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Bond Operator Mean Field Approach to the Magnetization Plateaux in Quantum

Antiferromagnets

- Application to the S=1/2 Coupled Dimerized Zigzag Heisenberg Chains -
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The magnetization plateaux in two dimensionally coupled S = 1/2 dimerized zigzag Heisen-
berg chains are investigated by means of the bond operator mean field approximation. In the
absence of the interchain coupling, this model is known to have a plateau at half of the satura-
tion magnetization accompanied by the spontaneous translational symmetry breakdown. The
parameter regime in which the plateau appears is reproduced well within the present approxi-
mation. In the presence of the interchain coupling, this plateau is shown to be suppressed. This
result is also supported by the numerical diagonalization calculation.
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1. Introduction

The phenomenon of the magnetization plateau in
quantum magnets has been attracting broad interest
as an essentially macroscopic quantum phenomenon in
which macroscopic magnetization M is quantized to the
fractional values of the saturated magnetization Ms.1–13)

Among them, the plateau associated with the sponta-
neous translational symmetry breakdown (STSB) is most
interesting because such a plateau is the manifestation
of the many body effect.5)

Theoretically, the plateaux in one dimensional quan-
tum magnets are best understood, because the size prob-
lem inherent to numerical studies are less serious and the
analytical tools such as bosonization and conformal field
theory are also available. On the other hand, in real ma-
terials, the interchain coupling is inevitable.10–13) How-
ever, the limitation of the system size becomes serious
in the numerical studies of the systems in higher dimen-
sions. Therefore it is desirable to to develop a reliable
approximation scheme appropriate for the description of
the plateau state in higher dimensions.

Among various approximation schemes which are com-
monly used in quantum spin systems, the bond oper-
ator mean field approximation (BOMFA) is known to
be powerful for the description of the spin gap state in
the absence of magnetization.14–17) Considering that the
plateau state can be regarded as a spin gap state with
non-zero magnetization, this method must be also useful
for the description of the plateau state. Actually, there
are several attempts to describe the magnetized states in
terms of the bond operators.9,18–21) In the present work,
we propose the application of the BOMFA to the plateau
state in the two dimensionally coupled S = 1/2 dimer-
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ized zigzag Heisenberg chains. Especially, we show that
the plateau accompanied by the STSB can be described
by the BOMFA with corresponding configuration of sin-
glet and triplet pairs.

The single S = 1/2 dimerized zigzag Heisenberg
chain is known to have a magnetization plateau at m(≡
M/Ms) = 1/2 in the appropriate parameter range.3–5)

Our approximation quantitatively reproduce the phase
diagram at m = 1/2. Motivated by the success in one
dimension, we further investigate the effect of the in-
terchain coupling within our approximation scheme. It
is found that the interchain coupling suppresses this
plateau. The numerical diagonalization results also sup-
ports this conclusion.

This paper is organized as follows. In the next sec-
tion, we briefly review the bond operator transforma-
tion. The Hamiltonian of the two dimensionally cou-
pled S = 1/2 dimerized zigzag Heisenberg chains is pre-
sented and rewritten using the bond operators in §3.
In section 4, the mean field approximation appropriate
for the plateau state is introduced and applied for the
present Hamiltonian. The condition for the stability of
the plateau is derived. The ground state phase diagram
is presented in §5. The last section is devoted to summary
and discussion.

2. Bond Operators

The bond operators s, s†, tα and t†α(α = ±, 0) are de-
fined for a pair of two S = 1/2 spins SL and SR as14–17)

s† |0⟩ = |s⟩ =
1√
2

( | ↑↓⟩ − | ↓↑⟩) , (1)

t†+ |0⟩ = |t+⟩ = − | ↑↑⟩ , (2)

t†− |0⟩ = |t−⟩ = | ↓↓⟩ , (3)

t†0 |0⟩ = |t0⟩ =
1√
2

( | ↑↓⟩ + | ↓↑⟩) , (4)

1



2 J. Phys. Soc. Jpn. Full Paper Kazuo Hida, Masaru Shiino and Wei Chen

where |0⟩ is the vacuum state and |Sz
LSz

R⟩ is the eigen-
state of Sz

L and Sz
R. These operators satisfy the bosonic

commutation relations,[
s, s†

]
= 1,

[
tα, t†β

]
= δαβ ,

[
s, t†α

]
= 0. (5)

