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Analysis and Experiments of a TM010 Mode Cylindrical Cavity to
Measure Accurate Complex Permittivity of Liquid
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SUMMARY A rigorous analysis for a TM010 mode cylindrical cavity
with insertion holes is presented on the basis of the Ritz-Galerkin method to
realize accurate measurements of the complex permittivity of liquid. The
effects of sample insertion holes, a dielectric tube, and air-gaps between
a dielectric tube and sample insertion holes are taken into account in this
analysis. The validity of this method is verified from measured results of
some kinds of liquid.
key words: complex permittivity, cylindrical cavity, liquid, Ritz-Galerkin
method

1. Introduction

A cavity perturbation method has been commonly used [1]–
[3] as a simple method for determining the complex per-
mittivity of dielectric rods [4], [5] and liquids [6]–[8]. It is
well known in this method that the measurement accuracy
is limited because of the influence of sample insertion holes
and the calculation error included intrinsically in the per-
turbation formulas. So far, the analysis of the TM010 mode
cylindrical cavity with insertion holes has been performed
approximately, so that effects of insertion holes have not
been estimated sufficiently [4]–[8]. The authors have pre-
sented a rigorous analysis on the basis of the Ritz-Galerkin
method for a cavity with insertion holes [9], [10]. Using this
analysis, we can obtain the accurate complex permittivity of
dielectric rods and liquids. This analysis is valid to the sam-
ples with large diameter and high permittivity, but it needs
a tedious calculation by computer. To improve the tedious
treatment, we presented the accurate and easy-to-treatment
measurement by using the charts of relative errors calculated
by the rigorous analysis [9], [11].

In this paper, a new measurement method is proposed
to measure complex permittivity of liquid more precisely
on the basis of the rigorous electromagnetic analysis by the
Ritz-Galerkin method. In this analysis, the effects of inser-
tion holes, a dielectric tube, and air-gaps between a dielec-
tric tube and sample insertion holes are taken into account.
Some kinds of liquid were measured by this method to ver-
ify the usefulness.

2. Analysis of the TM010 Mode of a Cavity with a Di-
electric Tube and Sample Insertion Holes

The configuration of a TM0mp mode cylindrical cavity to be
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Fig. 1 Configuration of a TM0mp mode cylindrical cavity with a
dielectric tube and a liquid sample.

analyzed is shown in Fig. 1. The cavity has diameter D=2R4

and height 2L. Sample insertion holes oriented coaxially
have diameter d3=2R3 and depth g (=H − L), which consti-
tute a cutoff TM01 mode cylindrical waveguide. A dielectric
tube, which is used to guide a liquid sample into the cav-
ity, has inner diameter d1=2R1, outer diameter d2=2R2 and
length 2H. The space in the cavity is divided into four re-
gions i having the permittivity εi, where i=1,2,3 and 4.

At first, we derive the characteristic equation to obtain
the relative permittivity of liquid from a measured frequency
f0. According to the structural symmetry, the electric or
magnetic wall condition is assumed at z=0 and only a half
region 0 < z < H is considered. The electric or magnetic
wall condition is also assumed at z = H. A series of higher
order modes are taken in each region into account. Imposing
the continuity of tangential field components Ezi and Hθi at
r = R1, R2 and R3 and applying the Ritz-Galerkin method to
the integral equation, we obtain the characteristic equation
of the TM0mp mode as follows:
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det X( f0 ; ε1, · · · , ε4,R1, · · · ,R4, L,H) = 0 (1)

where the derivation of Eq. (1) is given in Appendix A.
Equation (1) is used to obtain εi, R4 and L from measured
f0, as described in Sect. 4.

