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Ground-state phase diagram ofSÄ1 XXZ chains with uniaxial single-ion-type anisotropy
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One-dimensionalS51 XXZ chains with uniaxial single-ion-type anisotropy are studied by numerical exact
diagonalization of finite-size systems. The numerical data are analyzed using conformal field theory, the level
spectroscopy, phenomenological renormalization-group, and finite-size scaling method. We thus present a
quantitatively reliable ground-state phase diagram of this model. The ground states of this model contain the
Haldane phase, large-D phase, Ne´el phase, twoXY phases, and the ferromagnetic phase. There are four
different types of transitions between these phases: the Brezinskii-Kosterlitz-Thouless-type transitions, the
Gaussian-type transitions, the Ising-type transitions, and the first-order transitions. The locations of these
critical lines are accurately determined.
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I. INTRODUCTION

One-dimensional antiferromagnetic spin chains have b
the subject of recent investigations by numerous groups
uniform antiferromagnetic Heisenberg chain is known
have a gapless ground state for half integer spin. In part
lar, the exact solution is available forS51/2 chains.1 In con-
trast, for integer spin,2 there is a gap between the first excit
state and the ground state. This state is destroyed by va
types of perturbations such as single-ion-type anisotropy,
change anisotropy, and bond alternation.3–6 In this context,
the S51 XXZ chain with single ion anisotropy has bee
studied by many authors from the early stage of the stud
Haldane gap problem. In the present work, we present
quantitative phase diagram of this model analyzing the ex
diagonalization data by various methods including the
cently developed level spectroscopy method7 based on con-
formal field theory and renormalization group. These me
ods of analysis allow us to obtain an accurate phase diag
even using the numerical data for relatively small size s
tems.

This paper is organized as follows. In the next section,
model Hamiltonian is defined and the obtained phase
gram is presented. The numerical exact diagonalization
sults and methods of analysis are explained in Sec. III.
final section is devoted to a summary and discussion.

II. MODEL HAMILTONIAN AND GROUND-STATE PHASE
DIAGRAM

The Hamiltonian is given by

H5(
l 51

N

@J~Sl
xSl 11

x 1Sl
ySl 11

y !1JzSl
zSl 11

z #1D(
l 51

N

Sl
z2 ,

~1!

where SW l is a spin-1 operator. The parameterD represents
uniaxial single-ion anisotropy. The periodic boundary con
tion is assumed unless specifically mentioned. In what
lows, we setJ51 to fix the energy scale. The ground-sta
phase diagram of this model consists of the Haldane ph
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the large-D phase, twoXY phases, the ferromagnetic phas
and the Ne´el phase.4,5 Between these phases, various types
phase transitions take place. There is a gapful phase to ga
phase transition~Gaussian transition! between the Haldane
phase and large-D phase, gapful-gapless Berezinsk
Kosterlitz-Thouless~BKT! transitions between theXY phase
and the Haldane or large-D phase, an Ising transition be
tween the Ne´el phase and Haldane phase, a first-order tr
sition between the ferromagnetic phase and the largD
phase orXY phase. The character of the transition betwe
the large-D and Néel phase is still unclear although it i
likely to be the first-order transition.

Our phase diagram is summarized in Fig. 1. ForJz.0,
the Haldane-large-D transition line of is shown by then.
For largeD, the ground state becomes a large-D phase, the
Haldane phase appears under the large-D phase. With the
decrease ofD, the ground state becomes the Ne´el phase. The
line with the symbols represents the Haldane-Ne´el transi-

FIG. 1. The phase diagram ofS51 XXZ chains with uniaxial
single-ion-type anisotropy. The solid lines and symbols are the t
sition lines. The dotted line shows the curveJz521/2uDu expected
from the perturbation calculation for large negativeD.
©2003 The American Physical Society01-1
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WEI CHEN, KAZUO HIDA, AND B. C. SANCTUARY PHYSICAL REVIEW B67, 104401 ~2003!
tion line. For largeD andJz , the direct large-D-Néel transi-
tion takes place along the line withd. For Jz<0, the
XY-Haldane orXY-large-D BKT transition line is repre-
sented by the line with symbolL. The XY-ferromagnetic
first-order transition line is represented by the line with sy
bol h. The large-D-ferromagnetic first-order transition lin
is represented by the line with symbol¹. The critical line
between the twoXY phases is denoted by the line with sym
bol 1. The ferromagnetic-XY-large-D tricritical point is rep-
resented by the3 symbol. In the following, we explain how
this phase diagram is obtained by our numerical analysis

