-
tional matched filter receiver degrades since the
receiver is designed with ignoring the presence of
interfering signals. To overcome this problem, the
optimum multiuser detection in a synchronous CDMA
system has been developed [1]. The optimum
multiuser detection can be carried out by the maxi-
mization of a likelihood function. Although the
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receiver for the optimum multiuser detection is supe-
rior to the conventional receiver, the receiver requires
computational complexity which grows exponentially
with increasing the number of users. Since there would
be a number of users in a CDMA system, it may be
impractical to implement the optimum detection.
Therefore a simple technique to implement the opti-
mum multiuser detection is required.

Low complexity multiuser detectors that provide
near-optimum performance have been proposed [1],
[2]. Lupas et.al. [1] proposed the linear multiuser
detectors which are based on linear transformations of
a bank of matched filter outputs. Varanasi et.al. [2]
proposed the multi-stage detectors which are based on
a strategy of successive multiple-access interference
rejection. The computational complexity of these
detectors is proportional to the number of users.

In this paper, multiuser detection using a neural
network in a synchronous CDMA channel is consid-
ered. Neural networks provide high computational
rates because a large number of simple nonlinear
processing units which constitute a neural network
operate in parallel. Neural networks may be mainly
classified into the multilayer neural network and the
recurrent one.

The multilayer neural network consists of several
layers of processing units. The network acts as an
adaptive system and can approximate any continuous

" mapping. Thus the network has been successfully used

in various fields such as speech recognition and pattern
classification [3]. Since the signal detection problem
can be regarded as the pattern classification problem,
the multilayer neural network can be used for signal
detection [4]. Recently Aazhang et.al. [5] proposed a
new class of multiuser detection system in CDMA
channels which uses the multilayer neural network.
There are some problems when the multilayer neural
network is used for the multiuser detection. Firstly, it
is not known how many units in the hidden layer are
needed. Secondly, the known training sequences are
required to train the network. Moreover, in general, it
is not clear that how many symbols are needed for
training. Thirdly, it is difficult to determine the learn-
ing rate appropriately. Lastly, as for the back propaga-
tion which is widely used to train multilayer neural
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networks, it is not guaranteed to find the global
minimum of the error surface. It is difficult to set these
parameters optimum. If the optimum parameters are
determined, the receiver using the multilayer neural
network is able to perform the optimum detection.
However, if these parameters are determined empiri-
cally, the receiver can be expected to perform the
quasi-optimum detection since many good results have
been obtained in pattern classification problems [3].
In practice, Aazhang et.al. [5] reported that the perfor-
mance of the receiver using the multilayer neural
network is better than that of the conventional receiver
and is comparable to that of the optimum one.

On the other hand, as for the recurrent neural
network, Hopfield [6] proved that the recurrent neural
network where a processing unit is connected to each
other converges to a minimum of the energy function.
The receiver using the recurrent neural network has
never been proposed. The purpose of this paper is to
propose the receiver using the recurrent neural network
and compare the performance of the receiver with that
of the optimum receiver. It is the very interesting point
that the energy function of the network is identical to
the likelihood function of the optimum multiuser
detection and the recurrent neural network can be used
to implement the optimum multiuser detection.

The outline of this paper is as follows. In Sect. 2,
we describe the optimum multiuser detection in a
synchronous CDMA channel. We explain the recur-
rent neural network and propose the receiver using the
recurrent neural network in Sect.3. In Sect. 4, we
present the numerical results. Finally, in Sect. 5, we
summarize the main results.

2. Optimum Moultiuser Detection

In this section, we describe the optimum multiuser
detection in a synchronous CDMA channel. It is
assumed that there are K users in a channel and the
kth user is assigned a signature waveform which is
denoted sx(¢), &[0, T] where T is the symbol dura-
tion. The assigned signature waveform can be written
as

sk (1) = Aran(t) cos (wet+ On), k=1,2,---,K
(1)

where A, is the signal amplitude, w. is the carrier
frequency, 8,€[0,27) is the phase angle and ax(?),
whose length is N, is the spreading code assigned to
the kth user. The received energy per bit of the kth
user’s signature waveform, denoted Ej, is not always
equal to that of another user’s one due to the near-far
problem where the relative received powers of the
interfering signals become large. The received signal in
a synchronous CDMA system with additive channel
noise, denoted #(¢), can be written as
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F(1) = 2 bise (1) + (D) @

where b,&{+1, —1} is the kth user’s information bit
and »(t) represents the additive white Gaussian noise.

