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Ground-state phase diagram ofS=1 XXZ chains with uniaxial single-ion-type anisotropy
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One-dimensionab=1 XXZ chains with uniaxial single-ion-type anisotropy are studied by numerical exact
diagonalization of finite-size systems. The numerical data are analyzed using conformal field theory, the level
spectroscopy, phenomenological renormalization-group, and finite-size scaling method. We thus present a
guantitatively reliable ground-state phase diagram of this model. The ground states of this model contain the
Haldane phase, large-phase, Nel phase, twoXY phases, and the ferromagnetic phase. There are four
different types of transitions between these phases: the Brezinskii-Kosterlitz-Thouless-type transitions, the
Gaussian-type transitions, the Ising-type transitions, and the first-order transitions. The locations of these
critical lines are accurately determined.
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[. INTRODUCTION the largeb phase, twoXY phases, the ferromagnetic phase,
and the Nel phasé'® Between these phases, various types of

One-dimensional antiferromagnetic spin chains have beephase transitions take place. There is a gapful phase to gapful
the subject of recent investigations by numerous groups. Rhase transitioiGaussian transitignbetween the Haldane
uniform antiferromagnetic Heisenberg chain is known tophase and larg®- phase, gapful-gapless Berezinskii-
have a gapless ground state for half integer spin. In particu€osterlitz-Thoules$BKT) transitions between theY phase
lar, the exact solution is available f6= 1/2 chainst In con- ~ @nd the Haldane or large- phase, an Ising transition be-
trast, for integer spiRthere is a gap between the first excited Ween the Nel phase and Haldane phase, a first-order tran-
state and the ground state. This state is destroyed by vario§4ion Pbetween the ferromagnetic phase and the large-
types of perturbations such as single-ion-type anisotropy, exphase oiXY phase. The character of the transition bet'W('een
change anisotropy, and bond alternatiofiin this context, t_he largeb and_NeeI phase 'S.S.t'” unclear although it is
the S=1 XXZ chain with single ion anisotropy has been likely to be the flrst-ordgr tranS|t|on. -
studied by many authors from the early stage of the study of Our phase diagram IS '_sumr_narlze(_j in Fig. 1. Bor0,
Haldane gap problem. In the present work, we present thie Haldane-larg® transition line of is shown by thé.
quantitative phase diagram of this model analyzing the exact®" [argeD, the ground state becomes a lafyephase, the
diagonalization data by various methods including the rel@ldane phase appears under the lddgehase. With the
cently developed level spectroscopy methbesed on con- decrease ob, the ground state becomes theeNphase. The
formal field theory and renormalization group. These methlin€ With the symbolO represents the Haldane-&leransi-
ods of analysis allow us to obtain an accurate phase diagram D 4
even using the numerical data for relatively small size sys-
tems.

This paper is organized as follows. In the next section, the
model Hamiltonian is defined and the obtained phase dia-
gram is presented. The numerical exact diagonalization re-
sults and methods of analysis are explained in Sec. lll. The
final section is devoted to a summary and discussion.

II. MODEL HAMILTONIAN AND GROUND-STATE PHASE
DIAGRAM

The Hamiltonian is given by

Haldane

N N
H=2, [IS'S 1+ 88,0 +158.]+D 2, 87,
@

where§| is a spin-1 operator. The parameterrepresents
uniaxial single-ion anisotropy. The periodic boundary condi- F|G. 1. The phase diagram &=1 XXZ chains with uniaxial
tion is assumed unless specifically mentioned. In what folsingle-ion-type anisotropy. The solid lines and symbols are the tran-
lows, we set]=1 to fix the energy scale. The ground-statesition lines. The dotted line shows the curde= — 1/2|D| expected
phase diagram of this model consists of the Haldane phaséom the perturbation calculation for large negatbe
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tion line. For largeD andJ,, the direct larged-Neel transi- e[~ ~ T T T T T
tion takes place along the line wit®. For J,<O, the i ‘JZ=0'51 N=1.6 : .
XY-Haldane orXY-largeD BKT transition line is repre- -14.2} Gaussian Line s .
sented by the line with symbod> . The XY-ferromagnetic i * Haldane state s |
first-order transition line is represented by the line with sym- qaal o Large-D state » ]
bol 0. The largeb-ferromagnetic first-order transition line ' . *

is represented by the line with symb®l The critical line i R 7
between the twXY phases is denoted by the line with sym- -14.6f g 1
bol +. The ferromagnetie<Y-largeD tricritical point is rep- L ] _
resented by thex symbol. In the following, we explain how a8l ¢
this phase diagram is obtained by our numerical analysis. 0.6 0.65 D

