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An Efficient Search Method Based on Dynamic Attention Map by
Ising Model
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SUMMARY This paper presents Dynamic Attention Map by Ising
model for face detection. In general, a face detector can not know where
faces there are and how many faces there are in advance. Therefore, the face
detector must search the whole regions on the image and requires much
computational time. To speed up the search, the information obtained at
previous search points should be used effectively. In order to use the like-
lihood of face obtained at previous search points effectively, Ising model
is adopted to face detection. Ising model has the two-state spins; “up” and
“down”. The state of a spin is updated by depending on the neighboring
spins and an external magnetic field. Ising spins are assigned to “face” and
“non-face” states of face detection. In addition, the measured likelihood
of face is integrated into the energy function of Ising model as the exter-
nal magnetic field. It is confirmed that face candidates would be reduced
effectively by spin flip dynamics. To improve the search performance fur-
ther, the single level Ising search method is extended to the multilevel Ising
search. The interactions between two layers which are characterized by the
renormalization group method is used to reduce the face candidates. The
effectiveness of the multilevel Ising search method is also confirmed by the
comparison with the single level Ising search method.
key words: Ising model, dynamic attention map, renormalization group,
efficient search, face detection

1. Introduction

Face detection is the first essential step for automatic face
recognition. Since automatic face recognition has many po-
tential applications [1]–[6], face detection becomes an ac-
tive research area [7], [8]. Some frontal face detection meth-
ods give high detection rate under the restricted environ-
ment [7]–[12]. However, in general, the face detector must
search the whole regions on the input image because the sys-
tem can not know where faces there are and how many faces
there are in advance. Therefore, face detection requires
much computational time. The efficient search algorithm
without decreasing the detection accuracy is required.

The face detection methods based on color informa-
tion of faces do not require much computational cost [13],
[14]. However, it is not easy to detect the correct position
of faces from only color information. Color information of
faces is effective to reduce the candidates of faces. Row-

Manuscript received October 8, 2004.
Manuscript revised February 1, 2005.
†The author is with The University of Electro-Communica-

tions, Chofu-shi, 182–8585 Japan.
††The authors are with Saitama University, Saitama-shi, 338–

8570 Japan.
†††The author is with National Institute of Advanced Industrial

Science and Technology (AIST), Tsukuba-shi, 305–8568 Japan.
a) E-mail: hotta@ice.uec.ac.jp

DOI: 10.1093/ietisy/e88–d.10.2286

ley et al. [11] make the face detector be invariant to trans-
lations about 25%. The search speed is improved by using
coarse search. However, in general, there is the trade-off
between the search speed and the false detection rate. On
the other hand, we applied the random search method, in
which the search point is selected randomly, to face detec-
tion method [15]. Although the average speed of the random
search is improved, the speed of the random search depends
on the random number and is unstable. The reasons are as
follows. (1) Each matching in random search is performed
independently. (2) The random search method does not uti-
lize the information (the likelihood of face) obtained at pre-
vious search points. In this paper, in order to use the likeli-
hood of face obtained at previous search points effectively,
Ising model [16], [17] is adopted to face detection [18].

Ising model is the simplest model of magnetization. It
can take only one state of “up” and “down”. The state of the
spin depends on both the state of the neighboring spins and
an external magnetic field. Since face detection problem has
only two states; “face” and “non-face”, we can assign Ising
spins to “face” and “non-face” states of face detection. In
our face detection method, the proximity to the mean vector
of face class in discriminant space represents the likelihood
of face. The neighboring spins of previous search point (the
selected spin) are expected to have similar likelihood of face
as that of previous search points. If the measured likeli-
hood of face is integrated into the energy function of Ising
model as the external magnetic field, then the states of the
spins in neighboring region of previous search point can be
estimated through spin flip dynamics. This paper demon-
strates that the search space for face detection is narrowed
down effectively by spin flip dynamics which use the state of
neighboring spins and the measured likelihood of face. Fur-
thermore, we extend Ising search to multilevel Ising search
by taking the renormalization group method into consider-
ation [19], [20]. In the multilevel Ising search, Ising model
is adopted to the different layers and the interaction between
the different layers is used to reduce the face candidates. The
effectiveness of the multilevel Ising search method is also
confirmed by the comparison with single level Ising search
method.

