日本機械学会論文集(B編) 65巻639号(1999-11)

回 折 す る 衝 撃 波 の 挙 動 に 関 す る 研 究* (第1報, 衝撃波の回折と反射過程)

高藤亮一*1,山中昭央*2,小原哲郎*3 蔡 品*3、大八木 重治*3

A Study on Behavior of Diffracted Shock Wave (1st Report, Process of Shock Wave Diffraction and Reflection)

Ryouichi TAKAFUJI, Akio YAMANAKA, Tetsuro OBARA*4, Pin CAI and Shigeharu OHYAGI

> *4 Saitama University, Dept. of Mechanical Engineering, 255 Shimo-Ohkubo, Urawa, Saitama, 338-8570 Japan

As is well known when a shock wave is emitted from an open end of a tube, an expansion wave and a vortex ring are generated behind the shock wave. Furthermore, a contact surface, slip line and these wave interactions may cause considerably complicate flow-fields. In this study, shock waves of Mach number 1.3, 1.6 and 2.2 are produced utilizing diaphragm-less shock tube of 50 mm diameter and *c. a.* 10 m total length, and the flow-fields are visualized with an aid of schlieren optical techniques. A cylindrical reflector is installed at test section and stagnation pressure behind reflected shock wave is measured with wide frequency response. A numerical analysis is also carried out to investigate these flow-fields using Predictor-Corrector TVD finite difference scheme. As a result, (i) the contour of diffracted shock wave is well coincided between experimental and numerical results, (ii) pressure histories behind reflected shock wave are clarified, (iii) an empirical formula is obtained between Mach number, non-dimensional distance from the open end of the tube and non -dimensional pressure just behind reflected shock wave.

Key Words : Compressible Flow, Computational Fluid Dynamics, Shock Wave, Flow Visualization

1. 緒 言

一般に衝撃波が開放端から放出される際には,開放 端の角部から膨張波が発生するとともに渦輪が放出さ れる.また,膨張波は次第に衝撃波に追いつき衝撃波 を減衰させるとともに,膨張波が追いついた点から衝 撃波は回折を始める.さらに衝撃波背後の流れ場には 接触面および滑り線が形成される.したがって,衝撃 波面の形状変化および衝撃波背後の流れ場は著しく複 雑になる.

このような衝撃波の回折現象は自然界において、ま た可燃性気体の爆発などにより発生することから、衝 撃波の基礎研究の一つとして研究が行われてきた。例 えば、火山が噴火した際には大規模な衝撃波の回折現 象が起き大きな被害を及ぼす可能性があることから、 地形変化を考慮に入れた三次元数値シミュレーション が行われている⁽¹⁾⁽²⁾.また、火薬類の爆発によって生 じる衝撃波が回折し爆風となって被害をもたらすこと から、爆風の伝ばに関する研究が行われている⁽³⁾.さ らに、高速列車が長いトンネルに突入した際には、列 車がピストンの役割を果たし圧力波が形成され、それ が弱い衝撃波へ遷移することが明らかにされてい る⁽⁴⁾⁽⁵⁾.また、前述したように衝撃波の回折現象は、 物理的にも興味深い現象であることから、特に渦輪の 運動に着目した研究⁽⁶⁾、衝撃波と渦輪の干渉に関する 研究⁽⁷⁾などが行われている.このように衝撃波の回 折機構について調べることは工学上において有用であ り、特に安全工学的な観点から建造物の設置基準など の基礎データを得るうえで重要である⁽²⁾⁽⁸⁾.

本研究では、内径 50 mm の無隔膜形衝撃波管^(e)を 用いて伝ばマッハ数1.3~2.2 の衝撃波を生成させ、 衝撃波背後の流れ場をシュリーレン法を用いて可視化 した。また、実験に対応する流れ場の数値シミュレー ションを行い、実験結果との比較を行った。さらに、 衝撃波管開放端からの無次元距離と反射衝撃波背後の 最高圧力の関係について実験式を得たので報告する。

2. 実 験

2・1 装置および方法 図1に実験装置概略図を 示す⁽¹⁰⁾. 衝撃波を発生させるには断面収縮形の無隔 膜衝撃波管を用いた. 衝撃波管は貯気槽, 衝撃波管, 観測部, およびダンプタンクから構成される.

^{*} 原稿受付 1999年4月19日.

