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New Universality Class in Spin-One-Half Fibonacci Heisenberg Chains
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Low energy properties of the S � 1=2 antiferromagnetic Heisenberg chains with Fibonacci exchange
modulation are studied using the real space renormalization group method for strong exchange
modulation. Using the analytical solution of the recursion equation, the true asymptotic behavoir is
revealed, which was veiled by the finite size effect in the previous numerical works. It is found that the
ground state of this model belongs to a new universality class with a logarithmically divergent
dynamical exponent which is neither like Fibonacci XY chains nor like XY chains with relevant
aperiodicity.
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quasiperiodic lattice also, some two-dimensional classi-
cal models are known to have exact solution [14]. How-

decimation scheme has been used to investigate the mag-
netization process of the Fibonacci Heisenberg chains [8].
The magnetism of quasiperiodic systems has been the
subject of continual studies since the discovery of quasi-
crystals in 1984 [1]. This problem has been attracting
renewed interest after the synthesis of magnetic quasi-
crystals with well-localized magnetic moments [2]. The
artificial formation of one- and two-dimensional quasi-
periodic structures is also coming into the scope of
experimental physics [3,4] thanks to the recent progress
of nanotechnology and surface engineering. Possibly mo-
tivated by this experimental progress, the theoretical
investigation of the quantum magnetism in one- and
two-dimensional quasiperiodic systems is started by
many authors [5–10].

The S � 1=2 Fibonacci XY chain, which is mapped
onto the free fermion chain, has been studied extensively
by Kohmoto and co-workers [11] by means of the exact
renormalization group method from the early days of
quasicrystal physics. It is shown that the ground state of
the XY chain with Fibonacci exchange modulation is
critical with finite nonuniversal dynamical exponents.
This approach was extended to include other types of
aperiodicity and anisotropy [12]. It is clarified that the
criticality of the Fibonacci XY chain emerges from the
marginal nature of the Fibonacci and other precious mean
aperiodicity in this model. For the relevant aperiodicity,
more singular behavior with a divergent dynamical ex-
ponent is realized even for the XY chain [12].

On the other hand, the investigation of the S � 1=2
Fibonacci Heisenberg chains started only in the late
1990’s. The ground state of the uniform S � 1=2
Heisenberg chain is exactly solved by the famous Bethe
ansatz method [13] and is known to be in the Luttinger
liquid state with conformal invariance. This implies that
the dynamical exponent z is unity and the specific heat C
and susceptibility � behave as C� T and �� const at
low temperatures. This exact solution is related to the
transfer matrix of the two-dimensional classical eight
vertex model which can be solved exactly [13]. On the
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ever, the exact solution of the Fibonacci Heisenberg chain
is not derived from these exactly solvable vertex models.
Therefore we must resort to the renormalization group
approach to clarify the reliable low energy asymptotic
behavior. For weak Fibonacci modulation, Vidal and co-
workers [7] have shown that the Fibonacci modulation is
relevant on the basis of the weak modulation renormal-
ization group calculation. The present author carried out
the density-matrix renormalization group (DMRG) cal-
culation and investigated the scaling properties of the low
energy spectrum [5,6]. In the present work, we employ
the real space renormalization group (RSRG) method
[15], which is valid for the strong modulation, to eluci-
date the ground state properties of the S � 1=2 antiferro-
magnetic Fibonacci Heisenberg chains. Surprisingly, the
finite size scaling formula, which fitted the DMRG data
in Ref. [5] well, turned out to be the artifact of the finite
size crossover effect. The true asymptotic behavior is first
revealed by the exact solution of the recursion equation
obtained in the present paper. It is also explained why the
DMRG data are well fitted by the formula assumed in
Ref. [5] within the appropriate range of the system size.

Our Hamiltonian is given by

H �
XN�1

i�1

J�iSiSi�1 �J�i > 0; �i � A or B�; (1)

where Si’s are the spin-1=2 operators. The exchange cou-
plings J�i ( � JA or JB) follow the Fibonacci sequence
generated by the substitution rule:

A! AB; B! A: (2)

If one of the couplings JA or JB is much larger than the
other, we can decimate the spins coupled via the stronger
exchange coupling and calculate the effective interaction
between the remaining spins by the perturbation method
with respect to the weaker coupling [15]. This type of
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FIG. 1. The decimation procedure for JA 	 JB.
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FIG. 2. The RSRG scheme of the Fibonacci Heisenberg chain.
The letters A and B correspond to the bonds and the up and
down arrows to the spins which survive decimation. For JA �
JB the leftmost spin and bond in the parentheses do not appear.
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FIG. 3. The decimation procedure for JA � JB.
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Here we apply this scheme to find the fixed point which
governs the ground state in the absence of magnetization.

