日本機械学会論文集(A編) 58巻548号(1992-4)

セラミックス/金属接合残留応力の 有限要素解析の基礎的検討* (残留応力の弾塑性特異性に及ぼす中間層の厚さの影響)

佐藤拓哉*1,小林英男*2,荒居善雄*3

Finite-Element Analysis of Residual Stresses of Ceramic/Metal Joint (Size Effects of Interlayer on Elastic-Plastic Singularity of Residual Stresses)

Takuya SATO, Hideo KOBAYASHI and Yoshio ARAI

In general, a very thin metal with low yield strength is inserted into a ceramic/metal joint as an interlayer to reduce the residual stresses. A two-dimensional finite-element analysis was performed to study the effect of the thickness of the interlayer on an elastic-plastic singularity of residual stresses in the ceramic/metal joint. The yielding of the interlayer caused the change of the singularity. In the case of the joint with a relatively thick interlayer, the exponent of the elastic-plastic singularity depends on only the elastic-plastic properties of the materials. When the interlayer is very thin, however, the exponent depends on not only the elastic-plastic properties but also the thickness of the interlayer. This elastic-plastic singularity can be approximately estimated by a simplified elastic-plastic analysis.

Key Words: Stress Analysis, Elastic-Plastic Behavior, Ceramic/Metal Joint, Residual Stress Stress Singularity, Finite-Element Analysis

1. 緒 言

セラミックスの優れた特性を構造材料として活用す る方法として、金属との接合が試みられている. セラ ミックス/金属接合材の強度を支配する力学因子とし て,熱膨張係数,弾性係数の差異に起因する接合残留 応力が重要である(1). 接合残留応力の大きさと分布に ついては、X線などによる実測と有限要素法による解 析の両面から、多くの研究が行われている(2)~(6)、接合 界面の自由端に発生する応力の特異性に関して,弾性 解析(7)~(11), 弾塑性解析(12) および強度評価への適用が 行われている(13)(14). しかし, セラミックス/中間層/金 属の三層構造における中間層の弾塑性挙動を考慮した 応力特異性の研究はない。著者らは、セラミックス側 が弾性,金属側が弾塑性の場合のセラミックス側の応 力特異性を弾塑性特異性と定義して, 接合残留応力に ついて検討し、中間層の降伏によって残留応力の特異 応力場の強さと全体的な分布は低下するが、特異性の

*1 正員, 日揮(株) (●232 横浜市南区別所 1-14-1).

指数は大きくなること、中間層の弾塑性特性を割線剛 性法によって近似した簡易弾塑性モデルを用いて、残 留応力の弾塑性特異性を評価できることを示し た⁽¹⁵⁾.

本研究では、銅を中間層としてセラミックス (Si₃N₄)と炭素鋼(S 45 C)を接合した場合の接合残留 応力を、有限要素法による二次元弾性および弾塑性解 析によって調べ、セラミックス側の接合残留応力の弾 塑性特異性に及ぼす中間層の厚さ影響について検討し た.また、著者らが提案した簡易弾塑性解析によって、 この弾塑性特異性を簡便に、精度よく評価できること を示した.

2. 応力特異場パラメータ

接合材の接合界面近傍を起点とする破壊に最も関係 するのは, x 方向(接合界面垂直方向)残留応力 ox で あるので⁽¹⁶⁾, x 方向残留応力に着目する.

弾性特性の異なる二つの半無限板の接合界面におい て,残留応力の弾性特異性は負荷応力の場合と同様に, 理論的に得られている⁽¹⁷⁾.図1に示すように,異種材 料が自由表面に垂直な界面で完全に接合されている場 合,接合界面と端面(自由表面)の交点S(*x*, *y* 座標の 原点0)が応力特異点となり,端面に沿う*x*方向残留

^{*} 平成3年11月2日 材料力学講演会において講演, 原稿受付 平成3年9月4日.

^{**} 正員,東京工業大学工学部(**委152**東京都目黒区大岡山2-12-1).

^{*3} 正員,埼玉大学工学部(338 浦和市下大久保 255).

応力の分布は次式で表示される(7)~(9)(14).

$$\sigma_x = K/x^{\lambda} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (1)$$

ここで,

- σ_x : x 方向残留応力 MPa
- x:端面に沿った特異点からの距離 mm
- K:応力特異場の強さ
- λ:特異性の指数

であり, $K \geq \lambda$ は被接合材料の縦弾性係数 E_1, E_2, π アソン比 ν_1, ν_2 に依存する.特異性の指数 λ は, 界面 連続条件と自由境界の境界条件から得られる特性方程 式の解である⁽⁷⁾.

