Hartmann-Sprenger チューブの熱効果*

1. まえがき

ー端を閉じた管内気体の管軸方向有限振幅振動を考 える場合,その励振方法によって現象は異なる. 従来 ピストン駆動によるもの⁽¹⁾と,自由噴流により励振さ れるもの⁽²⁾とは、ともにレゾナンスチューブと呼ばれ てきた.しかし、最近この相違を明らかにするため、 後者をその研究の端緒をつくった人々にちなんで Hartmann-Sprenger (H·S) チューブと呼ぶことに 統一されつつある⁽²⁾⁽³⁾.したがって、本報告でも、こ の呼び名に従う.

H・S チューブの熱効果現象については、今日まで 多くの基礎的研究が積み重ねられ、現象の概要は定性 的にほぼ明らかにされている.しかし、最近 MHD 発電への応用の可能性⁽⁴⁾、高温を利用する物理・化学 の分野への応用などが検討され、また単純で確実なロ ケットエンジンの着火器(気体マッチとも呼ばれる) として実用化が検討されているため⁽⁵⁾⁽⁶⁾, H・S チュ ーブの示す熱効果現象の定量的な解析が要求されてい る.とくに、H・S チューブ内気体の初期温度上昇過 程、および最高到違温度が、チューブ形状、材質、励

川橋正昭**,鈴木 允**

振条件などによって、どのように変化するかを明らか にする必要がある.

H·S チューブの熱効果現象については、その名の示 すように 1954年 H. Sprenger によってはじめて組 織的な実験が行われ⁽²⁾,チューブ長さや,励振条件に よる現象の変化についての多くの実験結果が示され, 同時に Ranque-Hilsch のボルテックスチューブに よるエネルギ分離(7)(8)との関連についても述べられて いる.しかし、熱効果の要因については、チューブ内 流れの不可逆現象を示唆するにとどまった.その後, M. Sibulkin⁽⁹⁾, T. Vrebalovich⁽¹⁰⁾, I. Hall⁽¹¹⁾ らによ ってチューブ内の衝撃波伝ばが観測され、不可逆現象 の主たる要因が明らかにされてから、この現象によっ てもたらされる熱効果の限界を明らかにする点に興味 がうつった. J. Wilson⁽¹²⁾, A. Shapiro⁽¹⁸⁾らは、チュ ープ内気体温度上昇や、チューブ長さ方向温度こう配 と,衝撃波の成長・減衰との関連から,最高到達温度 の予測を行っているが、その結果は必ずしも実際の現 象に即したものではない. その後の M. Sibulkin⁽¹⁴⁾ の熱発生量を求めた詳細な実験により、熱効果の要因 が衝撃波だけではないことが示唆され、熱効果の限界

> を考えるには、より総合的な観点が必要と考え られるようになった. E. Brocher はその一連 の報告^{(15)~(17)}の中で、励振する噴流の状態に よって定まるチューブ内流れを単純化波動線図 で表し、衝撃波強さ、壁摩擦、熱移動のメカニ ズムについて予測し、熱効果発生要因およびそ の抑制要因について考察している.その結果、 熱効果発生要因として壁摩擦の影響が無視でき ないこと、抑制要因としてチューブ内に入りこ む噴流とチューブ内在気体との間の境界層を通 じての質量変換が、重要な役割をはたすことな どを示唆している.しかし、これらの報告では 主に定常温度状態における熱のバランスから考 察されており、温度の上昇過程での現象は明ら かにされていない. H·S チューブの初期気体

* 昭和 49 年 11 月 4 日 第 52 期全国大会講演会および昭和 50 年 10 月 11 日 第 53 期全国大会講演会において講演, 原稿受付 昭和 51 年 12 月 2 日. ** 正員, 埼玉大学工学部(浦和市下大久保 255).