^{*1} 埼玉大学大学院(538-8570 浦和市下大久保 255).

^{*2} 准員, 埼玉大学大学院.

^{*3} 正員, 埼玉大学工学部.

E-mail: tobara@mech.saitama-u.ac.jp .

Fig. 1 Schematic diagram of experimental set-up

貯気槽(内径200 mm,長さ1000 mm)の端には MOバルプ⁽⁹⁾と呼ばれる二つのピストンを組合せた 急速開口弁が設置されている.二つのピストンのう ち,貯気槽と衝撃波管を隔てるピストンをメインピス トンと呼ぶ.このメインピストンを高速で移動させる ため、メインピストンチャンバ内には別のサプピスト ンがある.電磁弁を開放させることによってサプピス トンチャンバ内の気体が開放されれば、メインピスト ンチャンバ内の気体は電磁弁を介さず直接大気に開放 されるためメインピストンは高速で移動し衝撃波が形 成される仕組みである.サプピストンチャンバと貯気 槽本体には、ストレインゲージ式の圧力変換器 (TEAC 社製, TP-AR 100 K,精度20 kPa)が取付け てある.

衝撃波管はステンレス製の円管で,内径 50 mm,全 長 6 200 mm である。衝撃波およびその背後の流れ場 を可視化するために,衝撃波管の下流側に内径 500 mm,奥行き 500 mm の円筒形の観測部が設置されて いる。観測部の両側面には直径 150 mm の観測窓を 取付けた。

観測部の下流側には容積 0.75 m³ のダンプタンクが 設置されている.ダンプタンクには,真空ポンプ(真 空機工社製,GVD-200 A)が接続されており,ダンプ タンク上部に取付けられたストレインゲージ式の圧力 変換器(TEAC 社製,TP-AR 10 K,精度 2 kPa)を用 いて試験気体の圧力を設定した.

観測部と衝撃波管の接続部には、開放端が取付けら れている。開放端は内径25mm、肉厚4mmのステ ンレス製円管で、フランジにより衝撃波管出口に保持 される。開放端上流側は長さ200mmで、先端を鋭角 にとがらせたクッキーカッタ形状をしている。衝撃波 面はこの部分で直径が約25mmに切り取られる。こ れは、入射衝撃波背後に発達する境界層の影響をでき るだけ取り除くためである。

観測部内には、衝撃波管の中心軸上に円筒(反射体

Fig. 2 Pressure histories ($M_s = 1.6$)

と呼ぶ)が設置してある. 反射体はアルミニウム製で, 外径 50 mm, 長さ 250 mm であり, 反射体前面の中心 軸上に圧電式圧力変換器 (PCB 社製, Model 113 A 24, 応答時間 1 µs)が面一に埋め込まれている. これによ り反射体前面のよどみ点圧力を測定することができ る. また, この反射体は光学ステージ上に設置され, 開放端出口からの距離を微調整することができる.

流れ場を可視化するにはシュリーレン光学系を用いた. 光源にはキセノン放電管(菅原研究所製, NP-1 A)を用いた. せん光時間は半値幅で約180 ns である. 光源側では複数のレンズとピンホールを組合せ, 光源から出た光が点光源になるようにした. また, 流れに対して垂直方向の密度変化を詳細に撮影するため, ナイフエッジの刃面を管軸と平行に設置した.

衝撃波の伝ば速度を測定するため、衝撃波管の2箇 所(貯気槽端より6005mmと6200mm)に圧力変換 器が埋め込まれている.これらの圧力変換器を貯気槽 倒から順にPST1, PST2と呼ぶ.圧力変換器から の出力はストレージオシロスコープ(横河電機製, DL1540)で記録した.また、オシロスコープからの信 号は遅延回路装置(菅原研究所製, RE-306)を介して、 光源への発光開始の信号として用いた。