Because the physical state of each spin pair is either sin-
glet or one of the three triplet states, these boson oper-
ators must satisfy the following condition,

s†s + t†+t+ + t†−t− + t†0t0 = 1. (6)

The components of the spin operators SR and SL are
rewritten in terms of the bond operators as follows:

S+
R,L =

1√
2

{
±

(
s†t− + t+

†s
)
−

(
t†+t0 − t†0t−

)}
, (7)

S−
R,L =

1√
2

{
±

(
s†t+ + t−

†s
)

+
(
t†−t0 − t†0t+

)}
, (8)

Sz
R,L =

1
2

{
±

(
s†t0 + t0

†s
)

+
(
t†+t+ − t†−t−

)}
, (9)

where upper and lower sign in rhs correspond to R and
L in lhs, respectively.

3. Hamiltonian

The Hamiltonian of the two dimensionally coupled S =
1/2 dimerized zigzag chains in the magnetic field H along
z-direction is given by,

H = J

Nc∑
l=1

N∑
i=1

{(1 + δ) SL(i, l) · SR(i, l)

+ (1 − δ) SL(i, l) · SR(i + 1, l)

+ λ1 (SL(i, l) · SL(i + 1, l) + SR(i, l) · SR(i + 1, l))

+ λ2 (SR(i, l) · SL(i, l + 1)

+ SR(i, l) · SL(i + 1, l + 1))}

−
Nc∑
l=1

N∑
i=1

H (Sz
L(i, l) + Sz

R(i, l)) , (10)

where N is the length of each chain and Nc is the num-
ber of chains. The chains are distinguished by the index
l. The dimers coupled via the stronger nearest neigh-
bour bonds J(1 + δ) are the elementary components of
the present model. In the following, these spin pairs are
simply called ’dimers’. They are distinguished by the in-
dex i in each chain. The indices R and L distinguish the
two spins in each dimer. Accordingly, the spin operators
SR(i, l) and SL(i, l) are the right and left spins in the
i-th dimer on the l-th chain, respectively. The weaker in-
trachain nearest neighbour coupling, the intrachain next
nearest neighbour coupling and the interchain coupling
are denoted by J(1 − δ), Jλ1 and Jλ2, respectively, as
depicted in Fig. 1. This model can be also regarded as
a dimerized triangular Heisenberg model. The uniform
triangular lattice corresponds to λ1 = λ2 = 1 and δ = 0.

The Hamiltonian (10) can be represented by the bond
operators for the dimers connected by J(1 + δ) bonds as

l−1 l l+1

i

i+1

i−1

i+1

i

i+2 i

i−1

i−2

R

R

R

L
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L

LL

J(1+δ)
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Jλ2

R

R

R

R

R
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L
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L

LL

L
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Fig. 1. Two dimensionally coupled dimerized zigzag chains. The
filled circles represent the S = 1/2 spins.

follows,

H =
4∑

j=0

Hj , (11)

H0 =
Nc∑
l=1

N∑
i=1

{
J (1 + δ)

(
−3

4
s†(i, l)s(i, l)

+
1
4

∑
α=0,±

t†α(i, l)tα(i, l)

)
− µ(i, l)

(
s†(i, l)s(i, l)

+
∑

α=0,±
t†α(i, l)tα(i, l) − 1

)}
, (12)

H1 = −
Nc∑
l=1

N∑
i=1

J

4
(1 − δ)

[(
s†(i, l)t0(i, l) + t†0(i, l)s(i, l)

+ t†+(i, l)t+(i, l) − t†−(i, l)t−(i, l)
)

×
(
s†(i + 1, l)t0(i + 1, l) + t†0(i + 1, l)s(i + 1, l)

− t†+(i + 1, l)t+(i + 1, l) + t†−(i + 1, l)t−(i + 1, l)
)

+
{(

s†(i, l)t−(i, l) + t†+(i, l)s(i, l)

+ t†0(i, l)t−(i, l) − t†+(i, l)t0(i, l)
)

×
(
s†(i + 1, l)t+(i + 1, l) + t†−(i + 1, l)s(i + 1, l)

− t†−(i + 1, l)t0(i + 1, l) + t†0(i + 1, l)t+(i + 1, l)
)

+ h.c.
}]

, (13)
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H2 =
Nc∑
l=1

N∑
i=1

J

2
λ1

[(
s†(i, l)t0(i, l) + t†0(i, l)s(i, l)

)
×

(
s†(i + 1, l)t0(i + 1, l) + t†0(i + 1, l)s(i + 1, l)

