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SUMMARY It is shown that a three-fluid model, which was
successfully introduced to explain microwave characteristics of
high-T, superconductors phenomenologically, is suit also to
explain those of low- T, superconductors. In this model, the two
contributions of a residual normal electron, in addition to a
super and a normal electron in the two-fluid model, and of the
temperature (7)) dependence of momentum relaxation time r for
the two normal electrons are taken into account. Measured
results of the 7 dependence of surface resistance R; for a Nb film
with critical temperature 7,=9.2 K agree very well with an R,
curve calculated using the present model, where a residual sur-
face resistance at T=0 K, R, and the T dependence of 7 were
determined using the surface reactance at 0 K X3=237.6 mQ
calculated using the BCS theory to fit a calculated R curve with
the measured values as a function of 7. Furthermore, microwave
characteristics predicted from the BCS theory cannot be ex-
plained phenomenologically using the conventional two-fluid
model. This difficulty can be solved by using an improved
two-fluid model, called the two-fluid (r) model, where the T
dependence of r is taken into account. Finally the frequency
dependence of Rs calculated for the Nb film is f'° for the BCS
theory and f2° for the three-fluid (r) model on the assumption
of the frequency independence of r.
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1. Introduction

For microwave applications of superconductors, it is
important to investigate microwave behavior of their
surface impedance Zs=R;+jX, where R; is the sur-
face resistance and Xj is the surface reactance, and their
complex conductivity ¢=0¢,—jo.. Conventional BCS
theory [1], [2] and two-fiuid model [3] have been
commonly used to explain the microwave characteris-
tics of metallic low-T, superconductors, although
residual loss due to acoustic loss is suggested to play an
important role in real materials below the temperature
T =0.33T, [4], where T is the critical temperature. In
addition we cannot explain the peak of ¢, appearing
just below T, which is predicted from calculations
based on the BCS theory, using the two-fluid model.
On the other hand, a three-fluid model proposed
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by the authors [5]-[6], which is designated as “three-
fluid (z) model,” was successfully introduced to
explain microwave characteristics of high- 7, supercon-
ductors phenomenologically. In this model, two con-
tributions are taken into account: one is of a residual
normal electron in addition to a super and a normal
electron in the conventinal two-fiuid model, and the
other is that of the T dependence of momentum relaxa-
tion time ¢ for both these normal electrons.

In this paper, the validity of the three-fluid (7)
model is discussed to explain microwave characteristics
of low-T. superconductors. Furthermore, an improved
two-fluid model, which is designated as “two-fluid (7)
model” and corresponds to the case of Rso=0 in the
three-fluid (z) model or to a two-fluid model with r
dependent on temperature, is introduced to explain a
peak of g, appearing just below T¢, which is predicted
from the BCS theory but cannot be explained by the
conventional two-fluid model. The behaviors of the
three-fluid (7), two-fluid (z), and two-fluid models
and BCS theory are compared with measured results of
the 7 dependence of R for a Nb film with 7.=9.2 K
[10]. Finally, the frequency dependence of Rs for the
Nb film is discussed from results evaluated using these
models.

2. Calculation of Z; and &
2.1 The Three-Fluid () Model

In the two-fluid model [3], as is well known, it is
assumed that total electron density n, which is given as
the sum of superelectron density ns and normal elec-
tron density ny,, that is, n=ns-+ n,, is independent of T
and the T dependences of ns and n, are given by

we1-()] n= (L)) @

In the three-fluid (z) model [8], residual normal elec-
tron density 7., wWhich is assumed to be independent
of T, is added to n of the two-fluid model; that is,

Ne=HRs+ Ny+ Nres =N+ Nyes. (2)

where n, is the total electron density which is also
independent of 7. In addition, the 7 dependence of
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momentum relaxation time z for n, and n..s are taken
into account. For high-T. superconductors, the fol-
lowing equation, which was derived by Imai and
Kobayashi [8] on the basis of measured results present-
ed by Romero, et al. [11], was used:

T=z'c< £)+ m{l—(%)"} (T<T), (3

where rcis r at T. K, n(>r) iszat 0K, and e is a
constant. Equation (3) is assumed to be valid also for
low-T, superconductors. The process of calculating Zs
and ¢ by the present model is described elsewhere [8]
and reviewed briefly below. First, Rs» and Rso, which
are R; values at T, and O K, respectively, are deter-
mined from the result of the T dependence of Rs
measured at f; for a superconductor with T, K.
Second, X0, which is the X value at 0 K, is taken to
be equal to one calculated using the BCS theory, as
discussed later. Third, fitting parameters 4= r./7o and
a in Eq. (3) are determined so as to fit a Rs curve,
calculated using the model, with the measured Rs
values. Fourth, the values of n.s, 1, 7o, and 7, are
calculated according to Ref. [8]. Finally complex
conductivity =0,—joz is given by

_ (nn+nres)ezf

Gl__m(a)"_z-rz-%l) (4)
— nsez (nn+nres) e ’w

02= mw m(w22.2+1) » (5)

where e=—1.6022X 107" C is the electron charge, m
=9.1096 X 10~* kg is the mass of an electron, and w is
the angular frequency. Then the relationship between
Zs and ¢ is given by

z,= [ 12, (6)

where =47 >x10"" H/m is the permeability.