温度上昇過程と、その後の最高到達状態に至る過程に おいては、熱効果発生のメカニズムは必ずしも同じで はなく、さらにチューブの波動状態も、衝撃波の成長 ・減衰などを考慮する必要がある。したがって、著者 らは、H・Sチューブの熱効果についての実験を行うと 同時に、すでに著者らが明らかにしたチューブ内流れ の解析結果⁽¹⁸⁾にもとづく流れのモデル化により、熱効 果の過渡状態を解析し、チューブ内気体の温度上昇過 程、およびその到達限界をもとめ、それに応じて上昇 するチューブ壁温度の計算値と実測値との比較から、 熟効果現象を明らかにする.

2. 実験結果

本実験に用いられた装置が、図1に示されている. H・S チューブ内の気体は、形状の簡単な先細平行/ ズルからの噴流によって励振される.その振動振幅お よび熱効果は、チューブ開ロ端の噴流内位置、および 噴流構造によって著しく変化する.噴流構造の変化

(ii) P∞/P1N=0.339(a) 棒がそう入されていないノズル

は、図に示されるようなノズル中心軸に沿ってそう入 される細い丸棒によってもたらされる.噴流によって チューブ内気体が励振されるためには、噴流の軸方向 局所よどみ圧分布に、いったん減少し、再び増加する ような特性を必要とする.先細平行ノズルからの噴流 では、外気とノズル入口圧力との比が臨界圧力比以下 の場合、不足膨張噴流となり、噴流はいったん膨張し 再び圧縮されるような周期的セル構造を示す.この場 合、膨張部で軸方向にマッハ数は増加し、圧縮部で減 少する.したがって、総圧ピトー管による局所よどみ 圧測定を行えば、その前方に生じる衝撃波の強さに応 じて、よどみ 圧分布は減少・増加の 傾向を示す.一

P_{1N}=0.339 (iii) P∞/P_{1N}=0.671 れていないノズル (b) 棒がそう入されているノズル (d: φ1mm) 図 2 先細平行ノズルからの自由噴流 シュリーレン写真

方,ノズルに丸棒(径d)をそう入すると、よどみ圧 分布は臨界圧力比以上でも減少・増加の傾向を示し, 励振条件を満足する. ここで, 先細平行ノズルからの 自由噴流をシュリーレン法により観測した結果が図2 に、またそれぞれの噴流について H.S チューブ開口

部と同じ形状の総圧ピトー管により測定されたよどみ 圧分布が図3に示されている.図2の結果から、棒の そう入によって噴流が二重のセル構造をもつことが見 られ,その結果図3に示されるように,よどみ圧極小 値の減少と,同じ圧力比では極小値を示す位置と回復

(i) $R_{\infty}/P_{1N}=0.258$

(ii) $P_{\infty}/P_{1N}=0.339$

(i) $P_{\infty}/P_{\rm IN} = 0.258$

(a) 棒がそう入されていない場合

(ii) $P_{\infty}/P_{1N}=0.339$ (b) 棒がそう入されている場合 上:x/L=0.1,下:x/L=0.4

スケール 横軸:0.5 ms/div 縦軸:0.57 kg/cm²/div (i), (ii) 0.40 kg/cm²/div (iii) 図 4 圧力履歴(実測値)

(iii) $P_{\infty}/P_{1N}=0.671$

後極大値を示す位置との間の距離の増加がもたらされ る. さらに,棒そう入によって臨界圧力比以上でも, 噴流軸方向よどみ圧に変化を生じていることがわか る. つぎに,このような特性をもった噴流で励振され たときに,最も高い熱効果が得られる場合のチューブ 内圧力履歴と壁温度分布が,図4および5に示されて いる.ここで,変動圧力測定には半導体圧力変換器, 壁温度測定には Ø0.15のクロメル・アルメル 熱電対 が用いられている.チューブ材質は,一般的な材料の うちで比較的熱伝導率の低いステンレスと,高い銅を 用いる.図4の結果は,棒付きノズルからの噴流で励 振された場合のほうが,圧力振幅が大きく,衝撃波振