接合界面の応力特異性は、き裂先端の応力特異性と 同様に、大規模降伏ならば弾塑性特異性が問題にされ る. 銅を中間層としたセラミックス/金属接合材の場 合,接合工程と負荷のいずれに際しても、基本的には セラミックスは塑性変形(降伏)しないが、中間層は接 合界面に沿って全断面降伏(大規模降伏)する.この 場合,セラミックス側の特異応力場は、中間層の降伏 の影響を強く受け、弾塑性特異性(セラミックス側が 弾性,中間層が弾塑性、金属が弾性である三層構造の セラミックス側の応力特異性)が問題となる⁽¹⁵⁾.

3. 解 析 方 法

鋼を中間層としたセラミックス(SiaN4)と炭素鋼 (S45C)の活性金属法による接合を対象とする.この 接合は高温で行われるが,高温ではロウ材が強度を持 たないので,セラミックス,金属ともに自由に変形し,

図 1 接合界面の力学モデル

応力は生じない. ここでは, ロウ材が強度を持ち始め る温度を 800 K とし⁽¹⁾, この温度から 300 K (室温) ま でゆっくり冷却した場合について, 汎用構造解析プロ グラム MARC を用いて, 弾塑性応力解析を行った. な お, ロウ材は非常に薄く, 塑性拘束が大きいので, 銅, セラミックスあるいは炭素鋼と同一の変形をするとみ なすことができる. したがって, 解析モデルにはロウ 材を含めない.この場合, 銅の材料特性, 特に弾塑性特 性はロウ材の弾塑性特性を含むと解釈する.

解析モデルの形状、寸法を図2に、中間層の厚さを 表1に示す.セラミックスと銅の接合界面をy軸、接 合材端面をx軸に座標軸を定めた.対称性を考慮して 1/2 モデルとした.要素分割を図3に示す.モデルEP 002~EP 020, SP 002~SP 020 は、図3(a)に示すように、中間層を厚さ方向に2分割とし、要素の厚さを変化させた.モデルEP 050~EPDIR,SP 050~SPDIR は、モデルの寸法と要素分割はモデルEP 020 と同一とし、図3(b)に示すように、中間

表 1 中間層の厚さ

Model No.	Thickness	Type of model
EP002	0.02 'mm	Elastic-plastic model
EP004	0.04 mm	Elastic-plastic model
EP006	0.06 mm	Elastic-plastic model
EP010	0.10 mm	Elastic-plastic model
EP020	0.20 mm	Elastic-plastic model
EP050	0.50 mm	Elastic-plastic model
EP200	2.00 mm	Elastic-plastic model
EPDIR	Direct	Elastic-plastic model
SP002	0.02 mm	Simplified plastic model
SP004	0.04 mm	Simplified plastic model
SP006	0.06 mm	Simplified plastic model
SP010	0.10 mm	Simplified plastic model
SP020	0.20 mm	Simplified plastic model
SP050	0.50 mm	Simplified plastic model
SP200	2.00 mm	Simplified plastic model
SPDIR	Direct	Simplified plastic model
		· · · ·

(a) モデル EP 002~EP 020 およびモデル SP 002~SP 020

S45C			Si ₃ N ₄			
		1	<u>`</u>			
	_ <u>L</u> [;=[*]					

(b) モデル EP 050, SP 050

図 3 要素分割

層の厚さの範囲の要素に銅の材料特性を与えた.要素 数は 320, 節点数は 1 057 である.解析は平面応力状態 を仮定し,8節点アイソパラメトリック要素を用い た.

モデル EPDIR, SPDIR はセラミックスと銅の直接 接合(中間層が極端に厚い場合に相当)である。モデ ル EP 002~EPDIR は中間層の銅を線形硬化弾塑性体 としたものである。モデル SP 002~SPDIR は、セラ ミックスと炭素鋼の熱膨張差から求めたせん断ひずみ に基づき,銅の弾塑性特性を割線剛性法によって近似 した簡易弾塑性モデルであり、次式で表示される銅の 見かけ上の縦弾性係数を用いて弾性解析を行う⁽¹⁵⁾.

 $E' = \sqrt{3/2} \cdot \sigma_y d/(\alpha_s - \alpha_c) \Delta T y' + H' \quad \dots \dots (2)$ $z \geq \mathcal{C},$

σy:銅の降伏点 MPa

H': 銅の線形硬化のひずみ硬化係数 MPa

d:銅の厚さ mm

αc:セラミックスの熱膨張係数 /K

as:炭素鋼の熱膨張係数 /K

- △T:接合後の温度変化 K
- y':接合材の中央からの距離 mm
 - = W/2 y
- y:接合材の端面からの距離 mm
- W:接合材の幅 mm

である. ただし, モデル SP 200, SPDIR の見かけ上の 縦弾性係数は, 中間層の厚さを 0.5 mm と仮定して決 めた値を用いた.