FIG. 2. TheD dependence of the two lowest energy eigenvalues
with twist boundary condition. The energies of the Haldane state
and the largdd state are represented By andO, respectively, for
A. Haldane-largeD transition line (J,>0 and D>0) N=16 andJ,=0.5.

I1l. NUMERICAL ANALYSIS

This phase transition is the Gaussian transition. In order to
determine the phase boundary with high accuracy, we use the
twisted boundary method of Kitazawa and Nom{tird The
Hamiltonian is numerically diagonalized to calculate the two
low-lying energy levels with the twisted boundary condition
(SN+1==SI, S+1=—S], S{41=S)) for N=8, 10, 12,

14, and 16 by the Lanczos method.
It is known that the ground state is the Haldane phase

with a valence bond soli¢VBS) structure for smalD. Un- . ) .
der the twisted boundary condition, the eigenvalues of thé—|ere E4(N) is the ground-state energy al’Ed(l(N) is the

space inversiorP (§1_>§N7_+1) and the spin reversarl energy _of the excited Statg with wave numker 27/N and
(S -§,8°——S) are ail equal to-1 in this phas@=? magnetizationM?*(=ZX,_,S7)=0. The ground state had*
1 11 (| .

As D increases with positive value, a phase transition takes:0 andk=0. Also, &, is the ground-state energy per unit

' cell in the thermodynamic limit. We calculaté,(N) and
i'iczrﬁ[jo?:t;‘e ':'—lhae!dgﬂgi;Oo;hfhi?vgruaesse gra\;lvgl_(l:_hz Ekl(N) by the Lanczos exact diagonalization method under
closely related to the edge spins that characterize thBeriodic boundary conditions on the transition line. The sys-
Haldane phase as follows. In the Haldane phase, the twigm sizes aré€l=8, 10, 12, 14, and 16. The size extrapola-
edge spins form a triplet state with positieand T under  tion is caried out using the formula(N)=c+C;N
the twisted boundary condition. Consequently, those of thet C2N™". The central charge is close to unity within the
whole system, which contains an odd number of singlefange G<J,=<1 on the phase boundary as shown in Fig. 4.
pairs, become negative for evéh This phenomenon does Therefore we expect that the present model can be described
not take place in the larg@ that has no edge spins and thesePy @ Gaussian model on the critical line. Féy=1, the
states have positive and T eigenvalues. Thus we make use Numerically estimated value fstarts to deviate from unity.
of the P and T eigenvalues to distinguish the Haldane phase”resumably, this is due to the influence of the HaldanetNe
and the larged phase with high accuracy. For example)jf  Ising critical line that is approaching the lareHaldane

1E N) == mCUg 5
N g( )=830 6N2, ()

. N
ve= lim 5—[Ey(N)=Eg(N)]. 3

N— oo

is fixed, the energies of the two states vary viithFor small  line from below.

D, the energy of the Haldane state is lower than that of the

largeD state. AsD increases, the large- state becomes 04— T
lower than the Haldane state. The two levels cross at one D J,=05

point D =Dy (N). This is the finite-size Haldane-lardge-
transition point. Figure 2 shows ttizdependence of the two
lowest levels forN=16 andJ,=0.5. We extrapolate the
critical point as D¢y (N) =Dy () +aN"2+bN"*. 0.63-
Figure 3 shows the extrapolation procedure. The same pro-
cedure can be carried out varyidg with fixed D.