In Sect. 2, we explain a scale and rotation invariant face
detection method used in this paper. The performances of
that method are also shown in Sect. 2. Ising model, which is
the simplest model of magnetization, is explained in Sect. 3.
How to adopt Ising model to face detection is explained in
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Sect. 4. Section 5 is for the experimental results of single
level Ising search method. In Sect. 6, Ising search method
is extended to multilevel Ising search method. The effec-
tiveness of the multilevel Ising search method is shown in
Sect. 7. Finally, conclusion is described in Sect. 8.

2. Scale and Rotation Invariant Face Detection Method

This section gives a review of the scale and (2D) rotation
invariant face detection method using Higher-order Local
AutoCorrelation (HLAC) features extracted from Log-Polar
image [15]. That method consists of the following three
steps.

(1) The center point of Log-Polar transformation is set to
a certain position on the input image and a Log-Polar
image is constructed.

(2) HLAC features are extracted from the Log-Polar im-
age.

(3) The extracted features are projected into the discrim-
inant space for face and non-face classification. Then
measure the proximity to mean of face class (likelihood
of face) and decide face or non-face.

By applying this process to all positions on the input image,
the face detector can find faces in the image. Figure 1 shows
the flow of face detection. In the training of the face class,
the center point of Log-Polar transform is set to the top of
one’s nose. Therefore, that detection method is invariant to
scalings and rotations in terms of top of one’s nose. First,
we explain Log-Polar transformation [21]–[24] and HLAC
features [25], [26].

2.1 HLAC Features Extracted from Log-Polar Image

Input image is generally represented as a collection of pixel
points on the Cartesian coordinate in which the origin is
at the middle pixels in the height and width of the im-
age. Log-Polar image can be constructed by the follow-
ing transformations of the coordinates. At first, the point
(x, y) on the Cartesian coordinate is transformed into the
point (ρ =

√
(x2 + y2), θ = arctan(y/x)) on the Polar co-

ordinate. The point on the Polar coordinate is transformed
into the point (z = log(ρ), θ) on the Log-Polar coordinate
by taking the logarithm of the scale ρ. Figure 2 (a) and (b)
show Cartesian coordinate (input image) and Log-Polar co-
ordinate (image).

In this paper, we use the re-sampling method by the

Fig. 1 The flow of the scale and rotation invariant face detection method.

inverse transformation to obtain the Log-Polar image from
the input image. To obtain the pixel value at the point (zi, θ j)
on the Log-Polar image, the point is inversely transformed
into the point (exp(zi) cos(θ j), exp(zi) sin(θ j)) on the Carte-
sian coordinate. Then the value of the point (zi, θ j) is esti-
mated as the mean intensity value of the neighboring points
of the back-projected point (exp(zi) cos(θ j), exp(zi) sin(θ j))
on the input image. We can obtain a Log-Polar image by
performing this estimation for all points on the Log-Polar
coordinate. Figure 3 (a)–(c) show an input image, the sam-
pling points used to construct the Log-Polar image, and its
Log-Polar image. Note that the sampling density decreases
from the center to the periphery. This means that the ex-
tracted features contain much information of the target on
the central region than that on the peripheral regions such as
background.

Log-Polar image has a good property for scale and ro-
tation invariant feature extraction. Scalings of a target are
represented as the shifts along z (= log(ρ)) axis on the Log-
Polar image. Rotations of a target are also represented as
the shifts along θ axis. Figure 4 (a)–(f) show Log-Polar im-
age of a simple 2D shape with different scales and rotations.
Both scalings and rotations of the target are represented as
the shifts in Log-Polar image.

To obtain the scale and rotation invariant features, we
have to extract shift invariant features from the Log-Polar
image because the scalings and rotations are represented as
the shifts in Log-Polar image. In this paper, HLAC fea-
tures [25], [26] are utilized as shift invariant features.

It is well known that autocorrelation function is shift-
invariant. Its extension to higher orders is higher-order au-
tocorrelation function. The Nth-order autocorrelation func-
tions with N displacements (a1, a2, · · · , aN) from the refer-

Fig. 2 Cartesian coordinate and Log-Polar coordinate.