)
+

(
t†+(i, l)t+(i, l) − t†−(i, l)t−(i, l)

)
×

(
t†+(i + 1, l)t+(i + 1, l) − t†−(i + 1, l)t−(i + 1, l)

)
+

{(
s†(i, l)t−(i, l) + t†+(i, l)s(i, l)

)
×

(
s†(i + 1, l)t+(i + 1, l) + t†−(i + 1, l)s(i + 1, l)

)
+

(
t†0(i, l)t−(i, l) − t†+(i, l)t0(i, l)

)
×

(
t†0(i + 1, l)t+(i + 1, l) − t†−(i + 1, l)t0(i + 1, l)

)
+ h.c.

}]
, (14)

H3 = −
Nc∑
l=1

N∑
i=1

J

4
λ2

[(
s†(i, l)t0(i, l) + t†0(i, l)s(i, l)

+ t†+(i, l)t+(i, l) − t†−(i, l)t−(i, l)

+ s†(i + 1, l)t0(i + 1, l) + t†0(i + 1, l)s(i + 1, l)

+ t†+(i + 1, l)t+(i + 1, l) − t†−(i + 1, l)t−(i + 1, l)
)

×
(
s†(i, l + 1)t0(i, l + 1) + t†0(i, l + 1)s(i, l + 1)

− t†+(i, l + 1)t+(i, l + 1) + t†−(i, l + 1)t−(i, l + 1)
)

+
{(

s†(i, l)t−(i, l) + t†+(i, l)s(i, l)

− t†0(i, l)t−(i, l) + t†+(i, l)t0(i, l)

+ s†(i + 1, l)t−(i + 1, l) + t†+(i + 1, l)s(i + 1, l)

− t†0(i + 1, l)t−(i + 1, l) + t†+(i + 1, l)t0(i + 1, l)
)

×
(
s†(i, l + 1)t+(i, l + 1) + t†−(i, l + 1)s(i, l + 1)

− t†0(i, l + 1)t+(i, l + 1) + t†−(i, l + 1)t0(i, l + 1)
)

+ h.c.
}]

, (15)

H4 = −
Nc∑
l=1

N∑
i=1

H
(
t†+(i, l)t+(i, l) − t†−(i, l)t−(i, l)

)
, (16)

where the Lagrange multipliers µ(i, l) are introduced to
account for the constraint (6).

4. Bond Operator Mean Field Approximation in
the Plateau State

On the m = 1/2 plateau state, it is expected that half
of the dimers on the J(1 + δ)-bonds are in the singlet
states and others are in the triplet states polarized along
the z-direction as far as 1 + δ >> 1 − δ, λ1, λ2. In this
state, the translational symmetry i → i + 1 is sponta-
neously broken to i → i+2. In the two dimensional case,

L R L R L R

l−1 l l+1

i

i+1

i−1

i+1

i

i+2 i

i−1

i−2

(a)

L R L R L R

l−1 l l+1

i

i+1

i−1

i+1

i

i+2 i

i−1

i−2

(b)

Fig. 2. Two possible configurations of the triplet and singlet pairs
in the m = 1/2 plateau state. The spin pairs in each oval form
singlet pairs and the spins represented by the thick up arrows

are spins in the triplet state polarized along the magnetic field.

there are two possible singlet-triplet configurations as de-
picted in Fig. 2(a) and (b). We have carried out our cal-
culation for both configurations. However, it turned out
that the configuration (a) gives wider plateau. Therefore,
we only present the calculation for the configuration (a)
in the following. The calculation for the configuration (b)
can be carried out almost in the same manner.

Based on the above explained physical picture of the
plateau state, we assume the condensation of s(2i, l) and
t+(2i+1, l) bosons and keep the ground state expectation
values of these operators as s =< s†(2i, l) >=< s(2i, l) >

and t =< t†+(2i + 1, l) >=< t+(2i + 1, l) >.
We also make global approximation for the Lagrange

multiplier µ(i, l). In the present case, the (2i, l)-th sites
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and the (2i + 1, l)-th sites are inequivalent. Therefore
we assume different values µe and µo for µ(2i, l) and
µ(2i + 1, l), respectively. Thus, the ground state energy
is obtained as,

E0 =
NcN

2

{
J

(
−3

4
s2 +

1
4
t2

)
(1 + δ)

+
Jλ2

4
t4 − Ht2 + µo(t2 − 1) + µe(s2 − 1)

