凝縮を伴う超音速噴流*

塩 崎 孝 寿**, 川橋正昭**, Kouju SHIOZAKI,

鈶 木 允** Masaaki KAWAHASHI, Makoto SUZUKI

Key Words : Flow Measurement, Compressible Flow, Supersaturation, Supercooling, Condensation, Supersonic Nozzle Flow

1. まえがき

過熱度の少ない過熱蒸気や飽和蒸気が急激に膨張す るとき、凝縮核となりうる微小粒子が多数存在してい ないかぎり、過飽和状態から急激な状態変化を伴って 凝縮することが知られている。この凝縮過程は蒸気分 子自身の衝突合体によって凝縮核を生成するいわゆる 均一凝縮で,過去,超音速ノズルや衝撃波管を用いて 実験的にも理論的にも多くの研究がなされてい る^{(1)~(9)}. しかしながら現象が分子レベルのミクロな 領域から連続流のマクロな領域にまでおよぶために、 凝縮係数や表面張力など確定していない因子が多く、 研究の余地が残されている.特に,最近ウランの同位 体をレーザによって分離する方法が注目されている が、この場合凝縮開始点付近の流れを用いるのが有利 なために、凝縮を伴う超音速流を正確に知ることが要 求されている、そこで、UF。と性質の似ているSF。を 凝縮成分とし、搬送気体として比熱比の大きい Ar ま たは He を用いた超音速ノズル内流れの研究が行わ れ, すでにいくつかの報告がある(10)~(12). しかしなが ら、これらの報告は SF。の凝縮開始点までのものが多 く、凝縮開始後まで行った研究は少ない、さらにノズ ル内流れの重要な要素である流速は計測されていな い. このため、SF6の凝縮を伴う超音速ノズル内流れ に関する情報はまだ不足している.

本研究では凝縮成分に SF6、搬送気体に Ar および Heを選んで、ノズル形状、 貯気そう圧力および混合 比を変えた場合のノズル内圧力と流速を測定し、さら に圧力と流速の測定値から計測が困難な静温度を見積も った.一方、凝縮に伴うノズル内気体の物性値変化を 考慮した理論解析を行い,実験値との比較検討を行っ た。これらの実験と理論解析から、ノズル形状、搬送 気体の種類、貯気そう圧力および混合比がノズル内

SF₆の凝縮現象に与える効果について明らかにした。

記

묵

p: 圧力 Pa T:温度 K u:流速 m/s Mn:マッハ数 *m*:質量流量 kg/s *t*:時間 s N:凝縮成分のモル比 a:音速 m/s μm:凝縮成分の質量比 Ln:ノズルの超音速部長さ mm x:ノズルののど部からの距離 mm A*:ノズルののど部断面積 m² Ae:ノズルの有効断面積 m² ρ:密度 kg/m³ cp:定圧比熱 J/kg L:潜熱 J/kg Rv:一般気体定数 J/(kmol·K) R:気体定数 J/(kg·K) μ_v:粘性係数 Pa·s σ :表面張力 N/m γ:比熱比 M:分子量 kg/kmol m:分子1個の質量 kg v:分子1個の体積 m³ *r*:クラスタ半径 m k:ボルツマン定数 J/K I:核生成率 個/m³·s *E*:凝縮係数 a:表面張力のパラメータ μ: 質量流量に対するクラスタ流量の比 添字 1
 0: 貯気そう状態

^{*} 昭和 56 年 9 月 2 日 北陸信越支部北陸地方講演会および昭和 56年10月1日 北陸信越支部北陸信越地方講演会において講 演、原稿受付 昭和57形3月10日,

^{**} 正員, 埼玉大学工学部 (●338 浦和市下大久保 255).