In the present work, we concentrate on the case of
strong modulation, max�JA=JB; JB=JA� � 1. For JA 	
JB, the spins connected by the JB bonds are decimated
as shown in Fig. 1. The spin-1=2 degrees of freedom
survive on the sites in the middle of the sequence AA.
The two kinds of sequences of bonds are allowed between
two alive spins, namely, ABA and ABABA. Between these
two alive spins, there exists one singlet pair in the former
case while two singlet pairs exist in the latter case.
Therefore the effective coupling is weaker for the latter
case. This decimation process replaces the sequence
ABABA by A0 and ABA sandwiched by two As by B0

resulting in the sequence B0A0B0A0A0B0A0B0A0 . . . . Except
for B0 at the leftmost position, this sequence again gives
the Fibonacci sequence as schematically shown in Fig. 2.
As seen from the change of the number of the bonds by
one step of decimation, this procedure essentially corre-
sponds to a 3-step deflation. The rigorous proof will be
reported in a separate paper [16].

In the case JA � JB, the decimation precesses are
shown in Fig. 3. The three spins connected by successive
A bonds form a doublet which can be described as a single
spin with magnitude 1=2. The spins connected by the
isolated JA bonds are decimated. Therefore this decima-
tion process again corresponds to the replacement
ABABA! A0 and ABA! B0. In this case, the resulting
sequence is the exact Fibonacci sequence. After the first
decimation the A0 bond becomes weaker than the B0

bonds. Therefore the decimation rule for the case JA 	
JB applies for the further decimation procedure.

The effective coupling can be calculated by the
straightforward perturbation theory in weaker coupling.
For the nth iteration, we have

J�n�1�
A �

J�n�3A

4J�n�2B

; J�n�1�
B �

J�n�2A

2J�n�B
; (3)

with

J�1�A �
J3A
4J2B

; J�1�B �
J2A
2JB

; for JB � JA; (4)

J�1�A �
2J2B
9JA

; J�1�B �
4JB
9
; for JA � JB; (5)
037205-2
where the variables with �n� refer to the values after n-step
iteration.

The ratio J�n�A =J
�n�
B decreases under renormalization as

J�n�1�
A

J�n�1�
B

�
1

2

J�n�A
J�n�B

�n � 1�: (6)

This implies that the perturbation approximation be-
comes even more accurate as the renormalization
proceeds. Therefore the aperiodicity is relevant in consis-
tency with the result of the weak modulation renormal-
ization group method [7]. Taking both results into
account, we may safely expect that the ground state of
the Fibonacci Heisenberg chain is governed by the strong
modulation fixed point obtained in the present approach
in the entire parameter range of JA=JB � 1.

The solution of the recursion equation (3) is given by

J�n�A � JA

�
JA
JB

�
2n
2�n�n�1�;

J�n�B � JB

�
JA
JB

�
2n
2�n

2
; for JB � JA;

(7)

J�n�A �
8JB
9

�
JB
JA

�
2n�1

2�n�n�1�;

J�n�B �
8JA
9

�
JB
JA

�
2n�1

2�n
2
; for JB 	 JA:

(8)

The length of the 3nth Fibonacci sequence is equal to
the Fibonacci number F3n which grows as �3n for large n
where � is the golden mean [ � �1�

���
5

p
�=2]. Therefore

the chain of length N ��3n reduces to a single pair of
spins after n decimation steps. This implies that the
smallest energy scale �E for the finite Fibonacci chain
with length N scales as

�E� 2�n
2
� exp��lnN=3ln��2ln2�

� e���lnN�
2
� N��lnN;

with � � ln2=�3ln��2 (9)
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for large enough N, irrespective of the value of JA=JB. It should be noted that the dynamical exponent diverges
logarithmically.

This size dependence implies that the number ND��E�d�E of the magnetic excited states with energies in the
interval �E��E� d�E scales as

ND��E�d�E� f
�
N exp

�
�

����������������
1

�
ln

1

�E

r ��
d
�
N exp

�
�

����������������
1

�
ln

1

�E

r ��

�Nf
�
N exp

�
�

����������������
1

�
ln

1

�E

r ��
1

2��E
�������������
1
� ln

1
�E

q exp

�
�

����������������
1

�
ln

1

�E

r �
d�E (10)
with a scaling function f�x�. Because the density of state
per site D��E� should be finite in the thermodynamic
limit N ! 1, the scaling function f�x� tends to a finite
value as x! 1. Therefore we find

D��E�d�E�
1

2��E
�������������
1
� ln

1
�E

q exp

�
�

����������������
1

�
ln

1

�E

r �
d�E

(11)

for large enough N. Accordingly, the low temperature
magnetic specific heat C should behave as

C�
@
@T
N
Z T

0
�ED��E�d�E� NTD�T�

�
N

2�
�����������
1
� ln

1
T

q exp

�
�

������������
1

�
ln

1

T

r �
: (12)

The magnetic susceptibility at temperature T should be
the Curie contribution from the spins alive at the energy
scale T. The number ns�T� of such spins is given by

ns�T� � 2N
Z T

0
D��E�d�E; (13)

because two spins are excited by breaking a single effec-
tive bond with effective exchange energy less than kBT.
Therefore the low temperature magnetic susceptibility �
behaves as

��T� �
2N
4T

Z T

0

exp��
�������������
1
� ln

1
�E

q
�

2��E
�������������
1
� ln

1
�E

q d�E�
N exp��

�����������
1
� ln

1
T

q
�

2T
:

(14)

This low temperature behavior should be contrasted with
that of the uniform S � 1=2 antiferromagnetic
Heisenberg chain C� T and �� const which is less
singular than the present Fibonacci case. This is due to
the logarithmic divergence of the dynamical exponent in
the present case. To check the reliability of the present
RSRG scheme, we also applied the same procedure for
the Fibonacci XY chain to find

�E� N�z (15)

with z � �2=3ln��lnfmax�JA=JB�; �JB=JA��g. This repro-
duces the exact result by Kohmoto and co-workers [11] in
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the limit max�JA=JB�; �JB=JA�� � 1. Therefore our
RSRG scheme is reliable at least for strong modulation.