Then, we discuss the quality factors of a cavity. The
field components in each region Eri, Ezi and Hθi can be cal-
culated by using the solution of Eq. (1) and the expansion
coefficients given in Appendix B. The unloaded Q of the
cavity Qu is given by

Qu = ω0
1

Pd + Pc

4∑
i=1

We
i =

{
1

Qd
+

1
Qc

}−1

(2)

Qd = ω0

4∑
i=1

We
i

4∑
i=1

Pdi

, Qc = ω0

4∑
i=1

We
i

4∑
i=1

Pci

(3)

where Qd and Qc are the quality factors due to the dielectric
loss Pd and the conductor loss Pc, respectively. The electric
stored energy We

i , Pdi and Pci in the region i are given by

We
i =

1
2
εi

∫
Vi

(
|Eri|2 + |Ezi|2

)
dv (4)

Pdi = ω0 tan δriW
e
i (5)

Pci =
1
2

Rs

∫
S i

|Hθi|2ds (6)

ω0 = 2π f0 , εi = εriε0 , σ = σrσ0 (7)

σ0 = 58 × 106 (S/m) , Rs =

√
ω0µ0

2σ
(8)

where σ is the conductivity, σr is the relative conductivity
of the cavity and Rs is the surface resistance. As the re-
gions 3 and 4 are the air regions, we put εr3 = εr4=1 and
tan δr3 = tan δr4 = 0. From Eqs. (2)–(8), tan δr1 of region 1
is expressed by the following equation:

tan δr1 =
A

Qu
− BRs − w2 tan δr2 (9)

where

A = 1 +
4∑

i=2

wi , B =
1
ω0Rs

4∑
i=1

Pci

We
1

, wi =
We

i

We
1

.

(10)

3. Numerical Results

On the basis of the analysis described in the previous sec-
tion, a program was developed to calculate f0 and Q fac-
tors. Numerical calculations were performed for a cop-
per cavity structure used in our experiments. The cavity
has D=115.172 mm, 2L=49.998 mm, g = H − L=10 mm
2R3=3 mm and σr=0.790 [9]. A dielectric tube has
2R1=1.062 mm, 2R2=2.077 mm and εr2=2.059 [10]. The

measurements of these parameters will be described in the
next section.

The convergence of εr1 for pure water was calculated
as a function of the numbers of higher order modes N when
f0=1967.331 MHz and εr2=2.059. The result is shown in
Fig. 2(a). It is found that N > 100 is sufficient to obtain
an accuracy of four significant figures. The convergences of
εr2 for a PTFE tube and εr1 for pure water were calculated
as a function of the depth of insertion holes g. These results

(a)

(b)

(c)

Fig. 2 Convergences of εr . (a) as a function of the numbers of higher
order modes N. (b) and (c) as a function of the depth of insertion holes g.
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are shown in Figs. 2(b) and (c), respectively, where the solid
and dashed lines are for the electric and magnetic wall con-
ditions at z = H, respectively. It is seen that εr approaches
the constant values when g > 2 mm for εr2 and g > 7 mm
for εr1 because the fields in the insertion hole regions decay
rapidly with g. Thus, H = L + g should be determined so as
to satisfy g > 7 mm.

4. Measured Results

4.1 Cavity Parameters

The cavity parameters such as D = 2R4, 2L and σr are de-
termined from measured results for the empty cavity (de-
scribed above) by using Eqs. (1), (7), (8) and (9) with εri=1
and tan δi=0, where i=1 to 4. D is obtained from f0 mea-
sured for the TM010 mode. 2L is determined from the D
value and the resonant frequency f2 measured for the TM011

mode. The accurate values of D and 2L are obtained by re-
peating these procedures. σr is obtained from Qu0 measured
for the TM010 mode as follows [10]:

Table 1 Measured results of a PTFE tube. (for TM010 at 25◦C)

Fig. 3 Frequency responses of a cavity with liquid samples.

Table 2 Measured results of some kinds of liquid. (for TM010 with PTFE tube at 25◦C)

σr =
ω0µ0

2σ0

( B
A

Qu0

)2
. (11)

The measured result is given in the previous section.