In this case the transition line is expected to be described
by the conformal field theory with conformal central charge
c=1. To check this, we estimate the value @f On the

b

Gaussian Line

critical line, the system is conformally invariant so that a 06 —"%005 IO-I01I1/IN2I 0.015
finite-size correction to the ground-state energy is related to

the central chargec and the spin-wave velocitys as FIG. 3. The extrapolation procedure of finite si2g, for J,
follows:1214 =0.5.
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FIG. 4. TheJ, dependence of the numerically obtained central
chargec. | |
B. Haldane-Neel and large-D-Neel transition lines (J,>0)
From symmetry consideration, these transition lines are ol . . .
expected to be Ising-type transitions. However, ovJ, 1.4 1.5 1.6 17,

D/J—o, the ground state is determined by the simple
classical competition between the ideal lafye-state
|00000 --) for which Ei(N)=0 and ideal Nel states
[1-11-1---) or[-11-11---) for which E¢(N)=N(D
—J,). Therefore a first-order transition between these twcritical lines as a whole and roughly estimate the position of
states is expected. It is not obvious, however, whether quanhe multicritical point from the behavior of these two lines
tum fluctuation due to thé term drives this first-order tran- and the Haldane-large-transition line.

sition to a second-order transition. We employ the phenomenological renormalization group

In order to check this issue, we directly calculate the be{PRG method to determine these phase-transition lines. The
havior of the staggered magnetization across the phasgamiltonian is numerically diagonalized to calculate the
boundary. Let us focus on the system size dependence @west energy gapE(N) in the periodic boundary condition
Mgag- In the Neel phaseM g,qshould increase witlN and  for N=8, 10, 12, 14, and 16 using the Lanczos algorithm.
tend to a finite value all—c. On the other hand, it should The Neel state is twofold degenerate in the thermodynamic
decrease wittN in the largeb phase. TheéN dependence of limit. For finite N, this degeneracy is lifted and the energy
Mitagis plotted against N for D=3.7 in Fig. 5. The differ- difference between them gives the smallest gap
ence of the behavior fod,=4.0 andJ,<3.9 is distinct. AE(N,J,,D) which decreases exponentially with On the
Therefore we expect that the phase boundary between ttether hand, in the Haldene and la@ephases, the energy
largeD and Nel phases is a first-order transition line evengap AE(N) remains finite in the thermodynamic limit. Thus
for finite D. the productNAE(N) increases(decreasgswith N for J,

The Haldane-larg® transition line approaches these <J,quniny (32> Jzgrniny) WhereJ, gy and J o) are
lines from above and the multicritical point is expected tothe critical value ofl, of the Haldane-Nel and largeD-Neel
appear at the crossing point. However, it is not easy to detransition, respectively. Furthermore, on the lIsing critical
termine the accurate location of the multicritical point. line, the critical exponent for the energy gap is equal to unity.
Therefore we discuss the lar@eNeel and Haldane-N&  Therefore the produdNAE(N,J,,D) should be size inde-

pendent for large enough systems in which the contribution

L e e e e e from irrelevant operators is negligible. Due to this situation,
we can accurately determine the Ising critical point by the
e v . PRG method. According to the PRG argument, the intersec-

° tion of NAE(N) for two successive values &i;=N and
L . . N,(=N+2) defines the finite-size critical point
Jzounny(N1,N2), ™ as shown in Fig. 6.
. Figure 7 represents the extrapolation procedure of the
o ] Haldane-Nel transition point forD=0.5. The values of
J,qnny(N1,Ny) for four pairs of system sizesNg,N;)
=(8,10),(10,12, (12,14, and(14,16 are represented @

FIG. 6. TheJ, dependence oNAE(N) with D=0.5 for N
=8, 10, 12, 14, and 16. The intersectiof@®uble circles are the
finite-size critical points.

stag
| |

o M

r o] in Fig. 7. These values are extrapolated using the formula

- s 1 Jzern,iny (N1, N2) =3 rn,ny (°) +2C1 /(N1 +Ny)

I . ° .| +4C,/(N;+Ny)? to obtain J,quyy=1.536. The second
%133 s ¢ . ¢ term is necessary for smdll andJ, for which the contribu-