Fig. 3 Log-Polar transformation. (a) Input image (160 × 120 pixels).
(b) Sampling points used to construct the Log-Polar image. (c) Log-Polar
transformed image (60 × 60 pixels).
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Fig. 4 Examples of Log-Polar image of 2D shapes. (a) Small size.
(b) Normal size. (e) 45◦ rotated image of (b). (d) Log-Polar image of
(a). (e) Log-Polar image of (b). (f) Log-Polar image of (c).

Fig. 5 The 35 local mask patterns.

ence point r are defined by

xN (a1, a2, · · · , aN)∫
I(r)I(r + a1) · · · I(r + aN)dr, (1)

where function I(r) denotes a intensity value of a Log-Polar
image and r = (z = log(ρ), θ). Since the number of these au-
tocorrelation functions obtained by the combination of the
displacements over the image are enormous, we must reduce
them for practical application. At first, we restrict the order
N up to the second (N = 0, 1, 2). Then, we also restrict the
range of displacements within a local 3×3 window, because
the correlation within local region is much higher than the
correlation between far points. In other words, we consider
the autocorrelations up to the three points within 3 × 3 win-
dow. By eliminating the displacements to which are equiva-
lent by shift, the number of the patterns of the displacements
is reduced to 35. Figure 5 shows 35 mask patterns. The fea-
tures are obtained by scanning the Log-Polar image with the

35 local 3 × 3 mask patterns and by computing the sums of
the products of the corresponding pixels to “1” in the mask
patterns. The “11” and “111” in the mask patterns represent
the square and the cube of the same pixel value. Since these
features are obviously invariant to the shift, HLAC features
extracted from the Log-Polar image become robust to linear
scalings and rotations of a target in the input image.

In following experiments, the color informations are
used to improve the accuracy of face and non-face classi-
fication. Since RGB informations correlate each other, we
utilize the color representation (R+G+B)/3, R-B, (2G-R-
B)/2, which are obtained by Principal Component Analysis
of colors [27], to obtain the independent color information.
HLAC features of Log-Polar image are extracted from each
color independently. Namely, the number of features is 105
(= 35 features × 3 colors).

2.2 Face and Non-face Classification Based on Linear Dis-
criminant Analysis

HLAC features extracted from a Log-Polar image are gen-
eral, primitive, and independent of the recognition task.
These features have enough information to discriminate
faces from non-faces. To get new effective features for the
given recognition task (face and non-face classification), it
is necessary to combine these features. For this purpose, we
use Linear Discriminant Analysis (LDA).

For face detection, we have to design a classifier which
can classify face and non-face. It is expected that face class
includes only face images, but non-face class includes many
kinds of images except face images. It is difficult to deal
with non-face class as a single cluster in the feature space.
Thus we modified the discriminant criterion such that the
covariance of face class is minimized while the covariance
between face class and each sample in non-face class is
maximized.

In this paper, face class and non-face samples are rep-
resented as

CF = {xFi | i = 1, · · · ,NF},
CNF = {xNFk | k = 1, · · · ,NNF }, (2)

where NF is the number of face samples and NNF is the num-
ber of non-face samples. The mean vector of face class, the
covariance matrix (ΣF ) of face class, and the covariance ma-
trix (ΣC) between the mean vector of face class and each
sample of non-face class are given by

x̄F =
1

NF

NF∑
i=1

xFi,

ΣF =
1

NF

NF∑
i=1

xFixT
Fi − x̄F x̄T

F ,

ΣC =
1

NNF

NNF∑
k=1

(xNFk − x̄F )(xNFk − x̄F )T , (3)

where the symbol T denotes the transpose.
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New features y are obtained by linear combination of
primitive features x as y = AT x, where A = [ai j] is a coeffi-
cients matrix.

To construct the discriminant space in which the co-
variance of face class is minimized and the covariance be-
tween the mean vector of face class and each sample of non-
face class is maximized, we use the discriminant criterion
J = tr

(
Σ̂−1

F Σ̂C

)
, where Σ̂F and Σ̂C are the covariance matrix

of face class and the covariance matrix between the mean
vector of face class and each sample of non-face class in
the discriminant space, respectively. The optimal coefficient
matrix A, which maximizes this discriminant criterion J, is
obtained by solving the eigen-value problem

ΣC A = ΣF AΛ
(
ATΣF A = I

)
. (4)

The dimension L of discriminant space is given as the lowest
value that satisfies