^{1:}凝縮成分

- 2:搬送気体
- ∞:平面における値
- L:凝縮相
- c:臨界状態
- a:平均值
- s:飽和状態

図 1 実験装置ブロックダイヤグラム

(3) シスル 5 図 2 超音速ノズル

i:等エントロピ変化

2. 実 験

2・1 実験装置および実験方法 実験装置のブロ ックダイヤグラムを図1に示す. 圧力を調整された気 体は貯気そうからノズルに入り,ここで断熱的に膨張 し,圧力および温度が低下する.ノズルを出た気体は 真空ポンプによって循環される. 貯気そうの圧力およ び温度はそれぞれダイヤフラム圧力計および銅・コン スタンタン熱電対によって測定される. 貯気そうにお ける混合比は凝縮成分と搬送気体の流量から決定され る.また,循環中の気体を抽出し,ガスクロマトグラ フィにより混合比の検証を行った.その結果流量計に よる値と一致することが確認された.

超音速ノズルを図2(a),(b)に示す.ノズルの超 音速部は直線で壁面上に直径0.1mmまたは0.3mm の静圧測定孔がある.静圧は,その大きさに応じてダ イヤフラム真空計または水銀柱によって測定された.

表 1 実験条件

NO.	P.	То	N	μm	Carrier	Nozzle
	k Pa	к				
Al	101.6	290.4	0.0080	0.029	Ar	A
A2	100.5	291.4	0.0155	0.054	Ar	A
A3	101.4	292.3	0.0234	0.081	Ar	A
A4	102.0	288.0	0.0310	0.105	Ar	А
A5	101.7	291.8	0.0400	0.132	Ar	A
A6	101.3	293.1	0.0520	0.167	Ar	A
A7	102.1	294.5	0.0590	0.186	Ar	A
A8	101.4	295.0	0.0820	0.246	Ar	A
A9	101.6	295.0	0.154	0.400	Ar	A
A101	100.5	291.4	0	0	Ar	A
A102	100.2	291.5	0	0	Ar	A
Bl	101.7	292.2	0.0059	0.178	He	A
B2	101.1	289.4	0.0155	0.365	He	A
в3	101.3	292.3	0.0229	0.461	He	A
C1	55.23	290.7	0.0087	0.031	Ar	A
C2	54.29	291.8	0.0229	0.079	Ar	A
C3	56.07	289.2	0.0310	0.105	Ar	A
C4	60.06	292.8	0.0403	0.133	Ar	A
Dl	54.66	292.7	0.0058	0.176	He	A
D2	54.02	290.5	0.0160	0.372	He	A
D3	54.90	293.4	0.0234	0.466	He	А
A201	101.7	287.1	0.0026	0.0094	Ar	в
A202	102.1	291.0	0.0035	0.013	Ar	в
A203	101.1	288.4	0.0057	0.021	Ar	в
A204	101.6	288.4	0.0100	0.035	Ar	в
A205	102.3	290.0	0.0201	0.069	Ar	в
A206	101.1	288.6	0.0353	0.118	Ar	в
A207	102.5	289.7	0.0503	0.163	Ar	в
C201	53.60	287.2	0.0202	0.070	Ar	в
C202	60.60	288.8	0.0350	0.117	Ar	в
C203	55.70	289.2	0.0501	0.162	Ar	B

表 2 Ar, He および SF。の物性値

		Ar	He	SF ₆
γ		1.67	1.660	1.18
C_{P}	J/(kg.K)	5.1877×10^{2}	$5.224.6 \times 10^{3}$	$3.731.7 \times 10^{2}$
М	kg/kmol	39.948	4.0026	146.06
L	J/kg	1.632×10 ⁵	2.1×10 ⁴	1.616×10 ⁵
m	kg	6.953 8×10 ⁻²⁶	6.967 4×10 ⁻²⁷	2.4254×10^{-25}
μ_v	Pa. S	2.22×10 ⁻⁵	1.96×10 ⁻⁵	1.51×10 ⁻⁵

その際ノズル内部の流速はノズル側壁を必要な長さに 切断して測定された.

2・2 実験条件および物性値 本研究では貯気そ う温度約 300 K, 貯気そう圧力約 100 kPa および約 55 kPa, 混合比 0.26 %~15.4 % (N=0.026~0.154)の 範囲で実験を行った. 個々の実験条件は表1に示す. また,使用した気体の物性値を式(1)~(3)および表 2 に示す.