III. NUMERICAL ANALYSIS

A. Haldane-large-D transition line „JzÌ0 and DÌ0…

This phase transition is the Gaussian transition. In orde
determine the phase boundary with high accuracy, we use
twisted boundary method of Kitazawa and Nomura.8–11 The
Hamiltonian is numerically diagonalized to calculate the t
low-lying energy levels with the twisted boundary conditio
(SN11

x 52S1
x , SN11

y 52S1
y , SN11

z 5S1
z) for N58, 10, 12,

14, and 16 by the Lanczos method.
It is known that the ground state is the Haldane ph

with a valence bond solid~VBS! structure for smallD. Un-
der the twisted boundary condition, the eigenvalues of
space inversionP (SW i→SW N2 i 11) and the spin reversalT
(Si

z→2Si
z ,Si

6→2Si
7) are all equal to21 in this phase.7–9

As D increases with positive value, a phase transition ta
place from the Haldane to the large-D phase for whichP
51 and T51. The origin of these values ofP and T is
closely related to the edge spins that characterize
Haldane phase as follows. In the Haldane phase, the
edge spins form a triplet state with positiveP and T under
the twisted boundary condition. Consequently, those of
whole system, which contains an odd number of sing
pairs, become negative for evenN. This phenomenon doe
not take place in the largeD that has no edge spins and the
states have positiveP andT eigenvalues. Thus we make us
of the P andT eigenvalues to distinguish the Haldane pha
and the large-D phase with high accuracy. For example, ifJz
is fixed, the energies of the two states vary withD. For small
D, the energy of the Haldane state is lower than that of
large-D state. AsD increases, the large-D state becomes
lower than the Haldane state. The two levels cross at
point D5Dc(HL)(N). This is the finite-size Haldane-large-D
transition point. Figure 2 shows theD dependence of the two
lowest levels forN516 and Jz50.5. We extrapolate the
critical point as Dc(HL)(N)5Dc(HL)(`)1aN221bN24.
Figure 3 shows the extrapolation procedure. The same
cedure can be carried out varyingJz with fixed D.

In this case the transition line is expected to be descri
by the conformal field theory with conformal central char
c51. To check this, we estimate the value ofc. On the
critical line, the system is conformally invariant so that
finite-size correction to the ground-state energy is relate
the central chargec and the spin-wave velocityvs as
follows:12–14
10440
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N
Eg~N!>«`2

pcvs

6N2
, ~2!

vs5 lim
N→`

N

2p
@Ek1

~N!2Eg~N!#. ~3!

Here Eg(N) is the ground-state energy andEk1
(N) is the

energy of the excited state with wave numberk152p/N and
magnetizationMz(5( l 51

N Sl
z)50. The ground state hasMz

50 andk50. Also, «` is the ground-state energy per un
cell in the thermodynamic limit. We calculateEg(N) and
Ek1

(N) by the Lanczos exact diagonalization method un
periodic boundary conditions on the transition line. The s
tem sizes areN58, 10, 12, 14, and 16. The size extrapol
tion is carried out using the formulac(N)5c1C1N22

1C2N24. The central chargec is close to unity within the
range 0<Jz&1 on the phase boundary as shown in Fig.
Therefore we expect that the present model can be descr
by a Gaussian model on the critical line. ForJz*1, the
numerically estimated value ofc starts to deviate from unity
Presumably, this is due to the influence of the Haldane-N´el
Ising critical line that is approaching the large-D-Haldane
line from below.

FIG. 2. TheD dependence of the two lowest energy eigenvalu
with twist boundary condition. The energies of the Haldane st
and the large-D state are represented byd ands, respectively, for
N516 andJz50.5.