The present results appear to be in contradiction with
the results of Ref. [5], in which the present author carried
out the DMRG calculation for the Fibonacci antiferro-
magnetic Heisenberg chains. In Ref. [5], we performed
the finite size scaling analysis of the lowest energy gap
�E based on the assumption that it will behave in the
same way as the XY chain with relevant aperiodicity,
namely, as �E� exp��cN!�. However, the present
analysis suggests a different behavior. Although we tried
to replot the previous data using the scaling (9), the fit
turned out to be very poor. The reason of this discrepancy
will be understood in the following way.

For finite JA=JB, the perturbation approximation re-
quires the higher order corrections which modify the
recursion equation (3) in the form:

J�n�1�
A �

J�n�3A

J�n�2B

fA�J
�n�
A =J

�n�
B �;

J�n�1�
B �

J�n�2A

J�n�B
fB�J

�n�
A =J

�n�
B �:

(16)

It should be noted that the correction factors fA and fB
depend only on the ratio J�n�A =J

�n�
B and satisfy fA�0� � 1=4,

fB�0� � 1=2. This leads to the recursion equation for
X�n� � �X�n�

A ; X
�n�
B � � �lnJ�n�A ; lnJ

�n�
B � as

X �n�1� �

�
3 �2
2 �1

�
X�n� ���X�n�

A � X�n�
B � (17)

with � � �!A;!B� � �lnfA; lnfB�. If the function ��X�
is approximated by a linear function of X as ��X� �
�X��0 with � � �"A; "B�, we have

X �n�1� � MmX�n� ��0; (18)

where Mm is a 2� 2 matrix

Mm �

�
3� "A �2� "A
2� "B �1� "B

�
: (19)

One of the eigenvalues of Mm is unity. If another eigen-
value %m�� 1� "B � "A� is larger than unity, the solu-
tion of (18) grows with n as
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X �n� / %nm: (20)

In this case, both lnJ�n�A and lnJ�n�B scale as %nm. Therefore
the lowest energy scale of the chain of length N also
scales as

�E� exp��C%�lnN�=�3ln���m � � exp��CN�ln%m�=�3ln����

� exp��CN!� with ! �
ln%m
3ln�

(21)

within appropriate range of system size N. This is the
reason why the behavior (21) is observed in the DMRG
calculation for finite systems. We have numerically diago-
nalized the Hamiltonian of the clusters BAABABAAB
and BABAABAABAB which reduce to a single A0 bond
and B0 bond after decimating B bonds. Using these nu-
merical data, it is verified that the effective value of %m
is larger than unity although it actually depends on
JA=JB. As the renormalization proceeds, of course, the
ratio JA=JB decreases and the true asymptotic behavior
(9) is reached. More details of this calculation are pre-
sented in [16].

This crossover behavior implies that the extremely low
temperature is required to observe the true asymptotic
behavior (12) and (14) in weak modulation regime.
Instead, the behaviors expected from (21), namely, C�
1=�lnT�1�1=! and �� 1=�T�lnT�1=!� [12] would be ob-
served in the intermediate temperature regime.

In summary, using the RSRG method, we have shown
that the ground state of the S � 1=2 Fibonacci Heisenberg
chain belongs to a new universality class in which the
energy gap scales as exp����lnN�2� where � is a universal
constant independent of modulation strength. The low
temperature behavior of the magnetic specific heat and
magnetic susceptibility is predicted. The relationship to
the previous numerical results [5] which appear to contra-
dict the present calculation is also discussed. The details
of the calculation and proof will be reported in a separate
paper, which will also include the discussion of the gen-
eral XXZ case [6] and ground state phase diagram [16].

We have found a new quantum dynamical critical be-
havior (9) which was so far unknown in the field of the
quantum many body problem. Similar ‘‘singular dynamic
scaling’’ is, however, known since the 1980’s for the
classical Ising model on the percolation clusters with
Glauber dynamics [17]. In spite of the geometrical self-
similarity common to this classical model and our quan-
tum model, they look very different in many aspects.
Although the underlying physics is still unclear, further
investigation on this point might lead to a more profound
understanding of both systems.

After this work was completed, the preprint by Vieira
[18] appeared in the e-print archive in which some of the
present results are derived. In addition, Vieira satisfacto-
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rily applied this method to the Heisenberg chains with
relevant aperiodicity. A similar approach is also applied
to the two-dimensional quasicrystal [10]. We thus expect
the RSRG method is widely applicable to various prob-
lems in the field of quantum magnetism in quasiperiodic
systems.
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