 $p_{1s\infty} = 133.32 \exp(6.41853 - 1437.5/T)$

 $-0.003 \ 391 \ 9 \ T) \qquad \cdots \qquad (1)^{*1}$ $\rho_{1L} = (2.740 - 9.417 \times 10^{-4} \ T) \times 10^{3} \ \cdots \qquad (2)^{*1}$ $\sigma_{1s\infty} = (\rho_{1L} \times 10^{-3} / M_{1})^{2/3} \times 2.12 \times (312.79 - T)$ $\cdots \qquad (3)^{(13)}$

2・3 ノズルの検定 本研究で用いたノズルは A, B とも超音速部の中間で SF₆の凝縮が開始するよう に設計された.設計マッハ数は混合比によって変化す るが,拡大部の終わりの位置で約 3.5 である.

本研究の場合のように凝縮成分の潜熱が小さく,搬送気体の比熱が大きい場合は,凝縮に伴う,流れの等 エントロピ変化からの偏差は小さくなり,それを検出 するためには,ノズル内の境界層について考慮する必 要がある。本研究では境界層がノズルののど部から発 達すると仮定して式(4)のようにノズルの有効断面積 を見積もった。

$$A_e/A^* = A_I + a\left(\frac{x}{L_n}\right) + b\left(\frac{x}{L_n}\right)^2, \quad \left(\frac{x}{L_n} > 0.024\right)$$
.....(4)

ここで A_1 はノズル別に定まる定数で,ノズル A に対 しては 1,ノズル B に対しては 0.925 3 である.係数 a, bはノズル A の場合は貯気そう圧力と搬送気体の 種類によって定まる定数で,これを表 3 に示す.ノズ ル B の場合は,ノズルが小さくて境界層の影響が大 きいために,式(5•a)〜式(5•f)のように貯気そう圧力 および混合比の関数とした.

表 3 武(4)の協	彩釰
------------	----

No	a	b
A 1 - 7	3.285	-0.3857
B 1 - 3	3.207	-0.6763
C 1 - 4	3.194	-0.6923
D 1 — 3	3.167	-0.9047

$a=25K_B$ (5•a)
$b = -(\theta_1 + \theta_2 p_0) K_A K_b / 0.07 \cdots (5 \cdot b)$
$K_{A} = \frac{\mu_{va}}{\mu_{v2}} \left(\frac{M_{2}}{M_{a}}\right)^{1/2} \dots (5 \cdot c)$
$K_b = 0.122 \ 3 - (\theta_3 + \theta_4 \rho_0) K_A \cdots (5 \cdot d)$
$M_a = NM_1 + (1 - N)M_2 \cdots \cdots$
$\mu_{va} = N\mu_{v1} + (1 - N)\mu_{v2} \dots $

ここで K_A , K_B は単なる変数である.係数 $\theta_1 \sim \theta_4$ を表 4 に示す.これらの係数はノズル内に純 Ar または純 He を流したノズル内圧力分布の実験から決定した.

圧力分布の測定値と式(4)から求めた有効断面積に もとづく等エントロピ線を比較した例は図3に示すよ うに非常によく一致している.他の場合についてもほ ぼ同様な結果となり、本研究の範囲では式(4)で有効 断面積を表示できることが確認された.

2・4 実験結果および考察 ノズル A の場合は搬送気体に Ar および He を選んでノズル内の圧力分布 のみ測定を行った。等エントロビ変化からの偏差は図 4(a),(b),図5(a),(b)に示すように混合比の 増加とともに一度大きくなり,さらに混合比が大きく なると図4(c)のように小さくなる。凝縮開始点は図 4(a)~(c)のように混合比の増加とともに一度上流 へ移動した後下流へ移動する。これらの現象は SF₆の 比熱比が小さいために混合比が大きくなると,混合気