98% <=

∑L
i=1 λi∑M
j=1 λ j

, (5)

where M is the dimension of primitive features.
To investigate whether the unknown input is face or

non-face, the proximity to the mean vector of face class in
discriminant space is evaluated. If the measured distance
is below a certain threshold, then the input is classified as
face class. In this classification, the performance of face de-
tection depends on the value of the threshold. The optimal
threshold is experimentally determined by using the follow-
ing two probabilities. The first probability is PF = 1−nF/NF

in which the samples of face class are miss-classified as non-
face, where nF is the number of the samples of face class
which has a value less than the threshold and NF is the total
number of samples of face class. The second probability is
PNF = nNF/NNF in which the samples of non-face class are
miss-classified as face, where nNF is the number of non-face
samples which has a value less than the threshold and NNF

is the number of non-face samples. We define the threshold
as a distance from the mean of the face class. As the thresh-
old is changed from zero to infinity, two probabilities vary
depending on the threshold. Since these two probabilities
are error probabilities, we would like to minimize both error
probabilities. Thus we can select the optimal threshold in
which the sum of the two probabilities is minimized.

2.3 Performance of Face Detection

First, we investigated how the proximity to the mean of face
class changes, when the searched point is moved along the
white line in Fig. 6 (a). For good face detection, only the
point whose center corresponds to the center of a face (one’s
nose) must be below the threshold and other points must
be above the threshold. The results are shown in Fig. 6 (b).
The horizontal dotted line in Fig. 6 (b) shows the value of
optimal threshold determined by the experiment. The im-
age in Fig. 6 (a) includes face and hand with same size and
same color. Although we find the local minimum at hand re-
gions, their distances are bigger than the threshold. On the

Fig. 6 The proximity to the mean vector of face class in discriminant
space.

Fig. 7 Examples of the scale and rotation invariant face detection.
(a) Two persons with different scales. (b) One person inclined his face.

other hand, only the region in which a face locates at center
gives the distances below threshold. These results show that
the points, which have the distance below threshold, contain
certainly face.

Examples of the scale and rotation invariant face detec-
tion are shown in Fig. 7. The white cross is plotted on the
center of the detected region as face. If the white crosses are
on one’s nose, then the detection is correct. Figure 7 (a) rep-
resents the example of two persons with different scales. In
spite of the different scales, two faces are detected correctly
without changing the size of the image. Figure 7 (b) is the
example of the image in which human inclines his face. His
face is also detected correctly. This is because HLAC fea-
tures extracted from Log-Polar image are robust to scalings
and (2D) rotations of a face.

These results are obtained by searching the whole re-
gions on the image. In general, the system must search the
whole regions on the image because it is difficult to know
where are faces and how many faces there are in advance.
However, the exhaustive search method is not practical be-
cause of its computational cost. Previously we applied the
random search method, in which the search point is selected
randomly, to the face detection [15]. The average speed of
the search is improved by the random search method. How-
ever, the speed of random search depends on the random
numbers and is unstable because the random search method
does not make use of the information obtained at previous
search points. In order to use of the likelihood of face ob-
tained at previous search points effectively, Ising model is
adopted to face detection.
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3. Ising Model

Ising model is the simplest model of magnetization [16],
[17]. It consists of two state Ising spins; “up” and “down”.
The state of the spin depends on both the state of neighbor-
ing spins and the external magnetic field. Originally, Ising
model was proposed as a simplified version of Heisenberg
model, which consists of two state spins and interactions be-
tween all spins. Now this Ising model is quite famous for its
usefulness in the fields of physics and neural networks. The
energy of the spin si is given by

Ei = −J
∑

j∈nn(i)

si s j − Hsi, (6)

where Ei is the energy of the ith spin si, J is a coupling
constant of the spins, H is an external magnetic field, nn(i)
represents the nearest neighboring spins of the spin si, and
the spin si called Ising spin takes 1 (“up”) or −1 (“down”).
The state of the spin is updated according to the probability
which is proportional to exp(−β∆Ei), where β is a recipro-
cal of the temperature and ∆Ei is the energy change caused
by flipping the spin si. The energy change ∆Ei caused by
flipping the spin si is given by

∆Ei = 2J
∑

j∈nn(i)

si s j + 2Hsi. (7)

The dynamics of Ising model work to minimize the total
energy E.