2・2 無隔膜形衝撃波管の作動特性 実験を行う にあたり無隔膜形衝撃波管の作動特性を調べるための 予備実験を行った。駆動気体は窒素であり、試験気体 は空気である。図2に衝撃波管に取付けられている圧 力変換器 PST 1, PST 2 でとらえた圧力波形の典型 例を示す. 衝撃波の伝ばマッハ数は Ms=1.6 である. グラフの縦軸は、衝撃波背後の圧力 p2 を試験気体の 初期圧 かで除した無次元圧力、横軸は時間である。 圧力波形は衝撃波の通過とともに急しゅんに立ち上が っていることがわかる。また、衝撃波が開放端で反射 して形成される反射衝撃波の通過に起因する圧力上昇 が観察される。波形上には圧力変動が記録されている が、これは圧力変換器が管壁とは完全に面一ではない ことに起因すると考えられる. 衝撃波が通過した背後 では、圧力がほぼ一定の値を示し、Ms=1.6に対する

垂直衝撃波の理論値(p₂/p₁~2.8)にほぼ一致する. このような波形から測定点間の時間差をオシロスコープ 上で読取り,衝撃波の伝ぱマッハ数を求めた.

図3は予備実験で得られた駆動気体の圧力 hと試 験気体の圧力 hとの比に対し得られた衝撃波の伝ば マッハ数の関係を示す.実線は、単純理論による理論 値⁽¹⁾である.実験で得られる衝撃波マッハ数 M_s の 圧力比 h_s/h_1 に対する変化は、定性的に理論値と同様 の傾向を示すが、定量的には理論値を下回っている. これは、単純理論では隔膜が瞬間的に開口されると仮 定しているのに対し、実験ではおもにピストンとシリ ンダ間における O リングの摩擦によってピストンが 十分高速で移動せず、駆動気体が瞬間的に開放されな いことが原因である⁽⁹⁾.また、同じ設定圧力比におい て得られる衝撃波のマッハ数にはばらつきが大きい が、これもピストンとシリンダ間の摩擦によりピスト ン移動速度の再現性が低いためと考えられる.

2.3 実験条件 垂直衝撃波が回折する現象は, 衝撃波背後の熱気流が超音速であるか, 亜音速である かによって大別される(11).熱気流の流速が亜音速で あれば,開放端角部で発生した後退膨張波は開放端上 流へと伝ばし、衝撃波背後の圧力を減衰させるため開 放端上流の圧力はなめらかに変化する。一方、衝撃波 背後が超音速である場合,後退膨張波は開放端上流へ 伝ぱすることができず, 二次衝撃波を生成させるため 回折した衝撃波背後の圧力は不連続的に変化する。試 験気体を空気とした場合, 衝撃波の伝ばマッハ数が Ms ≃ 2.07 以上の条件では、衝撃波背後の熱気流は超 音速となる、したがって、本報では衝撃波の伝ばマッ ハ数を Ms=1.3, 1.6, 2.2 の3条件を選定して実験を 行った. なお、M_s=1.6は、回折した衝撃波背後の渦 付近で局所的に超音速となる条件である.

駆動気体にはマッハ数が M_s =1.3,1.6の条件で窒素を,マッハ数が M_s =2.2の条件ではヘリウムを用いた.試験気体は空気である。開放端出口から反射体までの距離を L,開放端内径を D とし,その無次元距

Fig. 3 Relationship between pressure ratio and Mach number of shock wave

離 L/D を 0.5, 1.0, 2.0 と変化させて実験を行った。

3. 数 值 計 算

実験結果をより詳細に理解するため、流れ場の数値 シミュレーションを行った。衝撃波の伝ばマッハ数が $M_s \leq 2.2$ と比較的小さいこと、および壁面近傍の境界 層の影響が大きいと考えられる領域を計算対象として いないことから、問題の定式化を行うにあたり以下の 仮定をおいた。

(1) 流れ場は軸対称である.

(2) 気体は比熱比一定の理想気体とする.

(3) 粘性,熱伝導および拡散の影響は小さく,無 視できるものとする.

これらの仮定のもとに定式化される質量,運動量,エ ネルギー保存方程式を,Explicit Predictor-Corrector TVD スキーム⁽¹²⁾を用いて数値計算した。計算領 域は開放端から反射体までを含む 100 mm×100 mm の領域とした。また,計算格子は正方形で格子点数は 500 点×500 点の計 250 000 点である。初期条件とし て開放端から 5 mm上流側に Rankine-Hugoniot の 関係式⁽¹¹⁾ から求められる不連続面をおいた。境界条 件は壁面および中心軸に反射条件,その他の境界には 自由境界条件を用いた。

4. 結果および考察

開放端から反射体までの距離 Lを開放端出口の口 径 D で除した無次元距離をL/D=2.0で一定とし, 衝撃波の伝ぱマッハ数を $M_s=1.3, 1.6, 2.2$ と変化さ せた場合の流れ場について述べる.