表 4 式(5·b)および(5·d)の係数

θ_1	θ_2	θ_3	θ
0.384 23	$1.4322 imes 10^{-6}$	0.019943	-1.4926×10-7

*1 Montecatini Edison (Italy) のカタログ

体の平均比熱比が小さくなり,ノズル内の同位置にお ける温度は混合比が小さい場合より高くなる.このた

図 4 ノズル A 内圧力分布

めに SF₆の分圧の上昇にもかかわらず凝縮が起こり にくくなり、等エントロピ変化に近づいてゆく.した がって凝縮の影響が最大となる混合比が存在すること になり、搬送気体が Ar の場合は約5% (N = 0.05) と なった。貯気そう圧力を変えた場合は図5(c)に示す ように貯気そう圧力を下げると等エントロピ変化から の偏差が小さくなり、凝縮開始点は下流へ移動する. これは搬送気体が He の場合も同様になった。搬送気 体を変えた場合は図5(a),(b)に示す実験A2と B2の比較から、He を搬送気体とした場合のほうが 偏圧が小さくなることがわかる。これは He の比熱が 大きいためである。

(c) 図 5 ノズル A 内圧力の等エントロピ変化からの偏差

ノズル B の場合の圧力分布および流速の測定結果 を図 6(a)~(d)に示す.モル混合比 2.0~3.5%で偏 差が大きくなり,この傾向は定性的にはノズル A の 場合と同様である.一方,凝縮開始点は混合比の増加 とともに下流へ移動し,凝縮開始温度は図 7 に示すよ うに混合比および貯気そう圧力と無関係に約 95 K と なって,ノズル A の場合や従来⁽¹⁰⁾の実験とは全く異 なった傾向となった.この特異な現象は SF₆ の転移に 伴う表面張力の変化であると仮定した理論解析を行う と実験結果をよく説明できる.

ノズル内流れの状態を決定するのに圧力だけの測定 では情報が不足する. そこでノズル B については流速

の測定も行った、ノズルが小さく, 流速が大きいため に測定はきわめて困難で, わずかなデータしか得られ なかったが, 実験結果と解析結果はほぼ一致してい る. さらに流速が測定されれば計測が困難な静温度を 見積もることができる.

2.5 ノズル内静温度の見積もり ノズル内流れ を一次元,非粘性と仮定し,さらに流れ中に生成され るクラスタの体積を無視すれば,流れの基礎方程式は

連続式: $\rho u A_{e}/(1-\mu) = \dot{m} = - c$ ………(6)

エネルギ式: $udu + c_p dT = Ld\mu$ ………(8)

となる. ここで cp は搬送気体と凝縮成分およびクラ

スタとの混合物の平均定圧比熱である。状態式は

p=*ρRT* ······(9) である.式(6)はノズルののど部までは凝縮がないの で (*μ*=0)

 $\dot{m} = \rho^* u^* A_e^* \qquad (10)$

であり,のど部の状態は,貯気そう状態から等エント ロピ変化をすると仮定して求められる. c_p および Lを一定と仮定して式(7)および(8)から式(9),(10) を用いて μ を消去すれば

$$c_{P}T^{2} + T\left(\frac{1}{2}u^{2} - c_{P}T_{0} - L\right) + \frac{puA_{e}}{p^{*}u^{*}A_{e}^{*}}T^{*}L = 0$$
.....(11)

が得られ,静温度 T を凝縮核の生成率や成長速度と は無関係に求めることができる.この方法によって求 めた静温度は図 $6(a) \sim (d)$ に示すように解析結果と ほぼ一致している.

3. 理論解析

凝縮を伴う超音速流を、凝縮に伴うノズル内気体の 物性値変化を無視して解析を行うと、He-SF。混合気 体のように分子量が非常に異なり、さらに搬送気体の 比熱が大きく凝縮成分の潜熱が小さい場合、凝縮を伴 う流れに対するノズル内圧力分布は等エントロピ変化 に対するそれよりも小さくなり、定性的にも実験と一 致しない.そこで本研究では気体定数 R,比熱比 γ お よび気相の定圧比熱 c_0 を式(12)~(14)のように、質 量流量に対するクラスタ流量の比 μ の関数として解 析を行った.

	$R(\mu) = R_0 (1 - \mu M_0 / M_1) / (1 - \mu) \dots $
	$C_{p}(\mu) = (C_{p0} - \mu C_{p1})/(1 - \mu)$ (13)
	$\gamma(\mu) = c_p(\mu) / \{ c_p(\mu) - R(\mu) \} \dots \dots$
ここ	で

$M_0 = M_1 N + (1 - N) M_2 \cdots $	(15)
$R_0 = R_U/M_0$	
$c_{P0} = \mu_m c_{P1} + (1 - \mu_m) c_{P2}$.	