4. Dynamic Attention Map by Ising Model

From Fig. 6 (b), we understand that the proximity to the
mean vector of face class in discriminant space represents
the likelihood of face. The shorter distance in the discrim-
inant space means the higher likelihood of face. The spin
flip dynamics works to minimize the energy function which
includes the state of neighboring spins and an external mag-
netic field. If we integrate the measured likelihood of face
into the energy function of Ising model as an external mag-
netic field, then the state of neighboring spins of the selected
spin can be estimated through spin flip dynamics. This can
be used to reduce the search space dynamically by introduc-
ing the information obtained at previous searched points.

In face detection, there are also two states; “face” and
“non-face”. Here we set “face” to −1 (“down”) and “non-
face” to 1 (“up”). The direction of an external magnetic field
(H) is assumed to be “up” basically, because the non-face re-
gions in the images are wider than that of face. However, the
direction and magnitude of an external magnetic field should
be changed adaptively by the measured likelihood of face.
For example, if the measured likelihood of face is high, then
the strong external magnetic field should be given toward
“down” (the direction of “face”). On the other hand, if the
measured likelihood of face is low, then the strong external
magnetic field should be given toward “up” (the direction of

“non-face”). To do this, Hd(md(a)− θd) is used as a external
magnetic filed, where Hd is the coefficient of the external
magnetic field, md(a) is the measured likelihood of face (the
proximity to the mean vector of face class in discriminant
space) of the spin sa, and θd is the threshold to classify face
and non-face. In this formulation, the magnitude of the ex-
ternal magnetic field is changed according to the measured
likelihood of face. In addition, the direction of the external
magnetic field changes by depending on both threshold and
measured likelihood of face. The energy function reflecting
the measured likelihood of face (md(a)) of a selected spin sa

is given by

Ei = −J
∑

j∈nn(i)

si s j − Hd (md(a) − θd) si,

i ∈ NN(a), (8)

where NN(a) means the neighboring spins of the spin sa for
performing the spin flip dynamics, Ei is the energy of the
spin si, and nn(i) represents the nearest neighboring spins of
the spin si.

The color information of faces is effective to reduce the
search space for face detection. We can easily integrate the
likelihood of face in terms of the color information into the
energy function of Ising model. The discriminant space in
terms of color information is constructed by using color sig-
nals (RGB data) extracted from face and non-face images.
The proximity to the mean of face class in the discriminant
space in terms of color information represents the likelihood
of face in terms of color information. The optimal threshold
for discrimination using color information is determined by
an experiment.

The likelihood of face in terms of color information is
integrated into the energy of the spin si as

Ei = −J
∑

j∈nn(i)

si s j − Hd (md(a) − θd) si

− Hc (mc(a) − θc) si, (9)

where Hc represents the coefficient of the external magnetic
field in terms of color informations, mc(a) is the measured
likelihood of face using color information, and θc is the
threshold for discrimination using color information.

Then the state of each spin is updated according to the
probability which is proportional to exp(−β∆Ei), where ∆Ei

is the energy change caused by flipping the spin si, that is,

∆Ei = 2J
∑

j∈nn(i)

si s j + 2Hd (md(a) − θd) si

+ 2Hc (mc(a) − θc) si. (10)

We call the spin map obtained after spin flip dynamics it-
eration “Dynamics Attention Map”. Example of Dynamic
Attention Map is shown in Fig. 8. White pixels in the image
represent the spins remained as face candidates. The state
of spins are changed dynamically through spin flip dynam-
ics and face candidates are narrowed down effectively.

In the following, the meta algorithm for Ising search
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Fig. 8 Example of dynamic attention map.

method using Dynamic Attention Map is shown.

1. Set all spins to −1 (“face” state) and make the face list
for search. The list consists of the spins whose state is
“face”.

2. Select one spin sa randomly from the face list.
3. Extract the HLAC features from Log-Polar image of

the region centered at the selected spin sa. Then mea-
sure the likelihood of face in the discriminant space and
that in the discriminant space in terms of color informa-
tion of the selected spin sa.

4. Apply the spin flip dynamics for suitable number of
iterations within the neighboring regions of the selected
spin sa.