FIG. 3. The extrapolation procedure of finite sizeDc(HL) for Jz

50.5.
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GROUND-STATE PHASE DIAGRAM OFS51 XXZ . . . PHYSICAL REVIEW B67, 104401 ~2003!
B. Haldane-Néel and large-D-Néel transition lines „JzÌ0…

From symmetry consideration, these transition lines
expected to be Ising-type transitions. However, forJz /J,
D/J→`, the ground state is determined by the simp
classical competition between the ideal large-D state
u00 000•••& for which Eg(N)50 and ideal Ne´el states
u121121•••& or u211211•••& for which Eg(N)5N(D
2Jz). Therefore a first-order transition between these t
states is expected. It is not obvious, however, whether qu
tum fluctuation due to theJ term drives this first-order tran
sition to a second-order transition.

In order to check this issue, we directly calculate the
havior of the staggered magnetization across the ph
boundary. Let us focus on the system size dependenc
M stag. In the Néel phase,M stag should increase withN and
tend to a finite value asN→`. On the other hand, it shoul
decrease withN in the large-D phase. TheN dependence o
M stag

2 is plotted against 1/N for D53.7 in Fig. 5. The differ-
ence of the behavior forJz>4.0 and Jz<3.9 is distinct.
Therefore we expect that the phase boundary between
large-D and Néel phases is a first-order transition line ev
for finite D.

The Haldane-large-D transition line approaches thes
lines from above and the multicritical point is expected
appear at the crossing point. However, it is not easy to
termine the accurate location of the multicritical poin
Therefore we discuss the large-D-Néel and Haldane-Ne´el

FIG. 4. TheJz dependence of the numerically obtained cent
chargec.

FIG. 5. TheN dependence of the numerically obtainedM stag
2 for

D53.7 for various values ofJz .
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critical lines as a whole and roughly estimate the position
the multicritical point from the behavior of these two line
and the Haldane-large-D transition line.

We employ the phenomenological renormalization gro
~PRG! method to determine these phase-transition lines.
Hamiltonian is numerically diagonalized to calculate t
lowest energy gapDE(N) in the periodic boundary condition
for N58, 10, 12, 14, and 16 using the Lanczos algorith
The Néel state is twofold degenerate in the thermodynam
limit. For finite N, this degeneracy is lifted and the energ
difference between them gives the smallest g
DE(N,Jz ,D) which decreases exponentially withN. On the
other hand, in the Haldene and large-D phases, the energ
gapDE(N) remains finite in the thermodynamic limit. Thu
the productNDE(N) increases~decreases! with N for Jz
,Jzc(HN,LN) (Jz.Jzc(HN,LN)) where Jzc(HN) and Jzc(LN) are
the critical value ofJz of the Haldane-Ne´el and large-D-Néel
transition, respectively. Furthermore, on the Ising critic
line, the critical exponent for the energy gap is equal to un
Therefore the productNDE(N,Jz ,D) should be size inde-
pendent for large enough systems in which the contribut
from irrelevant operators is negligible. Due to this situatio
we can accurately determine the Ising critical point by t
PRG method. According to the PRG argument, the inters
tion of NDE(N) for two successive values ofN15N and
N2(5N12) defines the finite-size critical poin
Jzc(HN,LN)(N1 ,N2),15 as shown in Fig. 6.

Figure 7 represents the extrapolation procedure of
Haldane-Ne´el transition point forD50.5. The values of
Jzc(HN)(N1 ,N2) for four pairs of system sizes (N1 ,N2)
5(8,10), ~10,12!, ~12,14!, and~14,16! are represented byd
in Fig. 7. These values are extrapolated using the form
Jzc(HN,LN)(N1 ,N2)5Jzc(HN,LN)(`)12C1 /(N11N2)
14C2 /(N11N2)2 to obtain Jzc(HN)51.536. The second
term is necessary for smallD andJz for which the contribu-
tion from the irrelevant operators are not negligible for t
present system size. Actually, asD andJz increases the sys
tem size dependence becomes weak and for 2.4&D&3.0,
the system size dependence of the critical point is alm

l

FIG. 6. The Jz dependence ofNDE(N) with D50.5 for N
58, 10, 12, 14, and 16. The intersections~double circles! are the
finite-size critical points.
1-3
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WEI CHEN, KAZUO HIDA, AND B. C. SANCTUARY PHYSICAL REVIEW B67, 104401 ~2003!
negligible as shown in Fig. 8. The same procedure is car
out interchanging the roles ofJz andD if appropriate.