幅も大きいことを示している. また, 臨界圧力比以上 の場合にも、衝撃波の存在が見られる. つぎに、図5 (a)(i) はノズルに棒がそう入されていない場合の圧 力比およびチューブ材質による最高到達壁温度分布変 化であり、(a)(ii) は棒付きの場合である. ここで、 無次元化壁温度 T_{NW} は、 $T_N=1+(T-T_{IN})/\delta Tad$ の関係を用いて得られる. なお,この場合のTは壁 温度であり、 T_{IN} はノズル入口温度、 δTad は断熱熱 落差である. これらの結果から,同じ材質では圧力比 によらず壁温度分布が同じ傾向を示すことがわかる. 一方,図5(b)の結果は,噴流構造による現象の変化 を示している. これらの結果から,熱効果はチューブ 内気体の振動振幅に依存し,その振動振幅は噴流よど み圧極小値に対する回復後の極大値との比、およびそ れらの値を示す位置のへだたりに依存して、その両者 がともに大きいほど,振幅が大きくなることがわか る. つぎに, チューブ閉端壁温度過渡状態が解析結果 とともに図9(a)(ii)に示されている. この結果か ら, 棒付きノズルの場合, およびチューブ材質の比熱 が小さいほど、初期壁温度上昇率は 高いこと がわか る.

3. 熱効果解析モデル

H・S チューブの 熱効果は, チューブ内流れにおけ る不可逆過程のエネルギ消散による熱発生と, 熱移動 や混合による熱のにげとの差の蓄積によって生じ, そ

れがバランスするまで現象が進む. このよ うな非平衡過程に対する基礎式は,連続 式,運動量式およびエネルギ輸送方程式で ある.しかし,熱効果の主要因であるチュ ープ内伝ば衝撃波を考慮して,基礎式を厳 密に解析することは困難である. そこで本 解析では,まず流れをモデル化し,そのモ デルに従って熱の計算を行う。

3・1 チューブ内流れのモデル チュー ブ内流れは,噴流構造やチューブ開口端の 噴流内位置,また二次共鳴器取付けなどに よって変化し⁽¹⁹⁾,熱効果も変化する. こ のようなチューブ内流れを,すでに著者ら が示した解析結果⁽¹⁸⁾にもとづき モデル化 する.解析では,チューブ内を一次元非定 常流と仮定し,壁摩擦および熱移動を考慮 して,基礎式を

$$\begin{aligned} \frac{\partial \rho_G}{\partial t} &+ \frac{\partial}{\partial x} \left(\rho_G u \right) = 0 \dots \left(1 \right) \\ \frac{\partial u}{\partial t} &+ u \frac{\partial u}{\partial x} + \frac{1}{\rho_G} \frac{\partial p}{\partial x} + \frac{1}{\rho_G} F = 0 \\ \dots \left(2 \right) \\ q \rho_G dx &= \frac{\partial}{\partial t} \left\{ \rho_G dx \left(c_* T_G + \frac{u^2}{2} \right) \right\} \\ &+ \frac{\partial}{\partial x} \left\{ \rho_G u \left(c_* T_G + \frac{p}{\rho_G} + \frac{u^2}{2} \right) \right\} dx \dots \left(3 \right) \end{aligned}$$

とした. ここで, ρ :密度, u:軸方向流 速, p: 圧力, F: 単位長さ 当たりの 壁摩 擦応力, q: 単位質量, 単位時間当 たりの 熱移動量, c_{\bullet} : 定容比熱, T: 温度, t:時

間, x:軸方向座標であり, 添字Gは気体についてで ある.これらの式は, 衝撃波や接触面などの不連続面 を横切って適用することはできない.不連続面によっ て領域は分割されるが, 各不連続面で満足する連続の 条件により領域は結ばれる.熱計算では衝撃波強さお よび接触面軌跡が重要であるが, 両者を考慮した流れ の解析はたいへん煩雑になり困難 である.したがっ て, 流れを接触面を考慮して解析し, 衝撃波振幅は解 析結果の圧力履歴から予測して, 図6に示すような流 れのモデルをつくる.基礎式は, 凝似特性曲線法によ り数値解析されるが, 計算条件は以下の と * り であ る.

であり、fは瞬間流速値に対応するなめらかな円管内 摩擦係数である.一方,熱移動 q は、1 周期平均流速 値にもとづく強制対流伝熱を考え、用いたヌセルト数 の式は、

 $N_u = 0.023 R_e^{0.8} P_r^{0.4}$ (5)

である. ここで, R. はレイノルズ数, P. はプラント ル数である.