0o 5_'85 E— 011 N tion from the irrelevant operators are not negligible for the

present system size. Actually, BsandJ, increases the sys-
FIG. 5. TheN dependence of the numerically obtain\a@tagfor tem size dependence becomes weak and fosPR.A4 3.0,
D =3.7 for various values o, . the system size dependence of the critical point is almost
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1.55——— . . . —
%.1.536 ] = - -
J; T D=0.5 J Zg | D=2# .lp? |
| _ 7 15 . ®
L Haldane—Neel Line . = H‘}i &
| = o 7] 4
1.5_ T N=16 o Oq
- A N=18 = &
I 1 0.8f s 1
§ T »
- j | ﬁ |
1.45F 1 of
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FIG. 7. The extrapolation procedure of finite-size critical point Y
‘]ZC(HN) fOI’ D=0.5. 04 ) . )
-2 0 ()N 2

negligible as shown in Fig. 8. The same procedure is carried

out interchanging the roles df, andD if appropriate. FIG. 9. The finite-size scaling plot of the staggered magnetiza-
To check the Ising universality class, we also carried oution near the Haldane-Nétransition point folN=12, 14, 16, and
the finite-size scaling analysis of the staggeredis.

magnetizatiort® The staggered magnetization operator is de-
fined by Mgaq=(UN)ZL;SH(—1)". In finite-size systems, (12,14, (14,16, and (16,18 are extrapolated tt—= by
the averagél\?lstag vanishes identically. Therefore we calcu- 2o (N) = Jzquny () + C1€xXH — (N1 +Np)/2€] as shown in

) = ) ) L Fig. 12 for D=3.5. The transition point in thermodynamic
— 2

late insteadM so= V(Mg by numerical diagonalization jinit getermined by the two methods coincide well as shown

with periodic boundary conditions fod=8, 10, 12, 14, 16,

ourita : . - in Fig. 12. It should be noted that the transition points ex-
and 18. The finite-size scaling plot is shown in Fig. 9 for yapolated by the power law do not coincide with each other
D=2.6 with Ising exponent. It is clearly seen that the mosty thjs regime. This confirms again that this transition is the
data collapse onto a single curve fiy=J,. (Neel sidg. On i st-order transition.
the Haldane side, the width of the Haldane phase The precise position of the Haldane-lamgeNeel tricriti-
is extremely small so that the data do not collapse well forca| point is difficult to determine. However, we estimate it
J7<Jzc. . . . from the point at which the Haldane-Mlecritical line merges
_ However, these two specific features of the Ising criticalihe Haldane-larg® critical line. We carefully estimated the
line break down foiD=3.0. Actually, the finite-size scaling errors of both critical lines by trying the extrapolation o
plot of Mg assuming Fhe Ising universality class fall§ to o choosing various sets of system sizes ambdhg18,
cc_)llapse onto a single line already fbr=2.9 as shown in 16, 14, 12, 10, and 8 as shown in Fig. 13. From this figure,
Fig. 10. _ _ the two critical lines seem to merge around, D)

For D>3.0, the system size dependence of the critical_(3 2 2 9). As explained above, it is checked that the uni-

point again becomes large. Therefore we have also detefrsality class clearly deviates from the Ising type around
mined the critical point from the intersection point Mg,

for two successive system sizBlg=N andN,(=N+2) as . T T .
shown in Fig. 11 forD=23.5. In this regime, if we assume — | D29 g“p" |
the first-order transition, the correlation length remains finite g - 5
even at the transition point. Therefore the four intersections =1 k‘lﬂi o ,u?" s
calculated by both methods folN¢,N,)=(8,10), (10,12, N=16 o -
N=18 = F.cs
2.94 . L . |
J
: D=2.6 I 4 1
- - o
2.933 M’ﬂ I - |
2.93 0.5 NIt :
L _
1
2 C UmemN
L z Yze(HN)
2.9 1/(N;+N,) 0.1

FIG. 10. The finite-size scaling plot of the staggered magnetiza-
tion near the largd®-Neel transition point folN=12, 14, 16, and
18.

FIG. 8. The extrapolation procedure of finite sizg ) for
D=2.6 and N{,N,)=(10,12),(12,14, (14,16.
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o = 0 o N=10
LI = N=12
04f " a ° o N=14 E
* + N=16
a
A o N=18
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3.7 3.75 38 3 3.2 3.4 4,
FIG. 11. TheJ, dependence of the numerically obtainid;s FIG. 13. The enlarged figure of the phase boundary around the
for D=23.5 for various values df. tricritical point. The solid(dotted lines are the Haldane-larde-

(Haldane-Nel) critical lines extrapolated from various choices of
D=2.9 while Ising universality class is confirmed around finite-size data.
D=2.6. Taking the whole situation described above into ac-
count, it is most likely that the tricritical p0|nt is located N o g5 J
around (,,D)~(3.2,2.9) and the Haldane-Blline is the
Ising critical line and the large-Neel line is the first-order
line all the way down to the tricritical point.