4.2 Complex Permittivity of Dielectric Tube

An outer size of the dielectric tube is measured by a mi-
crometer and an inner size is determined from the difference
between the tube weight measured with and without water
as the relative weight is 0.99707 at 25◦C [12]. The complex
permittivity of the dielectric tube is obtained from f0 and
Qu0 measured for the TM010 mode of a cavity with the di-
electric tube without a liquid sample. εr2 is obtained from f0
by using Eq. (1) with εr1=1. tan δr2 is determined from Qu0

by using Eq. (9) with tan δr1=0. These results are shown in
Table 1 [10].

4.3 Complex Permittivity of Liquids

The measurements of liquid samples filled in the tube were
performed after the measurements for the cavity and the
dielectric tube. The frequency responses of a cavity with
pure water, Japanese sake (water including 14–15% alcohol)
and ethanol are shown in Fig. 3, compared with one for the
empty cavity. The complex permittivity measured for these
liquids are shown in Table 2 and compared with the values
calculated by the perturbation method [11]. From Table 2,
it is found that the relative errors are approximately within
2.2% for εp and 1.6% for tan δp. These errors are caused
by the effects of insertion holes, dielectric tube and air-gaps,
which are taken into account in the rigorous analysis.

5. Conclusions

A new measurement method of the complex permittivity of
liquid was proposed on the basis of the rigorous analysis by
the Ritz-Galerkin method. Cavity parameters and complex
permittivity of a dielectric tube were accurately measured
by using this analysis. The measurements of the complex
permittivity of liquids were performed to verify the validity
and usefulness of this method.
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Appendix A: Derivation of Eq. (1)

The time factor e jωt is neglected. The z-components of the
electric Hertz vector in each region are given by

Πe1 =

M−1∑
p=0

ApJ0(kr1pr)

{
cos(β1pz)
sin(β1pz)

}
(A· 1)

Πe2 =

M−1∑
p=0

{
B2pJ0(kr2pr) + C2pY0(kr2pr)

}

×
{

cos(β2pz)
sin(β2pz)

}
(A· 2)

Πe3 =

M−1∑
p=0

{
B3pJ0(kr3pr) + C3pY0(kr3pr)

}

×
{

cos(β3pz)
sin(β3pz)

}
(A· 3)

Πe4 =

N−1∑
q=0

DqG0(kr4qr)

{
cos(β4qz)
sin(β4qz)

}
(A· 4)

where

Gn(x) = Jn(x) − J0(kr4qR4)

Y0(kr4qR4)
Yn(x) (A· 5)

k2
rip = εrik

2
0 − β2

ip, k0 =
ω

c0
. (A· 6)

The upper and lower expressions in brackets in Eqs. (A· 1)–
(A· 4) correspond to two cases of the electric or magnetic
wall condition at z=0, respectively. Also, β is defined as
follows (i=1,2,3):

βip =



p
H
π

p +
1
2

H
π


, β4q =

q
L
π (A· 7)

for the electric wall condition at z = 0 and

βip =



p +
1
2

H
π

p + 1
H
π


, β4q =

q +
1
2

L
π (A· 8)

for the magnetic wall condition at z=0. Where the upper
and lower expressions in Eqs. (A· 7) and (A· 8) correspond
to two cases of the electric and magnetic wall condition at
z = H, respectively. Jn(x) and Yn(x) are the Bessel functions
of the 1st and 2nd kind, respectively. The prime symbols (′)
indicate differentiation with respect to x.

The field components in each region are given by:

Er =
∂2Πe

∂r∂z
, Ez =

∂2Πe

∂z2
+ εrk

2
0Πe (A· 9)

Hθ = − jωεrε0
∂Πe

∂r
. (A· 10)

Imposing the boundary conditions that Er and Hθ be contin-
uous at r = R1 and R2, the relationships among coefficients
Ap, B2p, C2p, B3p and C3p are obtained as follows:

[
B̄2p

C̄2p

]
=



B2p

Ap

C2p

Ap


= D−1

2 C1 (A· 11)

[
B̄3p

C̄3p

]
=



B3p

Ap

C3p

Ap


= D−1

3 C2

[
B̄2p

C̄2p

]
= D−1

3 C2D−1
2 C1

(A· 12)

where
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C1 =



k2
r1p

k2
r2p

J0(kr1pR1)