各材料の材料特性を表2に示す. 接合時の温度条件 は、800 Kから300 K (室温) に一様に降下させた、し たがって,解析に際して,縦弾性係数は300 K におけ る値を用いた. 温度が800 Kから300 Kまで変化した 場合の熱ひずみは、逆に800 Kから300 Kまで変化し た場合と絶対値が等しいので,熱膨張係数は800 K に おける値を用いた. 降伏点と線形硬化のひずみ硬化係

<u> </u>	Temp	Sî₃N₄	Cu	S45C
E (GPa)	300 K	304	108	206
	800 K	304	83	188
ν	300 K	0.27	0.33	0.3
	800 K	0.27	0.33	0.3
σ. (MPa)	300 K		20	
/	800 K		20	
H' (MPa)	300 K		84	
	800 K		84	
α (x10 ⁻⁶)	300 K	3.0	17.7	12.0
	800 K	3.0	21.0	14.0

表 2 材料特性

数は温度によらず一定とした.

4. 解析結果

接合材の接合界面近傍を起点とする破壊に最も関係 する x 方向残留応力 σ_x について、解析結果を示す、中 間層の厚さの異なる弾塑性モデル EP 006 (厚さ 0.06 mm), EP 020 (厚さ 0.2 mm), EP 200 (厚さ 2.00 mm)の x 方向残留応力 ox と相当塑性ひずみ (ミーゼ スの相当塑性ひずみ) € の分布を図 4~6 に示す。中 間層の薄いモデル EP 006 の場合 [図4(a)], x 方向 残留応力は接合界面近傍,かつ自由表面(端面)近傍に 集中し、セラミックス側で引張り、炭素鋼側で圧縮と なっている。中間層の降伏は、図4(b)に示すように、 中間層/セラミックス接合界面全面,かつ厚さ全体に わたって生じており、相当塑性ひずみは端面近傍に集 中している、モデル EP 020 [図5(a)および(b)]も、 定性的に同様な分布を示している. モデル EP 002, EP 004, EP 010, EP 050 の結果は省略するが、定性的 にモデル EP 006, EP 020 と同様な分布であった。

ー方,中間層が厚いモデル EP 200 は定性的にも異 なる分布となっている。例えば,端面近傍の x 方向残 留応力は,図 6(a)に示すように,セラミックス側だ けでなく,炭素鋼側でも引張りとなっている(ただし, 中間層と炭素鋼の接合界面近傍は要素分割が粗いの で,この領域の計算精度は悪い)。また,中間層の降伏 は,図 6(b)に示すように,中間層/セラミックス接合

界面全面にわたって生じているものの,厚さ方向には 接合界面近傍に限られ,中間層と炭素鋼の接合界面近 傍ではほとんど生じていない.したがって,モデル EP 200 は,銅を中間層とした接合材というより,セラ ミックス/銅/炭素鋼の3種類の材料の直接接合とみな すことができる.

強度上問題となるのはセラミックス側の応力なの

図 6 x 万向残留応力 0x ねよび相当塑性 ひずみ ē^p の分布(モデル EP 200)

で、以下ではセラミックス側についての結果を示す.

各弾塑性モデルの x 方向残留応力の端面に沿った 分布を図 7 に示す.中間層が極端に薄いモデルを除い て,応力分布はほぼ一致する.セラミックス側の接合 界面の近傍の分布を詳細に見ると,モデルによって応 力こう配に差があることがわかる.

図7の結果を両対数線図上に表示して図8に示す. 応力は接合界面に近づくに伴い,最大値を示してから わずかに低下している.この場合,応力は端面近傍に おけるガウス積分点(y=0.0205 mm)で評価してお り,計算結果から端面に沿ったx方向残留応力の特異 応力場の特性(特異性の指数と強さ)を同時に評価で きる利点を持つ.しかし,特異点(接合界面と端面の交 点,x=0, y=0)の極近傍では特異応力場の特性を正 確に表すことはできない.接合界面の極近傍の応力の 低下はこの問題に起因する現象である.したがって, 以下では最大値を示す位置(モデル EP 002 dx > 0.3mm, EP 004 dx > 0.2 mm, EP 006 dx > 0.1 mm, ϵ れ以外のモデルdx > 0.07 mm) までの応力分布を検 討の対象とする.