5. Remove the spins flipped from “face” to “non-face”
from the face list and add the spins flipped from “non-
face” to “face” to the face list. Note that, if the selected
spin to measure the likelihood of face is found to be
“non-face”, that spin is removed from the face list and
never flipped again. (The spin, which is found to be
“non-face”, works as the magnetic field. Its direction
is “up”.)

6. By repeating from 2 to 5, face candidates are narrowed
down effectively.

5. Evaluation of Ising Search Method

To investigate the effectiveness of Ising search method, Ising
search method is compared with the random search method.
In this experiment, the number of search is evaluated when
one spin below threshold is found. If face candidates are
narrowed down effectively, face is detected with the small
number of search.

The parameters of Ising search method are set to β =
0.2, J = 1.0, Hd = 0.25, Hc = 4.0, and Monte Carlo steps
(MCS) are performed 5 times in the neighboring 5×5 lattice
centered the selected spin. MCS is the process which in-
cludes the spin selection, energy computation, and spin flip
dynamics. The likelihood of face in terms of color informa-
tion is much smaller than that in terms of HLAC features of
Log-Polar image. In order to compensate for that gap, we
use large Hc.

Experiments are performed for four cases. Fig-
ure 9 (a)–(d) shows the face detection results obtained by
exhaustive search method. The white crosses in this Figure
represent the center of the detected region. The size of these

Fig. 9 The results obtained by using exhaustive search method.

Table 1 The comparison of the performance among the random search
method and Ising search method.

mean median
Ising random Ising random

case 1 213.32 580.26 217 474
case 2 211.29 551.03 217 361
case 3 46.35 58.70 34 42
case 4 54.25 71.06 45 50

images is 160 × 120 pixels. In this paper, the window size
for Log-Polar transformation is set to 60×60 pixels, and the
peripheral 32 pixels of the input image are not used as the
center points of Log-Polar transformation. Therefore, the
number of face candidates in the input image is 5,376. The
case 1 is one person in an image with face to the non-face
pixel-ratio 8/5,368. The case 2 is one person in an image
with face to the non-face pixel-ratio 9/5,367. The case 3 is
one person and his hand with face to the non-face pixel-ratio
91/5,285. The case 4 is two person at the different size with
face to the non-face pixel-ratio 89/5,287. Ising and random
search were repeated 100 times for each case with changing
the random number. The search was continued until face is
detected. In this experiment, there is no failure. The fail-
ure means that the face list becomes empty before finding a
face.

The mean and median number of search are shown in
Table 1. From Table 1, we understand that the number of
Ising search is about the half of random search. This result
shows that Ising search can narrow down face candidates
effectively. Figure 10 shows how the number of face can-
didates decreases. The random search makes the number of
the face candidates decrease gently. On the other hand, Ising
search makes the number of the face candidates decrease
steeply. Note that Ising search method makes the search
space narrower effectively than the random search method.

When an input image does not include faces, the search
time of the random search method corresponds to the ex-
haustive search method. On the other hand, Ising search
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method does not require so much time because Ising search
method can make the number of face candidates decrease
through spin flip dynamics. In the upper experiments, the
search is finished if only one face is detected. This search
method can not detect multiple faces. If Ising search is per-
formed until the number of face candidates becomes zero,
multiple faces can be detected. Since the face candidates
are already decreased through spin flip dynamics, the ad-
ditional search does not require much computational time.
Figure 11 (a) and (b) show the result obtained by exhaustive
search method. Dynamic Attention Maps obtained through
spin flip dynamics are shown in Fig. 11 (c) and (d). The

Fig. 10 How the number of face candidates decrease. (case 1 of Fig. 9)

Fig. 11 The face detection result obtained by using exhaustive search
method, Dynamic Attention Map, and search map obtained by using Ising
search method.

white pixels in Fig. 11 (c) and (d) represent the spins clas-
sified as face. The obtained Dynamic Attention Maps are
nearly equal to the results obtained by exhaustive search
method. Note that two person’s faces are detected correctly.
The search maps obtained in this experiment are shown in
Fig. 11 (e) and (f). The white pixels represent the spins
which are selected and classified. From Fig. 11 (e) and (f),
the regions around faces are searched finely. On the other
hand, the non-face regions are searched coarsely. This is be-
cause the state of neighboring spins are changed to non-face
though spin flip dynamics. From these results, the effective-
ness of Ising search method is demonstrated.