- (ii) 境界条件⁽¹⁸⁾⁽²⁰⁾
- x=0 $u \ge 0$: $a^2 + (\kappa 1)/2u^2 = a_{IN^2}$ u < 0:棒なし $p + \rho_G u^2 = p_{r0}$ 棒付き $p = p_\infty$

ここで,a:音速, p_{r0} :流出噴流よどみ圧, p_{∞} :外 気圧, κ :比熱比である.

- $x = L \quad u = 0$
- (ⅲ) 初期条件
- $t=0: p=p_{\infty}, u=0$

これらの条件で計算された結果は、圧力履歴の比較 で実測値とよい一致を示している.一般に、棒付きの 場合に圧力振幅が大きく、接触面の入り込みは大き い.また、最底圧力値が低く、衝撃波振幅は大きくな ると考えられる.ここで、棒付きの場合の計算結果例 を図7に示す.この結果から、各位置での単純化され た波の振幅、波通過後の流速がもとめられ接触面の軌 跡とともに図6のような流れのモデルがつくられる. このモデルでは、波と波の間で、圧力および流速は一 定とされる.

3・2 熱計算モデル ここでは、チューブ内気体の 温度上昇過程およびそれに応じて上昇する壁温度を解 析するモデルを考える.気体温度計算では、流れのモ デルにもとづく衝撃波を考慮するため、その基礎式は 非平衡系でのエントロピ保存則

とする.一方,チューブ壁応答温度についての基礎式 は,非定常熱伝導方程式,

$$\rho_{\mathbf{W}}c_{\mathbf{W}}\frac{\partial T_{\mathbf{W}}}{\partial t} = \lambda_{\mathbf{W}}\overline{\rho}^{2}T_{\mathbf{W}} + Q \cdots (8)$$

である. ここで, $s: 比エントロピ, J_{s}: エントロピ流$ $束 (<math>J_{s}=J_{H}/T_{G}, J_{H}:$ 熱流束), $\sigma_{s}: エントロピ生成$ $量, <math>c_{p}: 定 E 比熱, R: 気体定数, cw: 壁比熱, <math>\lambda w:$ 壁熱伝導率, Q:熱生成量である. これらの式を, 流 れのモデルおよび熱計算モデルにあわせて変形する. 式 (6) は, 熱移動, 壁摩擦を考慮して,

$$\rho_G \frac{Ds}{Dt} = -\frac{1}{T_G} \nabla \cdot \boldsymbol{J}_H - \frac{1}{T_G} F \boldsymbol{u} + \sigma_{SH} \dots \dots (9)$$

となる. ここで, osu は衝撃波によるエントロピ生成 量である. さらに, チューブを図8に示すような微小 要素に分割して考え, 式(9)の右辺第1項の要素内平 均を,

$$\overline{\mathcal{V}} \cdot \overline{J_H} = \frac{1}{\delta V} \int \int_A J_H \cdot n \, dA$$
$$= \frac{1}{\delta V} \left\{ \alpha_i (T_G - T_W) A' - \lambda_G \frac{\partial^2 T_G}{\partial x^2} A'' \right\} \cdots (10)$$

とする. ここで, δV :要素体積, A: 伝熱面積, A': 要素内表面積, A'': チューブ断面積, α : 熱伝達率, λG : 気体の熱伝導率である. 一方, 式(7) は図6の各 時間区分内で右辺第2項は零となり, 波および接触面 通過時には, 通過直前・直後で局所平衡状態を仮定し て, 積分形

ピ変化とし,接触面については,p=p'として計算される.

つぎに、チューブ壁での熱伝導では、壁厚さが十分 薄いものとして一次元仮定を行い、内壁と内部気体、 および外壁と外気との間の対流伝熱による熱流入量を 熱発生項として考えれば、壁要素部分に対する式(6) は、

となる.ここで、 $\delta V'$:壁要素体積, A''':壁要素外表 面積である.これらの式が差分法陽解法によって計算 され、チューブ内気体および壁温度の上昇過程および 最終到達状態が計算される.なお、計算条件は以下の とおりである.