To check the Ising universality class, we also carried
the finite-size scaling analysis of the stagger
magnetization.15 The staggered magnetization operator is
fined by M̂ stag5(1/N)( i 51

N Si
z(21)i . In finite-size systems

the averagêM̂ stag& vanishes identically. Therefore we calc

late insteadM stag[A^M̂ stag
2 & by numerical diagonalization

with periodic boundary conditions forN58, 10, 12, 14, 16,
and 18. The finite-size scaling plot is shown in Fig. 9 f
D52.6 with Ising exponent. It is clearly seen that the m
data collapse onto a single curve forJz*Jzc ~Néel side!. On
the Haldane side, the width of the Haldane pha
is extremely small so that the data do not collapse well
Jz,Jzc .

However, these two specific features of the Ising criti
line break down forD*3.0. Actually, the finite-size scaling
plot of M stag assuming the Ising universality class fails
collapse onto a single line already forD52.9 as shown in
Fig. 10.

For D.3.0, the system size dependence of the criti
point again becomes large. Therefore we have also de
mined the critical point from the intersection point ofM stag
for two successive system sizesN15N andN2(5N12) as
shown in Fig. 11 forD53.5. In this regime, if we assum
the first-order transition, the correlation length remains fin
even at the transition point. Therefore the four intersecti
calculated by both methods for (N1 ,N2)5(8,10), ~10,12!,

FIG. 7. The extrapolation procedure of finite-size critical po
Jzc(HN) for D50.5.

FIG. 8. The extrapolation procedure of finite sizeJzc(HN) for
D52.6 and (N1 ,N2)5(10,12), ~12,14!, ~14,16!.
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~12,14!, ~14,16!, and ~16,18! are extrapolated toN→` by
Jzc(LN)(N)5Jzc(LN)(`)1C1exp@2(N11N2)/2j# as shown in
Fig. 12 for D53.5. The transition point in thermodynam
limit determined by the two methods coincide well as sho
in Fig. 12. It should be noted that the transition points e
trapolated by the power law do not coincide with each ot
in this regime. This confirms again that this transition is t
first-order transition.

The precise position of the Haldane-large-D-Néel tricriti-
cal point is difficult to determine. However, we estimate
from the point at which the Haldane-Ne´el critical line merges
the Haldane-large-D critical line. We carefully estimated the
errors of both critical lines by trying the extrapolation toN
→` choosing various sets of system sizes amongN518,
16, 14, 12, 10, and 8 as shown in Fig. 13. From this figu
the two critical lines seem to merge around (Jz ,D)
;(3.2,2.9). As explained above, it is checked that the u
versality class clearly deviates from the Ising type arou

t

FIG. 9. The finite-size scaling plot of the staggered magnet
tion near the Haldane-Ne´el transition point forN512, 14, 16, and
18.

FIG. 10. The finite-size scaling plot of the staggered magnet
tion near the large-D-Néel transition point forN512, 14, 16, and
18.
1-4
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GROUND-STATE PHASE DIAGRAM OFS51 XXZ . . . PHYSICAL REVIEW B67, 104401 ~2003!
D52.9 while Ising universality class is confirmed arou
D52.6. Taking the whole situation described above into
count, it is most likely that the tricritical point is locate
around (Jz ,D);(3.2,2.9) and the Haldane-Ne´el line is the
Ising critical line and the large-D-Néel line is the first-order
line all the way down to the tricritical point.