2qxy) = —0.183 as shown in Fig. 15 fob
=0.5. The extrapolated value is representedxay
The same procedure is carried out for the Hald&re-
transition line. From the results of numerical calculation, The
o critical points J,qnxy) are always equal to zero for the
C. Large-D-XY and HaldaneXY transition line (J,<0) HaldaneX Y transition. This can be understood in the follow-
From symmetry consideration, this transition is expectednd way for large negativ®. In this case, the spin states of
to be the Berezinskii-Kosterlitz-Thoule¢BKT) transition.  the original model are restricted {6°=*+1) on each site.
Because the BKT transition is a gapful-gapless transition, thdhese states are identified with the effecti8e1/2 spin
critical points are difficult to determine. Following the pro- states|Sgz=+1/2). We use the perturbation method with
cedure proposed by Nomufal’ the critical point is deter- respect to I andJ, to calculate the effective coupling be-
mined by the crossing point of the excitation energy of thetween these effectives=1/2 spins. The effective Hamil-
lowest excitationAE; with M?=4, P=1, k=0, andAE,  tonianHg is given by
with M?=0, P=1, k=0 wherek is the wave number of the
excitation. N 1
At the transition point these two energy levels cross as X 4 Qygy +( zGZ
shown in Fig. 14 forN=16, D=0.5. From the crossing Her Z |(SiS|+l SS) |D| S5
point, we obtain the finite-size larde-XY transition point. (4)
The BKT transition point for the infinite system can be ob-
tained by extrapolating fronfN=8, 10, 12, 14, and 16 to discarding the constant term. Riy=0, this effective model
becomes the isotropic antiferromagnetic Heisenberg model.
L It is exactly known that th& Y-Neel transition takes place at

+4J,

M Mstag AET o
3'76'—¢_____-—~"‘/’_ 1'25: N=16 °

| BKT Line o
4\\ L D=0.5 o L, ¢

-
\*]
T
. _
oe

YR YR W T WA T [N SN T ST T B 1

372t ° PRG 1 T
° . AEO
! ) ! ) ! ) ! ) ! 1 ! - ° ° AE
0 0.05 2/N,+N, 01 115r e 8
I L L I L I 1 I 1 L I
FIG. 12. The extrapolation procedure of finite sizgy, to -0.25 —0.2 J,
N—% by J,qn(N) = qiny () +Crexd —(N;+Np)/2¢] for D
=3.5. The critical points calculated froM s,;and PRG are repre- FIG. 14. TheJ, dependence of the enerdyE; andAE, repre-
sented by® andO, respectively. sented byO and @, respectively, foD=0.5 andN=16.
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Jzy N -1.27 ———————
D=0.5 ' [ D-05
-0.2 BKT Line 1 | Ferro—XY Line
—1.266
—-1.265
-0.22f I
—-0.24f |
e S B T ——
0 0.005 0.01 q\2 0.015 0 0.05 0.1 1N
FIG. 15. The extrapolation procedure of finite sidgy,xy, FIG. 17. The extrapolation procedure of finite sidg,xyr
for D=0.5. for D=0.5.

E. Transition line between two different XY phases(D<0 and

the isotropic point forS=1/2 XXZ chain. Therefore the 3,<0)

XY-Neel transition of the original model takes place Jat
=0 for large negatived. Within the XY phase, there are two different types of
phases as predicted by SchfiEor large negativ®, we find
_ _ . the lowest excited state with the excitation energy of the

D. XY-ferromagnetic an_d large-D-ferromagnetic transition order of 1N has quantum numbdi?= = 2 that corresponds

line (J,<0) to the M?=*1 excitation in the effective Hamiltonia@).