である.また,状態式は

 $p = \rho R(\mu) T \quad \dots \qquad (18)$ $\tau a a.$

凝縮核の生成率は Frenkel⁽¹⁵⁾の式

$$I = \left(\frac{p_1}{kT}\right)^2 v \sqrt{\frac{2\sigma_{1c}}{\pi m}} \exp\left(-\frac{4\pi\sigma_{1c}r_{1c}^2}{3kT}\right) \cdots (19 \cdot a)$$

 $r_{1c}=2\sigma_{1c}/\{\rho_{1c}R_{1}T\ln(p_{1}/p_{1o})\}$ ………(19・b) を用いた. 臨界クラスタ半径に対する表面張力 σ_{1c} は その値が知られていないため,平面に対する値 σ_{1o} を 基準にして,転移温度 94.3 K⁽¹⁶⁾より高温では $\sigma_{1c}=$ $\alpha_{1}\sigma_{1o}$, それより低温では $\sigma_{1c}=\alpha_{11}\sigma_{1o}$ と表した. クラスタの成長速度およびµのx方向変化率は
 Hill らの式⁽¹⁷⁾

を用いた.式(6)~(8),(19・a),(19・b),(20)およ び(21)を式(12)~(18)を用いて連立微分方程式に変換 し,未知数 a_{1} , a_{11} および ξ をパラメータとして数値計 算を行った.ノズルAに対しては a_{1} =0.4, ξ =0.005と すると図4(a),(b),図5(a)~(c)に示すように よく一致していて, $a_{1} と \xi$ は搬送気体の種類と貯気 そう圧力に無関係である.搬送気体がArの場合モル 混合比が約10%より大きくなると図4(c)に示すよ うに実験値結果と解析結果は差を生じてくる.搬送気 体がHeの場合も同様な傾向となり,モル混合比が約 4%以上で差を生じてくる.混合比が大きいとき実験 結果と解析結果に差が生じるのは,混合気体の場合の 境界層を純Arまたは純Heと同じと見積もったため である.

ノズルBに対しては $a_1=0.5\sim0.6$, $a_{11}=0.3$, $\xi=0.005$ とすると図 $6(a)\sim(d)$ に示すように圧力および流速の測定値とほぼ一致している。また、圧力と流速から求めた静温度ともほぼ一致している。なお 2・5節において物性値を一定と仮定して、静温度を見積もったが、Ar-SF。混合気体の場合は物性値一定として解析を行っても、ほとんど同じ結果となり、ここでの静温度と比較することは問題ない。

図 7 凝縮開始点

図 8 ノズル内 SF。 蒸気の状態変化

貯気そう状態の SF₆ が 1 %凝縮する点を凝縮開始 点と定義し、その点の圧力および温度を、実験と同一 貯気そう状態とした解析から求めて p-T 面に表すと 図 7 に示すようになる。ノズル A の場合は、搬送気体 には無関係に、貯気そう圧力を上げることと混合比を 増加させることは等価で、SF₆の分圧のみに依存する 形で飽和線とほぼ平行な一つの線上に分布している。

ノズル Bの場合は、A の場合とくらべて単位時間当 たりの温度降下が約4倍程度大きいために、より過飽 和状態が進行して、凝縮開始点の温度が低下する。し かし、SF6の転移温度(94.3K)に達すると表面張力の 減少のために急に凝縮が開始する。したがって、凝縮 開始温度は貯気そう圧力と混合比には無関係に約95 Kとなっている。

ノズル内 SF₆ 蒸気の状態変化を図8に示す.ノズル A の場合は凝縮がゆっくりと進行し,開始後の状態変 化はゆるやかである.これに対してノズル B の場合 は、凝縮開始後,急に凝縮量が増加して,放出される 潜熱のために温度は低下しなくなり,圧力のみ低下す る.なお,混合比が小さい場合には凝縮量が少ないた めに温度も低下する.