図8に示すように,接合界面近傍(x<約0.3mm) では,モデルによって最大応力の近傍の応力こう配が

異なる.中間層が極端に薄い場合(モデル EP 002), こ う配は最も小さく,中間層厚さの増加に伴いこう配が 増加する.しかし,厚さ 0.2 mm 以上ではほぼ一定値 となる.

中間層の厚さを 0.06, 0.20, 2.0 mm とした場合と セラミックスと炭素鋼を直接接合した場合の x 方向 残留応力について, 弾塑性解析の結果 (モデル EP 006, EP 020, EP 200, EPDIR)と簡易弾塑性解析の結果(モ デル SP 006, SP 020, SP 200, SPDIR)を比較して図 9に示す.モデルによっては,簡易弾塑性解析による 応力が多少小さめとなっているが,応力の分布形はよ く一致している。図中の直線のこう配は,弾塑性解析 の結果から最小二乗法により求めた最大応力近傍のこう配入と、セラミックスと見かけ上の縦弾性係数[式(2)]を持つ銅の組合せに対する弾塑性特異性の指数の理論解んである。傾き入の直線と比較するために、傾きんの直線も最大応力の点を通る直線とした。中間層が極端に薄い場合(モデル EP 006)、入とんは一致しないが、中間層が極端に薄くない場合(モデル EP 020, EP 200, EP DIR)、両者はよく一致する。

中間層の厚さと弾塑性特異性の関係を図 10 に示す. λ_i は中間層が厚くなるとともに増加し,厚さ 0.2 mm 以上でほぼ一定値となる.一方, λ_i は中間層の厚さに ほとんど影響されず,ほぼ一定値となる.

5. 考 察

図7によれば、中間層が極めて薄い場合(モデル EP002)を除いて、セラミックス側の端面に沿う x 方 向残留応力分布は、接合界面の近傍を除いて、ほぼ一 義的に表示できる(中間層の厚さに無関係に分布形が 決まる).接合界面近傍の分布は中間層の厚さの影響を 受ける.この影響は、中間層の銅が降伏し、剛性(ある いは見かけ上の縦弾性係数)が炭素鋼の縦弾性係数と 比較して極端に小さくなるため、セラミッスス側の x 方向残留応力の弾塑性応力特異性に、炭素鋼の縦弾性 係数の影響が現れることによると考えられる.したが って、影響の程度は中間層の厚さに依存し、薄い程影 響が大きい.中間層が極めて薄い場合は影響が顕著に 現れ、接合界面から離れた領域の残留応力分布も影響 を受ける.

図10によれば、弾塑性解析に基づく弾塑性特異性 の指数λは、中間層が厚くなるに従って大きくなり、 厚さ0.2mm以上でほぼ一定値となっている.この傾 向は、銅の弾塑性特性を割線剛性法によって近似した 簡易弾塑性解析でも同様である.一方、簡易弾塑性モ デルの見かけ上の縦弾性係数を用いて理論的に求めた 弾塑性特異性の指数λは、中間層の厚さに無関係に ほぼ一定値である.この傾向の違いについて考察する.

セラミックス側の x 方向残留応力が弾塑性特異性 を示すのは接合界面から $0.3\sim0.5$ mm 程度の領域で あり, x 座標を接合材の幅 W(=6 mm) で正規化する と, $x/W=0.05\sim0.08$ である。弾塑性特異性が支配的 な領域の大きさを x/W=0.08 と仮定し, それぞれの モデルについてその領域を描くと, 図 11 のようにな る.

図 11(a)のように中間層が薄い場合(モデル EP 002, EP 004, EP 006),弾塑性特異性が銅の弾塑 性特性によって一義的に決まらない.セラミックスと

炭素鋼 (弾性体を仮定) の直接接合の場合, 弾性特異性 の指数は小さい値となることから⁽¹⁵⁾, 中間層が薄い場 合, 炭素鋼の弾性特性の影響により弾塑性特異性の指 数が小さい値となると考えられる. その影響は中間層 が薄いほど大きく, 厚さの増加に伴い減少する. これ が中間層が厚くなるに従って弾塑性特異性の指数が大 きくなる理由と考えられる.

図 11(b)のように, 弾塑性特異性が支配的な領域の 大きさと中間層の厚さが同程度の場合(モデル EP 010, EP 020, EP 050), 弾塑性特異性は銅の弾塑 性特性によって一義的に決まり, 弾塑性特異性の指数 は中間層の厚さに対して不敏感となる.