6. Multilevel Dynamic Attention Map

To improve the search performance further, the single level
Ising search method is extended to the multilevel Ising
search. The interactions between upper (coarse scaled) and
lower (fine scaled) layer are used to construct the multilevel
Dynamic Attention Map. The interactions between two lay-
ers are characterized by the renormalization group method
such that the state of the spin on the upper layer is deter-
mined by the states of the corresponding spins on the lower
layer and the couplings of the corresponding spins on the
lower layer is used in the spin flip dynamics on the upper
layer. Figure 12 shows the multilevel structure. When a spin
sl

a on the lower layer, which is in the “face” state and one of
the component spins of the spin su

a on the upper layer, is se-
lected to evaluate a likelihood of face on the lower layer, the
energy of the spin su

i on the upper layer layer can be given
as

Eupper
i = −J

∑
j∈nn(i)

su
i su

j − Jul

∑
k∈com(i)

su
i sl

k

− Hu
d(ml

d(a) − θd)su
i

− Hu
c (ml

c(a) − θc)su
i , i ∈ NNU(a), (11)

where the super scripts “u” and “l” stand for the quantities
on the upper layer and those on the lower layer, Jul is a cou-
pling constant for the interactions between the layers, com(i)
means the component spins sl

j on the lower layer of the spin
su

i , and NNU(a) means the neighboring spins to the spin su
a

for performing the spin flip dynamics. On the other hand,
the energy of the spin sl

i on the lower layer can be given as

Elower
i = −J

∑
j∈nn(i)

sl
is

l
j − Hl

d(ml
d(a) − θd)sl

i

Fig. 12 Multilevel spin map.
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− Hl
c(ml

c(a) − θc)sl
i, i ∈ NNL(a), (12)

where NNL(a) means the neighboring spins to the spin sl
a

for performing the spin flip dynamics.
Then the state of every spin su, l

i on each layer is up-
dated according to the probability which is proportional to
exp
(
−β∆Eupper, lower

i

)
, where

∆Eupper
i = 2J

∑
j∈nn(i)

su
i su

j + 2Jul

∑
k∈com(i)

su
i sl

k

+ 2Hu
d(ml

d(a) − θd)su
i

+ 2Hu
c (ml

c(a) − θc)su
i ,

∆Elower
i = 2J

∑
j∈nn(i)

sl
i s

l
j + 2Hl

d(ml
d(a) − θd)sl

i

+ 2Hl
c(ml

c(a) − θc)sl
i. (13)

This spin flip dynamics in Ising model on each layer creates
the multilevel Dynamic Attention Map.

In the following, we show the meta algorithm for the
multilevel Ising search.

1. Set all the spins on each layer to −1 (“face”) and make
the face list for search on the upper layer. The face list
consists of the spins in the “face” state on the upper
layer.

2. Select one spin
(
su

a
)

randomly from the face list on the
upper layer. Then select one spin

(
sl

a

)
in “face” state

randomly from the lower layer, which must be a com-
ponent spin of the selected spin on the upper layer. If
such all component spins on the lower layer are in the
“non-face” state, repeat this step until such the spin in
the “face” state on the lower layer is selected.

3. Measure the likelihood of face in the discriminant
space and that in the discriminant space in terms of
color information of the selected spin on the lower
layer.

4. Apply the spin flip dynamics for suitable number of
iterations on the lower layer.

5. Update the state of the spin on the upper layer. The
state of the spin on the upper layer depends on the num-
ber of spins in the “face” state on the lower layer. This
is a kind of the renormalization group method.

6. Apply the spin flip dynamics for suitable number of
iterations on the upper layer using the interactions be-
tween the layers and the likelihood of face obtained on
lower layer.

7. Remove the spins flipped from the “face” to the “non-
face” from the face list and add the spins flipped from
the “non-face” to the “face” to the face list. Note that,
if the selected spin to measure the likelihood of face is
found to be in the “non-face” state, that spin is removed
from the face list and never flipped again.