In more general asynchronous CDMA systems,
there are relative time delays, 7z, among the K signals,
and s, () in Eq. (2) becomes s.(f—1z). As we con-
sider a synchronous CDMA system in this paper, the
relative time delays are assumed to be zero, i.e. =0
Vk.

Consider the demodulation of the transmitted
information bit. The output of a matched filter which
matches the kth user’s signature waveform, denoted ys,
can be written as

= [ r(sod,

The conventional matched filter detection is based on
sign of y

k=1,2,---, K. (3)

b= SEN Y. (4)

Note that in Eq. (4) the multiple-access interference is
ignored.

The optimum detection can be carried out by
selecting the most likely information vector, b= (b,
wr, by), bye{+1, —1}, which maximizes the following

likelihood function [1]
K ~ K K ~ ~
L= leyibi— lelhijbibj (5)

where A;; is cross-correlation between the preassigned
waveforms:

ho= [ (050 d. (©)

Note that A4; is the energy-per-bit and A;=+0. The
maximization problem of L has been shown to be
NP-complete [1]. No algorithm which can solve the
maximization problem in polynomial time in K is
known.  Thus implementation of the optimum
multiuser detection is impractical when the number of
users is large. A simple technique to achieve near-
optimum performance is needed.

3. Multiuser Detection Using a Neural Network

In this section, we describe the recurrent neural net-
work and the relation between the optimum multiuser
detection and the network. Moreover, the receiver
using the neural network (the neural network receiver)
is proposed.

3.1 Recurrent Neural Networks
The recurrent neural network consists of a large num-

ber of simple nonlinear processing units. In the net-
work, each unit is connected to each other, i.e. the
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output of each unit is fed to all other units via con-
nectinon weights, and each unit has an external input.
The output of each unit is determined by first summing
all of the inputs and then applying a nonlinear trans-
formation. The equation of motion describing the
time evolution of the network is:

duiﬁ_ui M R :
= S T (7)

where u; is a potential of the ith unit, V; is an output
of the ith unit, T}, is a connection weight from the jth
unit to the ith one, I; is an external input to the ith
unit, 7 is a time constant and M is the number of the
units. The output of the 7/th unit is defined as:

V;=tanh (u;) (8)

Hopfield [6] showed that when connection
weights are symmetric, i.e. Ty = T;;, the equations of
motion always lead to stable states, where the outputs
of all the units remain constant. The stable states are
the global or local minima of the quantity

M 1 M M
E=—2Vil;——5 22, TyViV;. 9)
= 2484
E is called energy function. The time derivative of the
energy function is always negative. This type of the
network has been successfully used in such an opti-
mization problem as the Traveling-Salesman Problem
[7]. In spite of NP-complete, the network can rapidly
provide a solution. Note that the solution is not
always the best solution but is the quasi-best one.

In this paper, we consider the ideal case where a
time constant ¢ is infinity. When r is infinity, the first
term in Eq. (7) becomes negligible. Moreover we
assume that the self-connections 7;; are 0. It is known
that the state of the network always converges to a
corner of the hyper cube under these assumptions [8].
V;is 1 or —1 at each corner of the hyper cube. Thus
these assumptions are natural for a binary problem
considered in this paper.

It should be noted that the assumption that is T3
=0 does not affect searching of a state which minimize
the energy function at each corner of the hyper cube.
As a binary problem is investigated, one should con-
sider the energy at each corner of the hyper cube. A
contribution of the self-connections to the energy func-

M
tion is given by X} T; V7. The contribution is constant
=1

because ¥?=1 at the corner of the hyper cube. There-
fore the relations between the energies at all the corners
can be maintained even if the self-connections are 0.
Moreover, as mentioned above, the state of the network
always converges to one of corners of the hyper cube
and the state does not converge to interior of the hyper
cube. Consequently, one can search a state which
minimize the energy function at each corner of the
hyper cube.
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3.2 Multiuser Detection Using a Neural Network

We have described that the optimum multiuser detec-
tion problem is the maximization of the likelihood
function L and the dynamics of the neural network is
the minimization of the energy function E£. Here we
should notice the relation between the optimum
multiuser detection and the neural network.