2.2 The Two-Fluid Model and the Two-Fluid (7)
Model

The two-fluid [3] and two-fluid (7) models correspond
to the case of n,s=0 for the three-fluid model de-
scribed above; thus Egs. (4) and (5) yield

. n.e’r
N W e+ 1) )
2 2.2
o=t me'tlw 8)

mw  m(o*c*+1)’

where 7 is independent of T for the two-fluid model
and is given by Eq. (3) also for the two-fluid (7)
model. Then R; and X; are calculated from Eqs. (6),
(7) and (8).
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2.3 The BCS Theory
For the BCS theory ¢, and ¢. are given by [1], [2]

g; Z%AWV(E) —f(E+hw)]g(E)dE

l -4

3o ), 1=2f (E+he))g(E)dE  (9)

02 __ 1
On hw Ja-rno(rw<24)
-4(Rw>24)

[1=-2f(E+hw)]

E’+ P+ howE
dE. 10
JAP—E:J(E+hw):—4L (10)
where
B 1
S E) =1 (/KT an
E*+ P+ hwE
E)= 12
9(E) JEF— L J(E+hw) -4 (12)
On=— Wi . (13)

- 2
R

In the above, =h/27=1.0546 X 107* Js is the Plank’s
constant, Kz=1.3806x10"2J/K is the Boltzmann’s
constant, and f (E)is the Fermi function. The energy

gap 4 is given by
| o tanh oY T+ I
NV zfo a
where N (0) is the density of states of one spin in
energy at the Fermi surface, V is the attractive phonon

interaction dominate of a constant average [1] and 3 is
given by

dg, (14)

1
ﬂzv*‘KB—T. (15)

Since 4 becomes O for T=T., Eq. (14) is expressed as

BchwelZ tanh x

1
Tv(o“)‘vzﬁ 4%, (16)

where 3. and w. are values of 8 and w at 7T, K. In
actual numerical calculation, first the value of 1/
N (0) V independent of T is calculated from Eq. (16),
second the 4 values are calculated from Eqs. (14) and
(15) as a function of T, third ¢, and ¢. are calculated
from Egs. (9) to (13), and finally Rs and X, are
calculated from Eq. (6).

3. Measured and Calculated Results for a Nb Film

3.1 Rs-Curve Fitting of Two-Fluid Model into BCS
Theory

First, the T dependence of Z; according to the BCS
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theory was calculated from Eqgs. (6) and (9) to (16) was calculated from Egs. (6), (7) and (8) using r=
using Rsn=X:»=0.17Q so as to fit the R; values 3.79X 1078 sec and 7#=3.51 X 10*® m~3, which are in-
measured at 27.45 GHz for a Nb film with 7.=9.2K dependent of T. These results are shown in Fig. 1(a).
[10]. In a similar manner, that in the two-fluid model
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Fig. 1 Maeasured results of R; for the Nb film, calculated results Fig.2 Maeasured results of R; for the Nb film and Z; and ¢
using the BCS theory and the two-fluid model in which the R, calculated using the four models when X3 =37.6 mQ calculated

curve is fitted with the measured R; values. from the BCS theory was used for other models.
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These two calculated R, curves agree well with the
measured values in the temperature range from 4 to 9.2
K. On the other hand, the X; values for the two-fluid
model are different from those for the BCS theory.
This causes the discrepancy that values of London
penetration depth A, are different between these two
models, since A, = Xso/wpo. Furthermore, results of
61/0. and o,/o, calculated from the Rs and X values
for the two models are shown in Figs. 1(b) and (c).
As seen in Fig. 1(b), a peak of g, appears just below
T. for the BCS theory but such a peak does not appear
for the two-fluid model. In Fig. l(c) the o, curve
calculated for the two-fluid model does not coincide
with one for the BCS theory. As a result we cannot
phenomenologically explain microwave characteristics
predicted from the BCS theory using the two-fluid
model.