εr1kr1p

εr2kr2p
J′0(kr1pR1)


(A· 13)

D2 =

[
J0(kr2pR1) Y0(kr2pR1)
J′0(kr2pR1) Y ′0(kr2pR1)

]
(A· 14)

C2 =



k2
r2p

k2
r3p

J0(kr2pR2)
k2

r2p

k2
r3p

Y0(kr2pR2)

εr2kr2p

εr3kr3p
J′0(kr2pR2)

εr2kr2p

εr3kr3p
Y ′0(kr2pR2)


(A· 15)

D3 =

[
J0(kr3pR2) Y0(kr3pR2)
J′0(kr3pR2) Y ′0(kr3pR2)

]
. (A· 16)

D−1
2 and D−1

3 mean the inverse matrices of D2 and D3, re-
spectively.

In a similar way to the case of a dielectric rods [9], the
unknown z-component of electric field Ebd(z) is defined on
the boundary between the region 3 and 4 (r = R3).

Ebd(z) =
M−1∑
p=0

Apk2
r3p

{
B̄3pJ0(kr3pR3)

+ C̄3pY0(kr3pR3)
} { cos(β3pz)

sin(β3pz)

}
(A· 17)

=

N−1∑
q=0

Dqk2
r4qG0(kr4qR3)

{
cos(β4qz)
sin(β4qz)

}
. (A· 18)

Ap and Dq are related to Ebd(z) by using the orthogonality of
the trigonometric functions. From the boundary condition of
Hθ(z) at r = R3, the following integral equation is obtained:

M−1∑
p=0

εr3

ηpH
HpPpq

∫ H

0
Ebd(z)

{
cos(β3pz)
sin(β3pz)

}
dz

=
εr4

L
Sq

∫ L

0
Ebd(z)

{
cos(β4qz)
sin(β4qz)

}
dz (A· 19)

where

Hp =
kr3p

k2
r3pR3

× B̄3pJ′0(kr3pR3) + C̄3pY ′0(kr3pR3)

B̄3pJ0(kr3pR3) + C̄3pY0(kr3pR3)
(A· 20)

S q =
kr4q

k2
r4qR3

G′0(kr4qR3)

G0(kr4qR3)
(A· 21)

Ppq =

{
+

−
}

sin{(β3p + β4q)L}
(β3p + β4q)L

+
sin{(β3p − β4q)L}

(β3p − β4q)L
.

(A· 22)

To solve Eq.(A· 19) by the Ritz-Galerkin Method, Ebd(z) is
put into the following form:

Ebd(z) =

{
E3z(z) = E4z(z) : 0 ≤ z ≤ L

0 : L ≤ z ≤ H
(A· 23)

where

E4z(z) =
N−1∑
l=0

El

{
cos(β4lz)
sin(β4lz)

}
. (A· 24)

Thus, the following homogeneous equations for the expan-
sion coefficients El are obtained:[

Xql

]
[El] = [0] (A· 25)

where

Xql = δqlεr4

{
ηq

1

}
S q − εr3

L
H

M−1∑
p=0

1{
ηp

1

}PpqPpl.

(A· 26)

Furthermore,

δql =

{
1 : q = l
0 : q � l

(A· 27)

ηp =

{
2 : β3p = 0
1 : β3p � 0

. (A· 28)

Appendix B: Expansion Coefficients

When the nontrivial solution of Eq. (A· 25) is obtained, the
values of El can be determined. At first, Ap and Dq can be
calculated by using Eq. (A· 17) and (A· 18), respectively, as
follows:

Ap =
L{

ηp

1

}
Hk2

r3p

×

N−1∑
l=0

ElPpl

B̄3pJ0(kr3pR3) + C̄3pY0(kr3pR3)
(A· 29)

Dq =
Eq

k2
r4qG0(kr4qR3)

. (A· 30)

Then, B2p, C2p, B3p and C3p are obtained from Eqs. (A· 29),
(A· 11) and (A· 12).
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