C. Large-D-XY and Haldane-XY transition line „JzÏ0…

From symmetry consideration, this transition is expec
to be the Berezinskii-Kosterlitz-Thouless~BKT! transition.
Because the BKT transition is a gapful-gapless transition,
critical points are difficult to determine. Following the pro
cedure proposed by Nomura,7–10 the critical point is deter-
mined by the crossing point of the excitation energy of
lowest excitationDE3 with Mz54, P51, k50, andDE0
with Mz50, P51, k50 wherek is the wave number of the
excitation.

At the transition point these two energy levels cross
shown in Fig. 14 forN516, D50.5. From the crossing
point, we obtain the finite-size large-D-XY transition point.
The BKT transition point for the infinite system can be o
tained by extrapolating fromN58, 10, 12, 14, and 16 to

FIG. 11. TheJz dependence of the numerically obtainedM stag

for D53.5 for various values ofN.

FIG. 12. The extrapolation procedure of finite sizeJzc(LN) to
N→` by Jzc(LN)(N)5Jzc(LN)(`)1C1exp@2(N11N2)/2j# for D
53.5. The critical points calculated fromM stagand PRG are repre
sented byd ands, respectively.
10440
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N→` as Jzc(LXY) 520.183 as shown in Fig. 15 forD
50.5. The extrapolated value is represented by3.

The same procedure is carried out for the Haldane-XY
transition line. From the results of numerical calculation, T
critical points Jzc(HXY) are always equal to zero for th
Haldane-XY transition. This can be understood in the follow
ing way for large negativeD. In this case, the spin states o
the original model are restricted touSz561& on each site.
These states are identified with the effectiveS51/2 spin
statesuSeff

z 561/2&. We use the perturbation method wit
respect to 1/D andJz to calculate the effective coupling be
tween these effectiveS51/2 spins. The effective Hamil-
tonianHeff is given by

Heff5(
i 50

N F 1

uDu ~Si
xSi 11

x 1Si
ySi 11

y !1S 1

uDu
14JzDSi

zSi 11
z G

~4!

discarding the constant term. ForJz50, this effective model
becomes the isotropic antiferromagnetic Heisenberg mo
It is exactly known that theXY-Néel transition takes place a

FIG. 13. The enlarged figure of the phase boundary around
tricritical point. The solid~dotted! lines are the Haldane-large-D
~Haldane-Ne´el! critical lines extrapolated from various choices
finite-size data.

FIG. 14. TheJz dependence of the energyDE3 andDE0 repre-
sented bys andd, respectively, forD50.5 andN516.
1-5
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WEI CHEN, KAZUO HIDA, AND B. C. SANCTUARY PHYSICAL REVIEW B67, 104401 ~2003!
the isotropic point forS51/2 XXZ chain. Therefore the
XY-Néel transition of the original model takes place atJz
50 for large negativeD.

D. XY-ferromagnetic and large-D-ferromagnetic transition
line „JzË0…

We can numerically verify that the ground-state ene
between the nonmagnetic ground state withMz50 and fully
polarized ground state withMz5N crosses at the
XY-ferromagnetic transition line as shown in Fig. 16 usi
the exact diagonalization for sizesN58, 10, 12, 14, and 16
with periodic boundary conditions. The partially polarize
states have always higher energy. The crossing point is
finite-size first-order phase-transition pointDc(XYF)(N) or
Jzc(XYF)(N). We use Dc(XYF)(N)5Dc(XYF)(`)1C1N21

1C2N22 or Jzc(XYF)(N)5Jzc(XYF)(`)1C1N211C2N22 to
extrapolateDc(XYF)(N) or Jzc(XYF)(N) to N→` as shown in
Fig. 17. The same procedure is carried out also for the la
D-ferromagnetic first-order line.

As explained in the preceding subsection, forD→2`,
this model can be described by the effective model~4!. It is
known that for S51/2 XXZ chain, theXY-ferromagnetic
transition takes place at the isotropic ferromagnetic po
Therefore the corresponding phase transition takes plac
Jz52(2uDu)21 for the original model. The numerically ob
tained transition line seems to approach this line for la
enough negativeD as shown in Fig. 1.

FIG. 15. The extrapolation procedure of finite sizeJzc(LXY)

for D50.5.