4.まとめ

超音速ノズル内でArまたはHeに搬送されたSF。

〔質問〕 松尾 ー泰・川越茂敏

〔九州大学総合理工学研究科〕

一般にノズル内で凝縮が起こり, 潜熱放出量が大き

の凝縮を伴う流れについて、ノズル形状、貯気そう圧 力および混合比を変化させた場合の実験と理論解析を 行った.その結果以下のことが明らかになった.

(1) 表面張力のパラメータ a は凝縮が転移温度 より高温で開始する場合は,搬送気体,貯気そう圧力 および混合比に無関係に一定値になる.しかし,転移 温度まで凝縮しない場合には,表面張力にどのような 値をとっても実験値とは一致せず,転移温度において 表面張力が変化すると仮定すると実験結果をよく説明 できる.この場合には,貯気そうの圧力および混合比 と無関係に約 95 K で凝縮が開始する特異な現象とな る.

(2) α と ξ の値は搬送気体の種類と貯気そう圧
 力に無関係である。

(3) He-SF₆ 混合気体のように,両者の分子量が 非常に異なり,さらに搬送気体の比熱が大きく凝縮成 分の潜熱が小さい場合,物性値をµの関数としてノズ ル内流れを解析する必要がある.

(4) 圧力と流速の測定値から見積もった静温度は ほぼ解析結果と一致する.

献

- (1) Wegener, P.P. and Pouring, A.A., *Phys. Fluids*, 7-3 (1964), 352.
- (2) Stein, G.D., J. Chem. Phys., 51-3 (1969), 938.

文

- (3) 河田・森,機論, 38-315 (昭47), 2843.
- (4) Wegener, P.P., ほか2名, Phys. Fluid, 15-11 (1972), 1869.
- (5) 矢野,理化学研究所報告,51-5(昭50),139.
- (6) Philippe, M., Int. J. Multiphase Flow, 3 (1976), 181.
- (7) Sislian, J.P. and Glass, I.I., AIAA J., 14-12 (1976), 1731.
- (8) Glass, I.I., ほか2名, AIAA J., 15-5 (1977), 686.
- (9) Moses, C.A., Trans. ASME, J. Fluids Eng., 100-3 (1978), 311.
- (10) Wu, B.J.C., ほか2名, J. Chem. Phys., 68-1 (1978), 308.
- (11) Fisher, S.S., Phys. Fluids, 22-7 (1979), 1261.
- (12) Wu, B.J.C. and Laguna, G.A., J. Chem. Phys., 71 1 (1979), 2991.
- (13) 玉虫・ほか7名,理化学辞典,3(昭52),146,岩波書店.
- (14) 佐々木, 化学便覧, (昭41), 丸善.
- (15) Frenkel, J., Kinetic Theory of Liquids, (1955), 366, Dover.
- (16) Walter, C.S., Ind. Eng. Chemistry, 39-3 (1947), 421.
- (17) Hill, P.G., J. Fluid Mech., 25-3 (1966), 593.

論

討

い場合には、凝縮衝撃波が発生する。本論文では凝縮 衝撃波について全く触れられていないが、本実験では 凝縮衝撃波は認められなかったか.この点についての お考えをお伺いしたい。

[回答] ご指摘のとおり、ノズル内で凝縮が起こ り、潜熱の放出量が大きい場合には、凝縮衝撃波が発 生する.しかしながら本研究における実験では図4 (a)~(c)、図6(a)~(d)に示すように、ノズル内 静圧は等エントロピ変化に対するものよりは上昇する ものの急激な上昇はみられず、凝縮衝撃波は発生して いないものと考える.この主な原因は SF₆ の潜熱が小 さい (たとえば水の潜熱は約2.3×10⁶ J/kg, SF₆のそ れは約1.6×10⁵ J/kg である)ためである。また,図4 (c)に示すように混合気体中の SF₆ が多い場合には, SF₆の比熱比が小さいために,混合気体の平均比熱比 も小さくなり,ノズル内気体の温度はあまり下がらな くなる。このため,SF₆の凝縮量(すなわち放出される 潜熱) は減少し,したがって,凝縮衝撃波は発生しな い.