8. By repeating from 2 to 7, face candidates are narrowed
down effectively.

7. Evaluation of Multilevel Ising Search Method

This section shows the effectiveness of multilevel Ising
search method. In the following experiments, we use the
same images used in the experiments for the single level
Ising search method. The number of the component spins
on the lower layer of the single spin on the upper layer is
2 × 2. The other parameters of the multilevel Ising search
are set to β = 0.2, Hu

d = Hl
d = 0.2, Hu

c = Hl
c = 6.0, J = 1.0,

and Jul = 2.0. Monte Carlo steps (MCS) are performed 5
times in the neighboring 5 × 5 lattices centered the selected
spin.

The face detection experiment was repeated 100 times
for each case. Table 2 shows the means and the medians
over 100 trials for each case. Comparing this result with
that of the single level Ising search (See Tables 1 and 2),
we understand that the performance of the multilevel Ising
search is better than that of the single level Ising search. Ex-
amples of Dynamic Attention Maps obtained after detecting
a face are shown in Fig. 13. The white regions in Fig. 13 (a)
and (b) represent the spins in the “face” state on the upper
and lower layer respectively. Dynamic Attention Map on the
upper layer shows where the face is. On the other hand, the
many spins in “face” state are remained in Dynamic Atten-
tion Map on the lower layer. The remained spins in “face”
state on non-face regions represent the component spins of
the spin which is removed from face list on the upper layer
after only one search. It is considered that the likelihood of
face of these remained spins on non-face regions are low and
the corresponding spins on the upper layer of these spins on
the lower layer are flipped from “face” to “non-face” by the
spin flip dynamics on the upper layer. The spin flip dynam-
ics on the upper layer makes the search on non-face regions
coarse. The number of search is decreased by this process.
In contrast to it, face regions are searched finely.

To investigate the effectiveness of the multilevel Ising

Table 2 The performance of multilevel Ising search method.

mean median
case 1 109.15 108
case 2 105.77 111
case 3 35.37 32
case 4 34.99 29

Fig. 13 Dynamic Attention Map obtained by multilevel Ising search
method. (a) Dynamic Attention Map on upper layer. (b) Dynamic At-
tention Map on lower layer.
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Fig. 14 Dynamic Attention Map on lower layer and search map on lower
layer obtained by multilevel Ising search method. (a) and (b) Dynamic
Attention Map on lower layer (c) and (d) Search map on lower layer.

search, the search is continued until the face list becomes
empty. Figure 14 shows the Dynamic Attention Map and
search map on the lower layer. Figure 14 (c) and (d) show
the search map on the lower layer, in which the white pixels
represent the searched spins. Comparing these search maps
with those of the single level Ising search (See Fig. 11), we
understand that the density of the search on face regions are
nearly equal to that of the single level Ising search. On the
other hand, the density of the search on non-face regions
is coarser than that of the single level Ising search. This
is because face candidates are narrowed down effectively
through the spin flip dynamics on the upper layer. The re-
mained white blocks in Fig. 14 (a) and (b) represent the com-
ponent spins of the spins whose state are flipped to “non-
face” by the spin flip dynamics on the upper layer. In the
case of single level Ising search, all remained spins (white
blocks in Fig. 14 (a) and (b)) are searched until the face list
becomes empty. Therefore, the number of the search of mul-
tilevel Ising search is smaller than that of the single level
Ising search. On the other hand, the spins in “face” state
around face regions in Dynamic Attention Map on lower
layer represent the spins detected as face.

From these results, the effectiveness of the multilevel
Ising search is demonstrated.

8. Conclusion

The efficient search is realized by adopting Ising model to
face detection. To improve the search performance further,
the single level Ising search is extended to multilevel Ising
search by taking the renormalization group method into con-
sideration. The effectiveness of the multilevel Ising search
method is confirmed by the comparison with the single level
Ising search method. The multilevel Ising search method re-
quires about 0.3 seconds to find faces in the case of Fig. 9 (a)
and (b) on PC with Xeon CPU 2 GHz, when the search is

continued until the face list becomes empty. On the other
hand, the single level Ising search method requires about 0.6
seconds to find faces on same PC. This result also shows the
effectiveness of the multilevel Ising search.

In general, there is the trade-off between the search
speed and the false detection rate. It is difficult to de-
tect faces efficiently and accurately. One of them is sacri-
ficed [11], [15]. The proposed search method does not guar-
antee to obtain optimal positions of faces. However, the pro-
posed method can narrow down the search space effectively.
Therefore, it is expected that the optimal positions of faces
are obtained with high probability and with low computa-
tional cost.
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