FIG. 16. TheJz dependence of the ground-state energy of
XY phase and ferromagnetic phase is represented byd and s,
respectively, forD50.5 andN516.
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E. Transition line between two different XY phases„DË0 and
JzË0…

Within the XY phase, there are two different types
phases as predicted by Schulz.4 For large negativeD, we find
the lowest excited state with the excitation energy of
order of 1/N has quantum numberMz562 that corresponds
to the Mz561 excitation in the effective Hamiltonian~4!.
This phase corresponds to theXY phase of the effective
model. In this phase, theMz561 excitation can be only
excited by forming the localu0& state that has the finite en
ergy gap of the order ofuDu. With decreasinguDu, the Mz

561 excitation becomes the lowest with excitation ener
of the order of 1/N. This phase is continuously connecte
with the XY phase of theS51 XXZ model with D50.
Corresponding to the change of the quantum number of
lowest excitation, these two phases have different types
quasi-long-range order. In theXY phase with large negative
D (XY2 phase!, the correlation functionŝ Si

x2Sj
x2& and

^Si
y2Sj

y2& decay with a power-law dependence while^Si
xSj

x&
and ^Si

ySj
y& decay exponentially. On the other hand, in t

XY phase with small negativeD (XY1 phase!, the correla-
tion functions^Si

xSj
x& and ^Si

ySj
y& decay with a power law.

Therefore they can be regarded as two different phases.
level crossing point of theMz561 excitation andMz5
62 excitation is the critical point between these twoXY
phases. An example is shown in Fig. 18 forJz520.1 and
N516. TheMz561 gap and theMz562 gap are shown
by d ands, respectively. The value ofD on the intersection

e

FIG. 17. The extrapolation procedure of finite sizeJzc(XYF)

for D50.5.

FIG. 18. TheD dependence of the energyE(Mz562) and
E(Mz561) represented bys andd, respectively, forJz520.1
andN516.
1-6
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GROUND-STATE PHASE DIAGRAM OFS51 XXZ . . . PHYSICAL REVIEW B67, 104401 ~2003!
point is Dc(XYXY) (N)522.008. We use Dc(XYXY) (N)
5Dc(XYXY) 1C1N211C2N22 to extrapolateDc(XYXY) to N
→` for N58, 10, 12, 14, and 16 as shown in Fig. 19. T
same procedure is carried out appropriately interchanging
roles ofJz andD.

IV. SUMMARY AND DISCUSSION

The ground-state phase diagram of a spin-1XXZ chain
with uniaxial single-ion-type anisotropy is determined acc
rately by analyzing the numerical diagonalization data us
the level spectroscopy, conformal field theory analysis,
phenomenological renormalization group, and finite-s
scaling. Most parts of the phase diagram is determined a
rately and the universality class of most critical lines a
obvious from symmetry consideration. The phase transi

*Electronic address: wchen20@po-box.mcgill.ca
†Electronic address: hida@phy.saitama-u.ac.jp
‡Electronic address: bryan.sanctuary@mcgill.ca
1H Bethe, Z. Phys.71, 205 ~1931!.
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5M. den Nijs and K Rommelse, Phys. Rev. B40, 4709~1989!.
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3317 ~1996!.
7K Nomura, J. Phys. A28, 5451~1995!.
8A. Kitazawa, K. Nomura, and K Okamoto, Phys. Rev. Lett.76,

FIG. 19. The extrapolation procedure of finite sizeDc(XYXY)

for Jz520.1.
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between the large-D phase and Ne´el phase is very likely to
be a first-order transition as expected from the considera
of the largeD limit, although we have no final proof that it i
so all the way down to the tricritical point. In this context,
is of great interest how the first-order or Ising-type transiti
line splits into a Gaussian~large-D-Haldane! and Ising
~Haldane-Ne´el! lines.

Related to this problem, the precise position of the tr
ritical point remained ambiguous. We have determined
from the point where the numerically obtained larg
D-Haldane critical point and large-D-Ising critical point
merge and the finite-size scaling analysis of the stagge
magnetization also supports this estimation. However, i
difficult to determine this point accurately by numeric
analysis. Further analytical insight into the properties of
tricritical point is necessary to elucidate this issue.
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