}
(17)

neglecting all quantum fluctuation terms.
The parameters s, t, µe and µo are determined so as

to optimize E0 as follows,

µo = −J

4
(1 + δ) − Jλ2

2
+ H, (18)

µe =
3
4
J (1 + δ) , (19)

s = t = 1. (20)

Neglecting the terms higher than the third order in
t±(2i, l), t0(2i, l), s(2i+1, l), t0(2i+1, l) and t−(2i+1, l)
and carrying out the Fourier transformation,

tα(2i, l) =
√

2
NcN

∑
k

teα(k)eik·r(2i,l), (α = 0,±),(21)

s(2i + 1,m) =
√

2
NcN

∑
k

so(k)eik·r(2i+1,l), (22)

tα(2i + 1, l) =
√

2
NcN

∑
k

toα(k)eik·r(2i+1,l),

(α = 0,−), (23)

where r(i, l) is the position of the (i, l)-th dimer, we ob-
tain the BOMFA Hamiltonian HMF as,

HMF = E0

+
∑

k

(
Ae

+(k)te†+ (k)te+(k) + Ae
−(k)te†− (k)te−(k)

+ Ae
0(k)te†0 (k)te0(k) + Ao

s(k)so†
+ (k)so

+(k)

+ Ao
−(k)to†− (k)to−(k) + Ao

0(k)to†0 (k)to0(k)
)

+
∑

k

P (k)
{

so†(k)
(
te†+ (−k) + te−(k)

)
+ so(k)

(
te+(−k) + te†− (k)

)}
+

∑
k

iQ(k)
{

to†0 (k)
(
te†+ (−k) + te−(k)

)
− to0(k)

(
te+(−k) + te†− (k)

)}
+

∑
k

R(k)
{

te−(k)te+(−k) + te†− (k)te†+ (−k)

+
1
2

(
te0(k)te0(−k) + te†0 (k)te†0 (−k)

)}
+

∑
k

iS(k)
(
so†(k)to0(−k) − to†0 (−k)so(k)

)
,(24)

where

E0 =
NcN

2

{
−J

2
(1 + δ) +

Jλ2

4
− H

}
,

Ae
+(k) = J (1 + δ) − H + Jλ1 +

J

2
(1 − δ)

+
Jλ2

2
(1 − cos ky),

Ae
−(k) = J (1 + δ) + H − Jλ1 −

J

2
(1 − δ)

− Jλ2

2
(1 + cos ky),

Ae
0(k) = J (1 + δ) − Jλ2

2
cos ky,

Ao
s(k) = −J (1 + δ) + H − Jλ2

2
(1 + cos ky),

Ao
0(k) = H − Jλ2

2
(1 − cos ky),

Ao
−(k) = 2H − Jλ2,

P (k) = −
(

1 − δ

2
− λ1

)
J cos kx − Jλ2

2
cos(kx − ky),

Q(k) =
1 − δ

2
J sin kx − Jλ2

2
sin(kx − ky),

S(k) =
Jλ2

2
sin ky, R(k) = −Jλ2

2
cos ky,

where kx and ky are the momentum components conju-
gate to i and l.

In the matrix representation, eq. (24) is rewritten as,

HMF = E0 +
∑

k

′
u†(k)D(k)u(k)

+
1
2

∑
k

(
Ae

+(k) + Ae
−(k) + Ae

0(k)

+ Ao
s(k) + Ao

−(k) + Ao
0(k)

)
, (25)

where

u†(k) =
(

t†(k) t(−k)
)

with

t†(k) =(
te†+ (k) te†0 (k) te†− (k) so†(k) to†0 (k) to†− (k)

)
,

(26)

and

Dd(k) =
Ae

+(k) 0 0 0 0 0
0 Ae

0(k) 0 0 0 0
0 0 Ae

−(k) P (k) −iQ(k) 0
0 0 P (k) Ao

s(k) −iS(k) 0
0 0 iQ(k) iS(k) Ao

0(k) 0
0 0 0 0 0 Ao

−(k)

 ,

(27)
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Fig. 3. Magnetic phase diagram of the S = 1/2 single dimerized

zigzag Heisenberg chain on the H − δ plane for λ1 = 0.2.