We can numerically verify that the ground-state energyThis phase corresponds to the€Y phase of the effective
between the nonmagnetic ground state With=0 and fully ~ model. In this phase, th#1?=+1 excitation can be only
polarized ground state withM?=N crosses at the excited by forming the locdl0) state that has the finite en-
XY-ferromagnetic transition line as shown in Fig. 16 usingergy gap of the order ofD|. With decreasindgD|, the M*
the exact diagonalization for siz&=8, 10, 12, 14, and 16 = *1 excitation becomes the lowest with excitation energy
with periodic boundary conditions. The partially polarized of the order of IN. This phase is continuously connected
states have always higher energy. The crossing point is thgith the XY phase of theS=1 XXZ model with D=0.
finite-size first-order phase-transition poibt,xys)(N) or  Corresponding to the change of the quantum number of the
Jzqxvr(N). We use DC(XYF)(N):DC(XYF)(oc)+C1N‘1 lowest excitation, these two phases have different types of
+C,N"2or JZO(XYF)(N):JZC(XYF)(oc)+C1N*1+ C,N"2to  quasi-long-range order. In th€Y phase with large negative
extrapolateD ¢(xyr) (N) OF J;¢(xvr) (N) to N—oo as shownin D (XY2 phasg the correlation functionsS“S?) and
Fig. 17. The same procedure is carried out also for the Iarge(—s?’zst) decay with a power-law dependence WHi'S/)
D-ferromagnetic first-order line. _ and(S'S/) decay exponentially. On the other hand, in the

‘As explained in the preceding subsection, B —<,  xvy phase with small negativ® (XY1 phasg the correla-
this model can be described by the effective madelItis  ion functions(SiXSjX> and (S.ijy> decay with a power law.

known that for S=1/2 XXZ chain, theXY-ferromagnetic  Therefore they can be regarded as two different phases. The
transition takes place at the isotropic ferromagnetic pointg,e| crossing point of theM?=+1 excitation andM?=

Therefore the corresponding phase transition takes place aty oycitation is the critical point between these tW{eY

J,=—(2|D]) ! for the original model. The numerically ob- phases. An example is shown in Fig. 18 fe=—0.1 and
tained transition line seems to approach this line for larggy—16 TheM?= +1 gap and theM?=+2 gap are shown

enough negativ® as shown in Fig. 1. by ® andO, respectively. The value @ on the intersection

—11.5F T b IO 5 T T T T T T &7 T T T T T T
L =0. | 8
L i AE
E N=16 ° ] - AE(S=1) g -0.4,N=16
o Ferro-XY Line ° . _a7l ° AB(S=2) ¢ i
12| R i
L ° -1 | L ]
. ; . . . . .
_12.5] o o Ferro state 1 —37.2r ¢
3 ° + XY state 1 F R
° : -37.4}
_1 3 | 1 1 1 L L 1 L L ? ! ! | ! !
13 —1.25 J, 202 -2 D -1.98

FIG. 16. TheJ, dependence of the ground-state energy of the FIG. 18. TheD dependence of the enerdgy(M*==*=2) and
XY phase and ferromagnetic phase is represente@®bgnd O, E(M?*==1) represented by) and ®, respectively, forJ,=—0.1
respectively, foD=0.5 andN=16. andN=16.
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between the larg® phase and N& phase is very likely to

1.9 be a first-order transition as expected from the consideration

D | of the largeD limit, although we have no final proof that it is
so all the way down to the tricritical point. In this context, it

—ol J,=0.1 is of great interest how the first-order or Ising-type transition

5 XY Phases line splits into a Gaussiar{largeD-Haldang and Ising
1 (Haldane-Nel) lines.
Related to this problem, the precise position of the tric-
] ritical point remained ambiguous. We have determined it
from the point where the numerically obtained large-
0 0.05 01 1N 015 D-Haldane critical point and large-Ising critical point
merge and the finite-size scaling analysis of the staggered
FIG. 19. The extrapolation procedure of finite sigxyxy) magnetization also supports this estimation. However, it is
for J,=—-0.1. difficult to determine this point accurately by numerical
analysis. Further analytical insight into the properties of the
point is D¢xyxy) (N)=—2.008. We use D xyxy)(N) tricritical point is necessary to elucidate this issue.
= DC(XYXY) +ClN_1+ C2N_2 to eXtrapOlathc(xyxy) to N
—oo for N=8, 10, 12, 14, and 16 as shown in Fig. 19. The ACKNOWLEDGMENTS
same procedure is carried out appropriately interchanging the
roles ofJ, andD. One of the authorgK.H.) thanks M. Nakamura, K. No-
mura, K. Okamoto, and S. J. Qin for enlightening discussion.
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