As for the optimum multiuser detection, it is clear
that the maximization of L is the minimization of the
quantity

K ~ K K “~
L'=— leylbl+ Z‘,lzlhijbibj (IO)

The optimum multiuser detection can be clearly
related to the neural network by identifying L and E.
As a result, the variables correspond as follows:

L=2y, (11)
Tiyy=—2hy; (12)
Vi=b; (13)
M=K. (14)

The external input to the ith unit is given by the output
of the ith matched filter. The connection weight from
the jth unit to the ith one is given by crosscorrelation
between the preassigned waveform to the jth user and
that to the ith one. After the dynamics of the network
converged, i.e. the outputs of the units do not change,
the output of the ith unit corresponds to estimation of
the information bit transmitted by the ith user. And
the number of the units in the neural network is equal
to that of the users in the CDMA system. Thus the
neural network receiver is shown in Fig. 1. Each open
circle is a processing unit.

Note that E is equal to L” only when V;==%1.
b; in L’ can be a binary value {—1, 1}. On the other
hand, ¥; in E can be a real value in the range of [—1,
1]. Thus one should consider the energy E when V; is

T= Y1
_{Matched /'S ?
Filter #1 1
2 Tit /

sw

| [Matched | _T= YK i A— B

Fiter #K [ ¥ ?2 ——?—@_‘ bk
Ti

K1

Tkk
SWs are ON when the dynamics converges

Fig. 1 Structure of the neural network receiver.
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a value in the rage of (—1, 1). However, as mentioned
above, whén ¢ is infinity and T} are 0, the state of the
network always converges to a corner of the hyper
cube. Thus one can neglect the energy inside the hyper
cube. Moreover, when 7;=0, since the relations
between the energies at all the corners can be
maintained, then the state which minimize E is equal
to the information vector which minimize L’.

As mentioned in the previous section, the self-
connections in the neural network of the receiver are
the energy-per-bit and these are not 0. However, due to
the reason mentioned above, the self-connections are
set 0, i.e. T;=0Vi.

As mentioned above, the connection weights must
be symmetric to converge. Fortunately, the connection
weights in the neural network of the receiver are sym-
metric, because both 4;; and Aj; are cross-correlation
between the preassigned waveform to the jth user and
that to the ith one. Consequently, the likelihood
function L’ can be minimized by the dynamics of the
neural network.

It is noted that the optimum detection can be
achieved only when the stable state which the network
converges to is the global minimum of E. However, it
is only ensured that the network converges to one of
minima of the energy function. The minimum is not
always the global minimum and may be a local one. If
the neural network of the receiver converges to the
local minimum, the performance of the receiver may
degrade. However, even if the network converges to
the local minimum, the local minimum can be expect-
ed to be roughly the same as the global one, i.e. the
solution obtained by the network may be the quasi-
best solution, as shown in the Traveling-Salesman
Problem [7]. Thus the neural network receiver is
expected to provide near-optimum performance.

The choice of the initial values of the unit output
voltages is very important because it determines which
minimum (the global minimum or local minimum) the
network converges to. It is known that when the
number of the units is two, the best solution, i.e. the
gbobal minimum, can be obtained if the initial values
of the unit output voltages are at the origin of the state
space [8]. Thus in this paper the initial values of the
unit output voltages can be 0, i.e., ¥;=0V i, regardless
of the number of units.

Unlike multilayer neural networks, iterative train-
ing such as the back propagation is not required to
determine the connection weights of the recurrent
neural network of the receiver. The connection
weights are determined by Eq. (12).

4. Numerical Results
Performance comparisons among the optimum receiver,

the matched filter one and the neural network one are
carried out by computer simulations. The main pur-
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pose of the simulations is to show the neural network
receiver can achieve near-optimum detection in various
situations. In two-user channel case, the receiver using
the multilayer neural network which is proposed by
Aazhang et. al. [5] is also considered. The simulations
used an equivalent lowpass system. It is assumed that
the estimation of the carrier phase is obtained.

4.1 Two-User Channel

Firstly, we consider a synchronous two-user Gaussian
channel. In this example, we make sure of the behavior
of the neural network receiver. The number of the
units is two since the number of units is equal to that
of users. As mentioned in the previous section, when
the number of the units is two, it is ensured that a
network converges to the global minimum of the
energy function. As a result, the neural network
receiver could achieve the optimum performance. The
spreading sequence of the first user is a maximal length
sequence of length N=31 and that of the second user
is the image sequence of the first user’s one.