4・1 衝撃波伝ばマッハ数 M_s=1.3 の流れ場 図 4 に、Ms=1.3 の場合に得られた流れ場のようすを示 す.図の上半分は実験により得られたシュリーレン写 真であり, 下半分は数値計算によって得られた密度の 値を縦方向について一階微分し、それを画像処理して 得られた数値シュリーレン像である。なお,図4には 回折した衝撃波が反射体と干渉してからの経過時間 t を示す。衝撃波は図左側の開放端(ST)より右方向に 伝ばし、右側にある反射体(CR)と干渉する。図5に 反射体よどみ点において計測された圧力履歴を示す。 グラフの横軸 t は衝撃波が反射体と干渉してからの経 過時間、縦軸は衝撃波背後の圧力を試験気体の初期圧 で無次元化した値を示す。実線は実験で得られた圧力 波形であり、破線は数値計算結果である。 図5で示す 圧力波形上の a~d は,図4 に示した a~d の時刻に 対応する.

図4(a)では、開放端角部からの膨張波によって衝

Fig. 4 Computational and experimental schlieren photographs (M_s =1.3, L/D=2.0)

Fig. 5 Pressure histories ($M_s = 1.3$, L/D = 2.0)

撃波(IS)が大きく回折し反射体と干渉している.ま た,回折した衝撃波の背後には渦輪(VR)が形成され 始めている.反射衝撃波(RS)は入射衝撃波の形と対 称に弧を描いて反射し,反射体角部で再び回折を始め る.図5に示した圧力波形上のaでは,回折した衝撃 波がすでに反射体と干渉することにより反射体前面の 圧力が急しゅんに立ち上がる.その後,圧力はなだら かに減衰している.これは開放端角部から発生した膨 張波によって入射衝撃波がすでに減衰しているためで ある.

図4(b)では、反射衝撃波が反射体角部で回折した ことにより生じた膨張波が、上流へ伝ばし反射衝撃波 と干渉することにより反射衝撃波面の曲率が大きくな るようすが観察される.その後この膨張波は、反射体 の中心軸上で収束することになり、図5のbにおいて 圧力がわずかに減少する.さらに、この膨張波により 反射体前方の流れが加速されるため、図5のb以降で

Fig. 6 Computational and experimental schlieren photographs ($M_s=1.6$, L/D=2.0)

Fig. 7 Pressure histories $(M_s=1.6, L/D=2.0)$

よどみ点圧力は上昇する.一方,図4(b)の渦輪付近 では、反射衝撃波が渦と干渉する.中心軸付近の渦輪 の内側で、反射衝撃波は流れに対してほぼ垂直にな る.また、渦内部では反射衝撃波が大きく屈折し、渦 輪の外側では、この衝撃波が渦内部から弧を描いて上 流へ伝ばするようすがわかる.

図4(c)では、反射衝撃波が渦輪と干渉することに より大きく変形した衝撃波が中心軸上で干渉し、円す い形状の衝撃波(CS)が形成されている。また、渦輪 が反射体に近づくと、その前面で流れの向きが主流と 直角方向に変化するため膨張波が形成され、図5のc のように圧力が一時的に減少する。

図4(d)では、反射体の角部で発生した渦が開放端 より伝ばしてくる渦輪と干渉している.また、反射体 前方の流れは、渦輪の内側に定在する衝撃波を介して 加速される.その結果、図5のdのように反射体よど み点圧力は上昇する.

以上述べたように回折する衝撃波の反射後の亜音速 流れは渦輪との干渉により複雑な構造を呈し、結果と して先頭波面より高い圧力を生じることになる.この 現象は数値シミュレーションでも十分な精度で再現で きた.

4・2 衝撃波伝ばマッハ数 $M_s=1.6$ の流れ場 図 6 に、マッハ数が $M_s=1.6$ の場合に得られた流れ場の ようすを示す。数値計算は実験結果で現れている細か な渦列等は再現しきれていないが、全体的な流れ場は よく一致しているといえる.また,図7に反射体よど み点における圧力履歴を示す(グラフの縦軸,横軸は 図5と同様).マッハ数が $M_s=1.3$ の場合と同様,数 値計算の結果は実験とよく一致している.

