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SUMMARY A coaxial cable measurement system applicable
up to 60GHz in the cryogenic temperature is developed by using
V-connectors. In this system, the fine location of coupling loop
antennas can be adjusted by three-dimensional mechanical stages
in the low temperature region. In order to verify usefulness of
this system, the temperature dependence of surface resistance
(Rs) of Y-Ba-Cu-O (YBCO) films was measured at 30GHz by
the two-dielectric resonator method using TE011- and TE013-
mode sapphire rod resonators. The measured result of Rs was
0.5mΩ at 30GHz and 20K, which was 1/40, compared with those
of copper plates.
key words: millimeter-wave, cryogenic temperatures, surface

resistance, high-Tc superconductors

1. Introduction

Many high-Tc superconductor (HTS) filters with low-
loss and sharp skirt characteristics have been developed
to be applied to mobile telecommunications and satel-
lite communications in the microwave region [1]. How-
ever, in the millimeter-wave region, as far as we know,
we cannot find any papers for HTS filters but for an
amplifier in the cryogenic temperature [2]. Therefore,
we developed a coaxial cable measurement system ap-
plicable up to 60 GHz in the cryogenic temperature to
measure the surface resistance Rs of HTS films and the
characteristics of HTS filters.

This paper discusses usefulness of this system. The
temperature dependence of Rs of Y-Ba-Cu-O (YBCO)
films is measured at 30 GHz by the two-dielectric res-
onator method using this system.

2. Automatic Measurement System

A block diagram of a coaxial cable measurement system
applicable up to 60 GHz in the cryogenic temperature
is shown in Fig. 1. In this system, HP-8510C Vector
Network Analyzer up to 50 GHz is used. Moreover, it
was found that this system using HP-8757D Scalar Net-
work Analyzer was applicable up to 60 GHz. A photo-
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graph of this system is shown in Fig. 2. A sapphire rod
resonator described in Sect. 3.1 is set on a cold head
stage in the cryocooler and is connected to the ana-
lyzer, which is controlled by a Windows (R) computer
through the GP-IB cable. A thermal sensor is attached

Fig. 1 Automatic measurement system.

Fig. 2 Photograph of measurement system.



HASHIMOTO and KOBAYASHI: DEVELOPMENT OF A MILLIMETER-WAVE COAXIAL MEASUREMENT SYSTEM
721

Fig. 3 Hermetic structure of a coaxial cable.

on the resonator and a digital temperature controller
is connected to the computer. Then, the temperature
dependence of Rs of HTS films is measured automati-
cally by the computer. Advantages of this system will
be described below.
(1) GM-type cryocooler

A GM-type cryocooler with low mechanical vibra-
tion (AISIN SEIKI Co., Ltd.), where the vibration is
suppressed to 1/40, compared with conventional one of
the same company, was used to prevent displacement of
a sapphire rod due to mechanical vibration and to elim-
inate fixing of the rod by adhesive. In particular, this
cryocooler was very useful to evaluate Rs of a HTS film
without damage by the image-type dielectric resonator
method [3].
(2) V-connectors and small loop antennas

In order to apply this system to the millimeter-
wave region, we adopted V-connectors applicable up to
60 GHz. Although a glass bead hermetic seal applicable
up to 65 GHz is known [11], we could not apply it to
the present system, where V-connectors are attached at
both sides of a hermetic seal. Therefore, we developed
a new hermetic seal structure shown in Fig. 3. The
hermetic seal was accomplished successfully by fixing
the middle of a 2.2 mm semi-rigid coaxial cable having
V-connectors at both ends by adhesive and using an O-
ring connector. The length of the outside-cable packed
by adhesive was extended to 10 cm to prevent air-leaks
which occurred through the inside of the coaxial cables
due to the difference of thermal expansions between Cu
outer conductors and PTFE in the coaxial cable.

Both of the excitation and the detection of the
resonator are performed magnetically each by a small
loop fabricated at the top of a 1.2 mm semi-rigid coax-
ial cable as shown in Fig. 4, which shows a photograph
of the resonator structure indicated in Fig. 6. For the
millimeter-wave measurement, a very small loop with
the spot welding technique (WAKA Manufacturing Co.,
Ltd.), where the loop diameter is less than φ = 1.0 mm,
was adopted as shown in Fig. 5, compared with a loop
for a 2.2 mm semi-rigid cable.

Fig. 4 Photograph of measurement apparatus for 12GHz.

Fig. 5 Photograph of small loop antenna.

(3) Adjustment mechanism in the low temperature
Fine adjustment of coupling strength between the

resonator and the loop antenna is extremely severe in
the millimeter-wave region. Therefore, an adjustment
mechanism in the low temperature region was devel-
oped by using three-dimensional mechanical stages. It
is important for the accurate measurement of an un-
loaded Q, Qu that the reflection coefficient S11 and
S22 can be adjusted independently to be equal with
each other, because Qu is calculated from Eq. (1) on
the conditions of S11 = S22 [4].

Qu =
QL

1 − a
(1)

where
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Fig. 6 Resonator configurations in the two-dielectric resonator
method.