As for the multilayer neural network, the input
signals to the network are obtained by sampling the
output of the front-end filter at the chip rate. The
number of the units in the hidden layer is three. The
back propagation is used as a training algorithm. The
learning rate is 0.1, the momentum rate is 0.9 and the
length of training periods is 10,000 symbols.

Figure 2 shows the bit error rates(BER) of the first
user versus the energy per bit of the first user E; to the
power spectral density of noise Np ratio where the
relative energies of the two users are fixed to E»/E;=6
dB. The BER of the matched filter receiver is worse
than that of the optimum receiver because of the
near-far problem. As expected above, the network
always converges to the global minimum, and the BER
of the neural network receiver is exactly the same as
that of the optimum one. The performance of the
receiver using the multilayer neural network is better
than that of the matched filter one and is near optimum
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Fig. 3 Bit error rate versus E/E; for a two-ser channel with
E,/N;=6dB.

performance. However, it is noted that the perfor-
mance of the multilayer neural network receiver is
slightly worse than that of the recurrent neural network
one.

Figure 3 shows the BER versus the relative
energies of the two users under E;/No=6 dB. The BER
of the matched filter receiver becomes worse as the
energy of the interfering user increases because the
receiver ignores the multiple-access interference. On
the other hand, the BER of the optimum receiver is not
affected by the energy of the interfering user. More-
over, the network always converges to the global
minimum and the BER of the receiver is equal to that
of the optimum one. The performance of the receiver
using the multilayer neural network has near optimum
performance but the performance is worse than that of
the recurrent neural network.

4.2 Six-User Channel

Next, we consider a synchronous six-user Gaussian
channel. In this example, we consider the convergence
probability to the local minimum and its effect on the
BER performance. In particular, we consider the
convergence probability against the signal-to-noise-
ratio and the relative energies of users. The spreading
sequences of the first and second user are the same as
those of the two-user channel example, and those of the
third user and fourth user are different ones of maximal
length sequences of length N =31 and those of the fifth
and sixth user are the image sequences of that of the
third and fourth user respectively. It is assumed that
the users except the first user have equal energy.
Unlike the two-user channel, a few convergences
to the local minimum were observed. Figure 4 depicts
the convergence probability to the local minimum
versus E;/ N, where the energy of the ith user E; to that
of the first user E ratio is E;/E;=6 dB. The conver-
gence probability to the local minimum becomes large
as the Ei/ N, decreases. As described above, the conver-
gence to the local minimum is expected to degrade the
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Fig. 5 Bit error rate versus E;/N, for a six-user channel with
E,/E =6dB.

performance. The BER of the first user versus Ei/ N is
shown in Fig. 5 to show the convergence effect on the
BER performance. Performance degradation of the
matched filter receiver is observed due to severe near-
far problem particularly in high E;/N,. In spite of the
convergence to the local minimum, the BER of the
neural network receiver is nearly equal to that of the
optimum one over the range of Ei/N,. It is noted that
although the convergence probability is high when
E./ N, is low, these situations have no interest. Because
the performance of the matched filter receiver is similar
to that of the optimum one when E;/N, is low, and we
have few benefits of the optimum detection.

Next, the near-far effect in the six-user channel is
considered. The convergence probability to the local
minimum versus the strength of the interfering signals
relative to that of the first user’s signal E;/E, is shown
in Fig. 6 under E;/N;=6 dB. A few convergences to
the local minimum are observed when the strength of
the interfering signals are weak. The BER of the first
user versus E;/F, is shown in Fig. 7. In the same way
as the two-user channel, the performance of the
matched filter receiver becomes worse as the strength of
the interfering signals increases. On the other hand, the
optimum receiver can eliminate the multiple-access
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Fig. 7 Bit error rate versus E;//E; for a six-user channel with
Ey/Ny=6 dB.

interference over the range of E;/E,. The BER perfor-
mance of the neural network receiver is similar to that
of the optimum one. Note that although the conver-
gence probability increases when E;/E; is low, these
situations have no interest since there are few gains of
the optimum detection. Thus it can be concluded that
the convergence to the local minimum is few serious.
We would rather emphasize the network hardly con-
verges to the local minimum in the interesting case
where both E;/N, and E;/E,; are high.