図 6(a) では、開放端から放出された衝撃波(IS) が 反射体と干渉し、その反射衝撃波(RS)は、渦輪(VR) と干渉し始めている。反射体で反射した衝撃波は、反 射体角部より発生する膨張波により、M_s=1.3の場合 よりも大きく曲率が変化している。このとき渦輪で は、渦内部において流れの再圧縮による二次衝撃波 (SS)が生じ、一部が中心軸上で発達している。また、 開放端角部から生じている膨張波の波尾から滑り線 (SL)までの領域で、局所的に音速が小さいため流れ 場は超音速となり、密度差が明確に現れている。さら にこの膨張波は中心軸で収束し、 そこからマッハディ スク(MD)が生じている。この境界からは新たに滑り 線が生じている。図7の a では、Ms=1.3の場合と異 なり、衝撃波が反射体で反射した後で圧力の減少が見 られない.これは、Ms=1.3の場合と比較して反射体 前方における流速が大きく、よどみ点圧力が大きいた めと考えられる。その後、管内からの流れにより、反 射体方向への流れが加速されるため、 圧力は次第に上 昇する.

図 6(b)では,開放端からの渦輪が反射体に接近し 反射体角部で生じた渦と干渉するため著しく複雑な流 れ場となる.また,反射衝撃波が渦輪を通過すること

(b) $t = 100 \, \mu s$

Fig. 8 Computational and experimental schlieren photographs (M_s =2.2, L/D=2.0)

Fig. 9 Pressure histories ($M_s = 2.2$, L/D = 2.0)

により弓形の衝撃波が生じ,その衝撃波が中心軸上で 収束している.この弓形衝撃波により図7(b)以降の 圧力変動が生じている.その後,反射体前方の流れは 比較的安定し,流れの方向は反射体前面で主流に対し て直角方向に変化するため次第に圧力が減衰する.

4・3 衝撃波伝ばマッハ数 $M_s=2.2$ の流れ場 図 8 に、マッハ数が $M_s=2.2$ の場合に得られた流れ場の ようすを示す.数値計算は実験結果と比べ全体的な流 れ場はよく一致している.また、図9は反射体よどみ 点における圧力履歴を示す(グラフの縦軸と横軸は図 5 と同様).マッハ数が $M_s=1.3$ および 1.6 の場合と 同様に、数値計算結果は実験結果とよく一致してい る.

図8(a)では,開放端からの回折衝撃波背後で管内 の流れが超音速となるため膨張波の波尾(ET)は主流 の外側を向き,中心軸で弓形のマッハディスク(MD) が生じている.また,渦内部で二次衝撃波(SS)が発 生している.一方,反射体で反射した衝撃波は,中心 軸付近の曲率が小さくなっている.これは中心軸で下 流方向への流速が大きいため,マッハディスクを介し て反射衝撃波背後の流速が,相対的に小さくなるため である.このとき圧力は,図9のaからbの間でなだ らかに減衰する.

図8(b)では、開放端からの渦輪と反射体からの渦 輪が干渉し始めている。開放端からの渦輪からは、反 射衝撃波と干渉したことによる弓形の衝撃波が生じて いる。一方、反射衝撃波は開放端角部からの滑り線と 干渉している。このことにより滑り線は屈折し、反射 衝撃波は滑り線と膨張波の波尾に囲まれる領域を伝ば している。また、反射体前方で主流と直角方向への流 れが強くなる。このため図9のbでは圧力が急激に 減衰している。前述したように、衝撃波マッハ数 Ms =2.2では、衝撃波背波の流れが超音速となるため、 開放端角部で生成された膨張波は管上流へと伝ばする ことができない。したがって、管上流の流れが加速さ れることがないため、反射衝撃波背後の圧力が最高圧 力となる。

4・4 考察 開放端から放出された衝撃波が反射 した際の反射衝撃波直後の圧力 psの値は、衝撃波発 生源からの保安距離を設定するうえで最も重要なパラ メータの一つであると考えられる。しかしながら ps は衝撃波マッハ数 Ms、開放端から反射体までの距離 L、開放端の内径 D、初期圧 p1の関数であり解析的に 求めることが困難である。これらの初期条件の違いに よらず psを予測することは安全工学上重要である。 これらの変数の間にある関係を求めるため、次元解析