図 11(c)のように中間層が厚い場合(モデル EP 200)には、銅の塑性変形はセラミックスの接合界 面側に集中し、中間層の厚さ全体にわたらない.そし て、塑性域の厚さは中間層の厚さに依存しない.した がって、弾塑性特異性は銅の弾塑性特性によって一義 的に決まり、特異性の指数は中間層の厚さに依存しな いと考えられる.すなわち、中間層がある程度(この場 合x/W=0.05程度)厚くなると、残留応力の緩和効果

(a) 弾塑性特異性が支配的な領域に対して中間層が薄い場合

- (c) 弾塑性特異性が支配的な領域に対して中間層が厚い場合
- 図 11 弾塑性特異性が支配的な領域の大きさと中間層の 厚さの関係

— 49 —

が飽和すると考えられる.

図9に示すように、中間層の厚さによらず、銅の弾 性特性を割線剛性法によって近似した簡易弾塑性モデ ルを用いて、セラミックス側の残留応力分布を簡便に、 精度よく評価できる。ただし、弾塑性特異性が支配的 となる領域の大きさに対して中間層が厚い場合には、 図12に示すように、その領域の大きさ程度の範囲の みが塑性変形し、セラミックスと炭素鋼の収縮量の差 をすべてその範囲で吸収するものと仮定した簡易弾塑 性モデルによって、近似的に弾塑性特異性を評価でき る.

6. 結 論

本研究では、銅を中間層としてセラミックス (Si₃N₄)と炭素鋼 (S 45 C) を接合した場合の接合残留 応力を、有限要素法による二次元弾塑性解析によって 調べ、セラミックス側の接合残留応力の弾塑性特異性 に及ぼす中間層の厚さの影響について検討した。得ら れた結果を要約すれば、以下のとおりである。

(1) 中間層が極端に薄い場合を除いて, 接合界面 近傍以外のセラミックス側の x 方向接合残留応力分 布はほぼ一義的に表示できる(中間層の厚さに無関係 に分布形が決まる).

(2) 弾塑性特異性が支配的な領域の大きさと比較 して中間層が薄い場合,弾塑性特異性は銅の弾塑性特 性によって一義的に決まらず,炭素鋼の弾性特性の影 響を受ける.その影響は中間層が厚くなるに従って小 さくなる.

(3) 弾塑性特異性が支配的な領域の大きさと比較 して中間層が同程度か厚い場合,弾塑性特異性は銅の 弾塑性特性によって一義的に決まり,特異性の指数は 中間層の厚さに対して不敏感となる.

(4) 弾塑性特異性が支配的な領域の大きさと比較 して中間層が厚い場合,銅の塑性変形はセラミックス

図 12 弾塑性特異性が支配的な領域に対して中間層が厚 い場合の簡易弾塑性モデル

との接合界面側に集中し,中間層の厚さ全体にわたら ない.そして,塑性域の厚さは中間層の厚さに依存し ない.これが上記(3)の理由と考えられる.

(5) 中間層の厚さを変化させた場合についても、 銅の弾塑性特性を割線剛性法によって近似した簡易弾 塑性モデルを用いて、セラミックス側の接合残留応力 分布を簡便に、精度よく評価できる。

文 献

- (1) 小林・荒居・中村・中村, 機論, 55-512, A (1989), 750.
- (2) 佐藤・小林・荒居, 圧力技術, 29-4 (1991), 46.
- (3) 佐藤・小林・荒居, 機論, 57-540, A (1991), 1801.
- (4) 古口・加屋・矢田,機論, 56-520, A (1989), 2527.
- (5) 栗田・井原・佐藤・斎藤・福沢・田中, 機論, 56-524, A(1990), 978.
- (6) 中尾・西本・才田・中村・堅田, 溶接学会論文集, 7-2 (1989), 275.
- (7) Williams, M. L., Trans. ASME, 74 (1952), 526.
- (8) Bogy, D. B., Trans. ASME, J. Appl. Mech., 35 (1968), 460.
- (9) 笠野・松本, 接着協会誌, 21-9 (1985), 373.
- (10) 久保・大路, 機論, 57-535, A (1991), 632.
- (11) 平島・浜野・広瀬・木村, 文献(10)の 637 ページ.
- (12) 古口・金子・熊倉・矢田, 機論, 57-537, A (1991), 1175.
- (13) 須賀,金属学会報,25-5 (1986),419.
- (14) 服部・坂田・初田・村上, 機論, 54-499, A (1988), 597.
- (15) 佐藤・小林・荒居, 機論, 57-543, A (1991), 2702.
- (16) 小林・荒居・長島, 材料, 40-453 (1991).
- (17) Blanchard, J. P. and Ghonem, N. M., Trans. ASME, J. Appl. Mech., 56 (1989), 756.