Do(k) =


0 0 R(k) P (k) −iQ(k) 0
0 R(k) 0 0 0 0

R(k) 0 0 0 0 0
P (k) 0 0 0 0 0
iQ(k) 0 0 0 0 0

0 0 0 0 0 0

 , (28)

D(k) =
(

Dd(k) Do(k)
Do(−k) Dd(−k)

)
. (29)

The summation
∑

k

′
is taken over a half of the Brillouin

zone (say kx > 0). It is known that this type of Hamilto-
nian is diagonalizable by the Bogoliubov transformation
as,∑

k

′
t†(k)D(k)t(k) =

∑
k

∑
µ=1,6

~ωµ(k)
(

α†
µ(k)αµ(k) +

1
2

)
(30)

with six modes αµ(k), (µ = 1, .., 6) which have positive
excitation energies ~ωµ(k) if and only if the matrix D(k)
is positive definite for all allowed values of k.22) From this
condition, the plateau region is determined numerically.

5. Results

5.1 Single Dimerized Zigzag Chain
Figure 3 shows the magnetic phase diagram of the

S = 1/2 one-dimensional dimerized zigzag chain (λ2 = 0)
on the H − δ plane determined by the present method
for λ1 = 0.2. Compared to the numerical results (Fig.
3 of ref. 4), the BOMFA overestimates the width of the
plateau. Especially, the plateau width remains finite even
for δ = 0 where no plateau is observed in numerical cal-
culation. Nevertheless, the approximate position of the
plateau and the range of δ for which the plateau appears
is fairly well reproduced.

The latter feature is visible more clearly in Fig. 4 which
shows the ground state phase diagram on the δ − λ1

plane. The isolated dimer limit, which is the starting

0 0.5 1

0.5

1

δ

λ1

m=1/2 plateau

Fig. 4. Ground state phase diagram of the one-dimensional
dimerized zigzag chain for m = 1/2 on the δ − λ1 plane. The
magnetic field H is scaled by J .

point of the BOMFA, is characterized by λ1 = 0 and
δ = 1.0. For finite λ1 and/or 1 − δ, the interdimer in-
teraction is switched on and the many body effect stabi-
lizes the m = 1/2 plateau state accompanied by STSB.
Comparing the present results with the numerical phase
diagram by Tonegawa and coworkers,3,4)(Fig. 1 of ref.
4) the plateau region is well reproduced by the BOMFA.
This implies that the present approximation takes into
account the many body effect appropriately.

5.2 Two Dimensional Coupled Dimerized Zigzag Chain
The results of the preceding subsection indicates that

the BOMFA gives reliable results even for the one-
dimensional case in which the mean field type approx-
imation is expected to be rather poor. Encouraged by
this success, we further investigate the effect of the in-
terchain coupling in this subsection.

The m = 1/2 ground state phase diagram on the
δ − λ1 plane is shown for various values of λ2 in Fig.
5. It is seen that the interchain interaction suppresses
the m = 1/2 plateau. Actually, no plateau appears for
λ2 > 0.634. This conclusion is physically reasonable be-
cause the present plateau is understood as the solidifi-
cation of the singlet and triplet pairs which alternate
on the strong bonds.5) The interchain coupling tends to
align the spins and destroy the singlet pair formation.
Therefore the present plateau is destabilized by the in-
terchain interaction. Considering that the mean field ap-
proximation becomes more reliable as the dimensionality
becomes higher, we expect the present calculation is re-
liable in the coupled chain system.

To confirm the above conclusion numerically, we have
carried out the numerical diagonalization calculation for
Nc = N = 4 and 6 clusters. Figure 6 shows the N(= Nc)-
dependence of the magnetic fields at the lower end Hc1

and upper end Hc2 of the m = 1/2 plateau for (a)
(δ, λ1) = (0.5, 0.4) and (b) (δ, λ1) = (0.6, 0.5), respec-
tively. Of course, the system size dependence of Hc1 and



6 J. Phys. Soc. Jpn. Full Paper Kazuo Hida, Masaru Shiino and Wei Chen

0 0.5 1

0.5

1

δ

λ1

0

0.5

0.6

0.4

0.3

0.2
0.1

Fig. 5. The ground state phase diagram of the two dimensionally
coupled S = 1/2 dimerized zigzag Heisenberg chains for m =
1/2. The region encircled by each curve and λ1-axis is the plateau
region. The values of λ2 are indicated for each line.