Fig. 10 Relationship between non-dimensional parameter ϵ and Mach number

的に考えると、三つの無次元数、すなわち衝撃波の伝 ぱマッハ数 M_s 、反射衝撃波背後の無次元圧力 (p_s $-p_1$)/ p_1 、開放端からの無次元距離 L/D の間に一つの 関係が存在する。図 10 は、横軸に衝撃波マッハ数 M_s^{s} と無次元距離 (L/D) s の積、縦軸に ($p_s - p_1$)/ p_1 として 表した結果である。図 10 より無次元圧力は L/D の違 いによらず、一つの直線上に分布することがわかる。 したがって、衝撃波マッハ数が $M_s=1.3\sim2.8$ の範囲 において次の実験式を得ることができる。

 $p_s = p_1 \left\{ 1 + M_s^{\alpha} \left(\frac{L}{D} \right)^{\theta} \right\}$

 p_s は反射衝撃波背後の圧力であるため、反射体の形状 には依存しない。係数 α および β の値は $\alpha \approx 2.54$, $\beta \approx -0.9$ と見積もられる。上式より垂直衝撃波が三次 元空間へ開放され反射した際の最高圧力 p_s を見積も ることができる。

5. 結 言

本論で得られた結果を以下に要約する.

(1) 衝撃波マッハ数を M_s=1.3~2.2 の範囲で変 化させ,開放端から放出される衝撃波の挙動をシュリ ーレン法を用いて可視化した.また,実験に対応する 流れ場の数値シミュレーションを行い,数値シュリー レン画像を作成した.実験と数値計算結果は定性的に 一致することを明らかにした. (2) 開放端の下流に反射体を設置し,よどみ点に おける圧力波形と流れ場の対応関係について明らかに した.また,実験と計算結果は定量的にも一致するこ とを明らかにした.

(3) 反射衝撃波背後の最高圧力 ps は衝撃波マッ ハ数 Ms および無次元距離 L/D の関数で表されることを明らかにした.この結果は衝撃波発生源からの保 安距離を設定するうえで重要な基礎データとなり得る。

本実験を遂行するにあたり,本学 吉橋照夫技官の 協力を得た.ここに付記し謝意を表する.

文 献

- (1) 早川理・ほか3名,火山噴火における爆風伝播の数値シ ミュレーション,平成7年度衝撃波シンポジウム講演論 文集,(1996),311-314.
- (2) Timofeev, E. V., ほか4名, Adaptive Unstructured Supercomputer Simulations of 3-D Blast Waves over Vast Terrains with Buildings, 平成10年度衝撃波シン ポジウム講演論文集, (1999), 151-154.
- (3) 中山良男・ほか5名,模擬火薬庫内爆発により生じる爆風の伝播,平成10年度衝撃波シンポジウム講演論文集, (1999),159-162.
- (4) 松尾一泰, 圧縮性流体力学一内部流れの理論と解析-, (1994),理工学社.
- (5) 佐宗章弘・ほか2名,高速列車トンネル突入による圧縮 波の衝撃波への遷移,機論,63-616,B(1997),3944-3951.
- (6) Kleine, H., ほか2名, Shock Wave Diffraction-New Aspects of an Old Problem, Shock Waves @ Marseille, IV (1995), 117-122.
- (7) 嚢田登世子,衝撃波と渦輪の干渉(衝撃波の歪みとその変 選),平成10年度衝撃波シンポジウム講演論文集,(1999), 563-566.
- (8) Obara, T., ほか3名, Study of Shock Wave Diffraction from an Open End of the Tube, Proc. 21st Int. Symp. Space Technol. Sci., (1998) 927-932.
- (9) 大野達也・ほか4名,無隔膜駆動部を用いた極超音速衝 撃風洞の実験と解析(圧力特性とx-t線図),千葉大学工 学部研究報告,47-1 (1995),7-16.
- (10) 高藤亮一・ほか3名,溝の付いた管内で減衰した衝撃波 に関する研究,平成10年度衝撃波シンポジウム講演論文 集,(1999),305-308.
- (11) 松尾一泰, 衝撃波の力学, (1983), 理工学社.
- (12) Yee, H. C., Upwind and Symmetric Shock-Capturing Schemes, NASA Tech. Mem. 89464 (1987).