は,流れの解析と同じ方法による.内部の対流伝熱 は,図6における各時間区分内の速度に対応して,式 (5)により計算される.また,チューブ外壁と外気と の間は自然対流が維持されるものとする.

- (ii) 境界条件
- 気体

 $x=0:s=s_{jet}$ (噴流のエントロピ)

x=L: + - ブ閉端との対流伝熱

壁

$$x=0:T_W=T_{IN}$$

允

x=L: 外気との対流伝熱

(iii) 初期条件(第1周期めの状態)

気体:第1周期めの各時間区分 t_j→t_{j+1} で

$$T_{G} = \left\{ \frac{p(t_{j} \to t_{j+1})}{p_{\infty}} \right\}^{(k-1)/k} e^{\sigma_{SH}/c_{p}} \cdot T_{\infty}$$

壁:
$$T_W = T_{\alpha}$$

なお, チューブ内各位置 での 1 周期平均気体温度 は,

$$\bar{T}_{G} = \frac{\int^{\tau_{r}} \rho_{G} T_{G} dt}{\int^{\tau_{r}} \rho_{G} dt} \qquad (13)$$

として計算する...

計算結果と実測値の比較および考察

チューブ内気体温度の計算結果および壁温度の計算 結果と実測値との比較が,図9~11に示されている. 図9(a)(i)は,閉端部平均気体温度の初期上昇であ り,(a)(ii)は最高到達状態にいたるまでの上昇過程 である.図9(b)は壁温度上昇過程である.図10(a) は最高到達気体温度分布計算値であり,(b)は壁温度

図 9 温度上昇過程

分布である.また,図 11 に閉端部1周期間気体温度 変動計算値の例を示している.

・・・・・における計算結果と実測値を比較すると、初 期温度上昇率は計算結果のほうが小さいが、噴流構造 およびチューブ材質による違いでは実測値と一致して いる.また,最高到達温度分布では,チューブ中ほど で計算値と実測値は異なるが、閉端部ではよい一致を 示している.これらの結果から,本計算における気体 温度は、実際の現象での気体温度を推測し得るものと して、以下に考察する.

(1) 閉端部付近の平均気体温度は、本計算での設

定条件のもとで,励振開始から約20周期(約50ms) で、棒付きの場合およそ 800°K まで上昇すると推測 される.この結果は、同じ条件のもとではチューブ材 質によらない.

(2) 初期の急しゅんな気体温度上昇以降は、ゆる やかに上昇するが、この部分での温度上昇率は、計算 条件の影響を大きく受ける.したがって,熱伝達率の 設定などについて、さらに検討する必要がある.

(3) チューブ材質および噴流構造は,最終到達温 度状態に大きく影響 するが, 同じ 励振条件 のもとで は、当然のことながら熱伝導率の低い材質によって, 高い熱効果が得られる.

(4) 本計算での閉端部最高到達平均気体温度は, 棒付きノズルの場合,ステンレスで1100°K,銅で 900°K であり、この結果は従来の研究で予測された気 体温度とほぼ一致している.

(b) チューブ材質: 銅 図 11 閉端部1周期気体温度変動(棒付き計算値)

(5) 本計算での壁温度分布で、チューブ中ほどおよ び熱伝導率の低い場合の実測との相違は、E. Brocher の主張する接解面での質量交換を考慮する必要がある ことを示すものと考えられる.

5、まとめ

H·S チューブの熱効果に関する実験,および解析 により以下のような結果を得た.

(1) 先細平行ノズル中心に、細い棒をそう入する と、チューブ内気体の励振領域が広まり、振幅も大き くなり熱効果も増大する.さらに亜音速噴流でも励振 され、熱効果を生じる.

(2) 本計算結果から気体温度の上昇過程を推測す れば、初期上昇ではチューブ材質によらず、時間の経 過とともに材質による変化が現れる.

(3) 気体温度の計算結果は、その初期上昇におい て、従来研究されてきた着火器の備えるべき条件を満 たすことを示しており、さらに 最高到達状態の 結果 は、高温利用の可能性を検討する基礎資料となる。

なお,本報告の計算は,東京大学大型計算機センタ ーで行った.終わりに,本学学生の清水,上野両君の 協力に感謝する.