0 0.1 0.2
0
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1/N
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(a) δ=0.5  λ1=0.4

0 0.1 0.2
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λ2=0.2
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(b) δ=0.6  λ1=0.5
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Fig. 6. The magnetic fields at lower end Hc1 and upper end Hc2

of the m = 1/2 plateau of the S = 1/2 coupled zigzag chains
Heisenberg model for the clusters with N = Nc = 4 and 6 plotted

against 1/N for (a) (δ, λ1) = (0.5, 0.4) and (b) (0.6, 0.5). The
solid line is the linear extrapolation in 1/N . The magnetic field
is scaled by J .

Hc2 is not clear, so that there is large ambiguity in the
extrapolation to N → ∞ from only two values of N .
Therefore the absolute values of Hc1 and Hc2 are not
reliable. However, it is clear from Fig. 6 that the extrap-
olated values of the plateau width decrease with λ2. It is
also checked that this tendency is insensitive to the way
of extrapolation. Therefore the numerical diagonalization
results support the validity of the BOMFA result.

6. Summary and Discussion

In the present work, we have investigated the m = 1/2
plateau of the coupled dimerized zigzag chain by apply-
ing the BOMFA to the plateau state. It is found that
the m = 1/2 plateau associated with STSB can be de-
scribed by BOMFA. In the single dimerized zigzag chain,
the ground state phase diagram obtained by the numer-
ical calculation is reproduced quantitatively well. In the
coupled dimerized zigzag chains, the plateau is found to
be suppressed by the interchain coupling. This is also
consistent with the numerical diagonalization results.

Similar conclusion is also obtained by Kolezhuk6) sev-
eral years ago. However, his calculation treats the in-
terdimer interaction only perturbatively and no quanti-
tative phase diagram is obtained. Furthermore, the ef-
fective kinetic energy of triplet pairs are assumed to be
much smaller than the interaction energy between these
pairs, although both energies are in fact the same order
in λ1, λ2 and 1 − δ. In the present treatment, the both
energies are equally taken into account.

Sommer and coworkers18) and Matsumoto and cowork-
ers9,19) also applied BOMFA to the magnetization pro-
cess of the quantum magnets. However, these authors
concentrated on the non-plateau part of the magneti-
zation curve and explained the field induced transverse
antiferromagnetic ordering in two and three dimensional
models. The simple-minded application of their method
to the one-dimensional case also leads to the trans-
verse ordering. This is obviously unphysical, because the
ground state of the quantum spin chains in the non-
plateau region should be the Luttinger liquid state. Fur-
thermore, the plateau associated with the STSB cannot
be described by their scheme, because STSB occurs only
on the magnetization plateau. On the other hand, our
approach concentrate on the plateau state and is not
suitable for the description of the non-plateau part of
the magnetization curve. It is, however, applicable to the
one-dimensional case and can describe the plateau state
with STSB. Therefore we may conclude that our method
and the method of refs. 9, 18, 19 are complementary to
each other.

For δ = 0 and λ2 = 0, Okunishi and Tonegawa7,8)

have shown that the m = 1/3 plateau appears in the
strongly frustrated regime. For δ = 0, λ1 = λ2 = 1, the
present model reduces to the triangular lattice for which
the m = 1/3 plateau is believed to be present.23,24) In
this context, it is interesting to investigate the interplay
of two dimensionality, dimerization and frustration in
the m = 1/3 plateau problem. We have also tried to
apply the present method to the m = 1/3 plateau. How-
ever, the width of the plateau region on the δ−λ1 plane
determined by the BOMFA is substantially wider than
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the numerical results by Okunishi and Tonegawa7,8) for
δ = 0 and preliminary DMRG calculation by one of the
authors(KH) for δ ̸= 0. The origin of this discrepancy
is the following. As discussed by Okunishi and Tone-
gawa,7,8) this m = 1/3 plateau is basically of classical
origin with up-up-down local spin configuration realized
in the Ising limit rather than the quantum mechanical
plateau resulting from the singlet pair formation on the
strong bonds. Therefore the present approach based on
the singlet pair formation is not suitable for the descrip-
tion of the m = 1/3 plateau. The same is true for the
triangular lattice (δ = 0, λ1 = λ2 = 1) which also has the
m = 1/3 plateau.23,24) Therefore in order to apply the
present method to the m = 1/3 plateau, it would be nec-
essary to refine the approximation so as to incorporate
the effect of the ground state polarization of the singlet
sites. This is left for future studies.

In conclusion, the BOMFA is a promising tool for the
investigation of the magnetization plateau of quantum
origin including those induced by many body effect asso-
ciated with the translational symmetry breakdown. The
application of the present method to wide range of mod-
els is hoped in the future.
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