3.2 X,-Curve Fitting of Three models with BCS
Theory

Another approach was attempted, in which the X
values for the three models, the two-fluid, two-fluid (z)
and three-fluid (z) models, were taken to be equal to
X50=37.6 mQ calculated by the BCS theory. The
calculated results of Z; are shown in Fig. 2(a),
together with the measured R, values and calculated
Zs curves for the BCS theory given in Fig. 1(a). For
the two-fluid (r) model the Rs curve corresponds to
the case of n,s=0 in the three-fluid (r) model. For
the two-fluid model the R;s curve corresponds to the
case of the constant value of r=1.42X 107" sec at T =

8

177 [x 10"% sec™)
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[

2-fluid(t) and 3-fluid(t)

0 ! ! ) t
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Fig.3 Calculated results of the temperature dependence of 1/
used in the three-fluid (r), two-fluid (r) and two-fluid models.
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T. in the two-fluid (r) model. Then the results of
01/0n and 62/0, calculated from Fig. 2 (a) for these four
models are shown in Figs. 2(b) and (c). The tempera-
ture dependence of r used in the calculations is shown
in Fig. 3, and the parameters used in the calculations
are summarized in Table 1.

As shown in Fig. 2(a), the four X; curves coincide
very well for these four models. This corresponds to a
good fit of four ¢2/0, curves in Fig.2(c), since ga=
wio/X2. This means that these four models have the
same values of penetration depth A which is given by A

Also for this case, we cannot phenomenologically
explain microwave characteristics predicted form the
BCS theory using the two-fluid model, because of the
distinct difference between the R curve of the two-
fluid model and the measured values.

The Rs curve of the three-fluid (r) model coin-
cides well with the measured R; values at temperatures
below 9.2 K. It is found from this result that the
three-fluid (z) model, which was valid in the case of
the high-T. superconductors [5]-[9], is also valid in
the case of the low-T; superconductor. For this Nb
film the ratio of residual normal electron density to
total electron density is 7s/n,=0.011, as shown in
Table |, which is about one-tenth that for YBCO bulk
(8].

As shown in Fig. 2, the curves of the two-fluid ()
model agree well with those of the BCS theory in the
temperature range from 4 to 9.2 K. The introduction
of the T dependence of r into the conventional two-
fluid model is essential to explain the microwave
characteristics using the BCS theory
phenomenologically.

4. Frequency Dependence of R;

The T dependences of the Zs values of the Nb film at
27.45 GHz were discussed above. We discuss the fre-
quency dependences of R, of this Nb film below,
assuming that there is no dependence of ¢ on fre-
quency. The frequency dependences of R; for the four
models were calculated from the equations given
above. The results are shown in Fig.4(a) for T=
0.4T; and in Fig.4(b) for T=0.8T,. It was found
from Fig. 4 that frequency dependences of Rs for the
Nb film are f; for the three-fluid (r), two-fluid (z) and
two-fluid models and ' for the BCS theory. Results
calculated in a similar manner for only the three-fluid

Table 1 Parameters used in calculation for the Nb film using

the four models.

T ()| f(GHD) | R (D) Regm Q)| XgomD)| n o (mD) | nm3) | tolse0) | tels00) | o | Meshy | 7ot

3-fluid(t) 0.024

1.07x10%5 | 9.48x1026|6.70x10° 13| 1.42x10713] 2.7] 0.011 | 472

2-fluid(T)

9.38x1026 |6.70010°13] 1.42x10713]2.7]  © 412

92| 2745 | 017 — 37.6

2-fluid

BCS

9.38x1026 11.42x10713| 1.42x10713 - | 0 1
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Fig.4 Calculated results of the frequency dependence of R;
using the four models.
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Fig. 5 Calculated results of the frequency dependence of R;
using the three-fluid (z) model.

(r) model in the frequency range from 1 to 1000 GHz
are shown in Fig. 5. The f? dependences of R are
constant independent of 7T below 70 GHz, and the
influence of the term wr in Eqgs. (4) and (5) appears
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for the frequency dependences of Rs over 70 GHz.
5. Conclusion
Conclusions are summarized as follows.
(1) The three-fluid (r) model is useful for

phenomenological description of the T dependence of
the measured R; values of a Nb film at temperatures
below Tv.

(2) Microwave characteristics predicted from the
BCS theory cannot be explained phenomenologically
by the conventional two-fluid model, where the T
dependence of r is not taken into account. This
difficulty can be solved by using the two-fluid (r)
model, where the T dependence of 7 is taken into
account.

(3) The frequency dependence of R; calculated for a
Nb film with 7c=9.2 K using the BCS theory is f*°
below 40 GHz. On the other hand, the results calcu-
lated by the three-fluid () model on the assumption
of the frequency independence of 7 is f%° below 70
GHz.
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