〔**質問〕** 松尾 - 秦・川越茂敏 (九州大学工学部)

外気とノズル入口圧力 との比 p_{∞}/p_{IN} を臨界圧力 比以上の一定値に保つ場合、ノズル内に棒をそう入し ても流れはチョークしないが、図3(b)の $p_{\infty}/p_{IN}=$ 0.671 の場合のよどみ圧が臨界圧力比以下の場合に観 察されるような軸方向変化をする理由についてご説明 願いたい.

[回答] ノズル中心軸に沿ってそう入された棒の 先端後流に形成される伴流領域では、先端近傍で流れ はほぼ静止しているが、ノズル出口からの距離の増加 とともに、周囲との混合によって流れは平均化され、 その後の混合領域の拡大とともに噴流全体が減衰して いく、このような棒がそう入されたノズルからの亜音 速領域での噴流について、H・Sチューブ開口端と同じ 形状の開口部(内径はノズル出口径と同じ)を有する 総圧ピトー管で、噴流の軸方向よどみ圧変化を測定す

文 献

(1) Chester, W., J. Fluid Mech., 18-1 (1964), 44.

允

- (2) Sprenger, H., Mitt. Inst. Aero. E.T.H., 21 (1954), 18.
- (3) Hartmann, J., J. Phil. Mag., 11-72 (1931), 926.
- (4) Brocher, E. and Betton, M., Phys. Fluids, 18-7 (1975-7), 795.
- (5) Phillips, B.R. and Pavli, A.J., NASA TN, D-6354 (1971).
- (6) Rakawsky, E.L., ほか2名, Fludics Quart., 4 (1974), 13.
- (7) Ranque, G.J., J. Phys. Radium, 7 (1933), 112.
- (8) Hilsh, R., Z. Nalurforschg, (1946), 208.
- (9) Sibulkin, M., J.Aeros. Sci., 25-7 (1958-7), 465.
- (10) Vrebalovich, T., Bull. Amer. Phys. Soc., 3 (1958), 227.
- (11) Hall, I. and Berry, C., J. Aeros. Sci., 26-4 (1959-4), 253.
- (12) Wilson, J. and Resler, E.L., Jr., J. Aeros. Sci., 26-7 (1959-7), 461.
- (13) Shapiro, A.H., J.Aeros.Sci., 27-1 (1960-1), 66.
- (14) Sibulkin, M., Z. Angew. Math. u. Phys., 14 (1963), 695.
- Brocher, E., ほか2名, J. Fluid Mech., 43-2 (1970), 369.
- (16) Brocher, E. and Maresca, C., Int. J. Heat & Mass Transf., 16 (1973), 529.
- (17) Brocher, E., AIAA J., 13-10 (1975-10), 1265.
- (18) 川橋・ほか3名, 機論, 40-332 (昭 49-4), 965.
- (19) 川橋·鈴木, 機講論, No.720-15 (昭 47-8), 69.
- (20) 川橋・鈴木, 機講論, No.750-16 (昭 50-10), 253.

讑

討

る場合,本論文で着目しているノズル・ピトー管距離 の範囲では,以下のような流れ状態の変化が考えられ る.

ノズル・ピトー管間距離が十分小さい場合,両者間 では半径方向流れが支配的であり,衝突面中心部に形 成されると考えられるはく離領域内の二次流れによっ て,棒後流は平均化され,測定されるよどみ圧はほぼ 入口圧力に近い値を示す.ノズル・ピトー管間距離の 増加とともに,軸方向流れが支配的になり,棒先端後 流の伴流領域の影響が現れ,噴流の心部と伴流領域の 面積比に比例したよどみ圧の減少が生じる.さらにノ ズル・ピトー管距離を増加させると,混合による流れ の発達とともに,中心部のよどみ圧が上昇し,それと ともに測定されるよどみ圧が上昇する.

以上のような流れの変化によって、亜音速領域で も、臨界圧力比以下の場合に類似した軸方向のよどみ 圧変化を生じる.