4.3 K-User Channel

Lastly, we consider a synchronous K-user Gaussian
channel. In this example, we consider the convergence
probability to the local minimum against the number
of users and its effect on the BER performance. To
study the effect of the convergence to the local mini-
mum is important when the number of users increases.
Because the number of minima increases as that of the
units (corresponds to that of users) increases [9]. The
spreading sequence of the first user is the same as that
of the two-user channel example, and those of other
users are shifted ones of the first user’s one.

In the first example, the relative energies are E;/E;
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Fig. 9 Bit error rate versus the number of users(E;/E,= —3 dB,
E,/No=0dB).

= —3dB and the signal-to-noise-ratio is E;/Ny=0 dB.
These parameters are chosen as relatively low to study
the convergence probability to the local minimum.
The convergence probability is shown in Fig. 8 as a
function of the number of users. The convergences to
the local minimum are observed when the number of
users are large. The BER of the first user is illustrated
in Fig. 9 as a function of the number of users. The
optimum performance can be achieved by the neural
network receiver even if the number of users is large.
On the other hand, the BER of the matched filter
receiver is nearly equal to that of the optimum one
because both E;/E; and E;/N, are low. Thus the
optimum receiver is not already needed in such trivial
situations.

Now we should consider the interesting case
where the optimum receiver significantly outperforms
the matched filter one. We choose both E;/E; and
E/ N, are relatively high, E;/E; and E;/N, are 10 dB
and 6 dB respectively. Figure 10 shows the BER
performances versus the number of users. The BER
performance of the matched filter receiver becomes
worse with increasing the number of users. The BER
of the neural network receiver is the same as that of the
optimum one. The convergence to the local minimum
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is not observed regardless the number of users. There-
fore the convergence probability to the local minimum
in the interesting case is less sensitive to the increase of
the number of users than that in the previous trivial
case. Although the number of users considered here
may be small, these results indicate that the multiuser
detection using a neural network is an attractive tech-
nique to achieve near-optimum performance.

5. Conclusions

In this paper, we considered the multiuser detection
using a recurrent neural network in synchronous code-
division multiple-access channels. It was shown that
the energy function of the network is identical to the
likelihood function of the optimum detection and the
recurrent neural network can be used to implement the
optimum multiuser detection. Performance compari-
sons among the optimum receiver, the conventional
matched filter one and the neural network one were
carried out by computer simulations.

The convergence to the local minimum had been
expected to degrade the performance of the neural
network receiver. However, the network hardly
converged to the local minimum in the case of interest.
The receiver could achieve near-optimum performance
even if the network converged to the local minimum.
Moreover, it was shown that the convergences are few
serious, because the convergences were observed when
the signal-to-noise-ratio is low or the relative energies
of users are small and there are few gains of the
optimum detection in such cases. Furthermore, it was
shown that the convergence probability in the interest-
ing case is less sensitive to the increase of the number
of users than that in the trivial case. The number of the
users considered in this paper may be small, however,
these results indicate that the neural network receiver
can achieve near-optimum performance in the case of
interest. ‘

The situation considered in this paper is an exam-
ple of CDMA communications. More considerations
in various situations are required. Moreover, we must
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analyze the performances of the neural network
receiver.

It is well known that the simulated annealing is
the method which is ensured to converge to the global
minimum [10]. Thus if the simulated annealing is
used, there is no problem for the local minimum.
However, the method has the disadvantage of slowness.
On the other hand, there are many simple techniques to
improve the convergence probability to the global
minimum [11], [12]. It is a future work to consider
performance improvement of the neural network
receiver using these techniques.

The neural network receiver may be implemented
by using a neuro-chip which is being rapidly devel-
oped. Hardware implementation of the receiver is an
our future work.

We should refer briefly to the multilayer neural
network receiver. In this paper, the performances of
the receiver using the multilayer neural network were
shown only in the two-user channel case. Although
the results were not shown in the six-user channel and
in the K-user channel, simulations have been carried
out. Like in the two-user channel, the performances of
the receiver using the multilayer neural network are
near optimum performances but the performances are
worse than those of the recurrent neural network one
and those of the optimum one. For example, as to
E;/N, under the BER 107% the multilayer neural
network receiver is worse about 1.5 dB than the recur-
rent one in the six-user case. The result is an example.
The optimum performances will be obtained by setting
parameters optimum. However, the optimization is
difficult, and we can conclude that the multilayer
neural network is hard to use. On the other hand, the
recurrent neural network receiver has no parameter
and does not need training. Thus the recurrent neural
network receiver is easier to use than the multilayer
one.
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