QL =
f0

f2 − f1
and a = 10−

S21 (dB)
20 (2)

Also, QL is the loaded Q, f2 − f1 is a 3 dB bandwidth
and S21 (dB) is the transmission coefficient at the res-
onant frequency f0.

3. Experiments

3.1 Measurement Principle of Rs by the Two-
Dielectric Resonator Method

In order to measure Rs of HTS films, we use the two-
dielectric resonator method, which is proposed as the
standard measurement method of Rs of HTS films at
microwave frequencies in the IEC (International Elec-
trotechnical Commission)/TC90/WG8 [4]–[8]. Figure 6
shows configurations of the resonators used in this
method. A sapphire rod resonator for TE01p mode
(p = 1 or 3) having relative permittivity εr, loss tan-
gent tan δ, diameter D and length Lp is placed between
two parallel HTS films having Rs and diameter d. The
crystal c-axis of the sapphire rod with the uniaxial-
anisotropic characteristic is along to the z-axis of the
rod. On the basis of the rigorous analysis by the mode
matching method, εr of each rod can be calculated from
the measured f0 of each resonator. Then, tan δ and Rs

can be calculated from the measured values of unloaded
Q, Qu1 for the TE011 mode and Qu3 for the TE013 mode
on the condition that two rods have the same tan δ val-
ues [4], [9].

3.2 Measured Results of YBCO Film at 30 GHz

Rs measurement at 30 GHz was performed to verify the
usefulness of this measurement system. A TE011 mode
closed-type resonator [10] as shown in Fig. 4 was con-
structed by using a sapphire rod with D = 5.48 mm
and L1 = 2.03 mm (εr = 9.3, the coefficient thermal
expansion τα = 5.3 ppm/K, Union Carbide Co.) and
two YBCO films (d = 51 mm, THEVA Co.). Then, the
sapphire rod was shielded by a copper (Cu) cylinder

with diameter dc = 18.08 mm and height h = 2.04 mm.
The value of dc was determined so that the loss of the
Cu cylinder was 1/100 lower than one of the YBCO
films. Also, the value of h was determined so that an
air gap between the sapphire rod and the Cu cylinder
was less than 5 µm at 20 K.

First, we took a calibration of this system by the
full-2-ports method at room temperature using calibra-
tion kit HP 85056D. A reference plane of the calibra-
tion at each of the input and output ports is indicated
in Fig. 3.

Second, taking the temperature dependence of the
cable loss in the cryocooler into account, we performed
a calibration of S21. The whole cable loss including
φ1.2 mm through line coaxial cable of 10 cm decreased
about 1.6 dB at 30 GHz by cooling down from 293 K
to 20 K. As a result, S21(meas.) dB measured at T K is
corrected by

S21 (dB) = S21(meas.) + ∆S21(293 − T ) (3)

where a constant ∆S21 = 0.006 dB/K was determined
by assuming a linear temperature dependence of the
cable loss.

Then, the resonator was set in the cryocooler and
cooled down to 20 K. After the electric power of the
cryocooler was turned off, the data of f0 and Qu val-
ues could be taken in the computer automatically with
the natural increase of every 1 K under the condition
of no mechanical vibration. The coupling strength be-
tween the resonator and the loop antennas was adjusted
finely to be |S21| = −30 dB and |S11| = |S22| at 20 K.
Similarly, a TE013 mode closed-type resonator was con-
structed by using a sapphire rod with D = 5.48 mm
and L3 = 6.10 mm, the same YBCO films as the TE011
mode resonator and a Cu cylinder with dc = 18.08 mm
and h = 6.11 mm.

Figures 7(a) and (b) show the temperature depen-
dences of measured f0 and Qu values. Figure 7(c) shows
the εr values calculated using Fig. 7(a). Figures 7(d)
and (e) show the tan δ and Rs values calculated us-
ing Figs. 7(a) to (c), respectively. For comparison, the
measured Rs values of copper plates are also indicated
in Fig. 7(f). As a result, the measured results of these
films were Rs of 0.5 mΩ at 20 K, which were 1/40, com-
pared with ones for Cu plates.

4. Discussions

In order to evaluate the precision of the Rs measure-
ment, the root mean square error of measured Rs value
∆Rs is estimated, which is determined mainly from the
following three error components [6]:

∆R2
s = ∆Rs(Qu)2 + ∆Rs(S)2 + ∆Rs(∆ tan δ)2(4)

where ∆Rs(Qu) is an error due to the measured Qu

value, ∆Rs(S) is an error due to the radiation loss,
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Fig. 7 Measured results of YBCO film at 30GHz. (a) f0, (b) Qu, (c) εr of sapphire
rods, (d) tan δ of sapphire rods, (e) Rs of YBCO films, (f) Rs of YBCO films and Cu
plates.

where S = d/D is a diameter ratio, and ∆Rs (∆ tan δ)
is an error due to the difference of tan δ between
two rods. When the precision of the measured Qu

value ∆Qu/Qu is 1 percent, the measurement pre-
cision ∆Rs/Rs has been estimated from the Eq. (4)
to be 4 percents for Rs of 0.6 mΩ at 30 GHz, where
∆Rs(Qu)/Rs is 2 percents, ∆Rs(S)/Rs is 0.1 percents
for S = 3.6 and ∆Rs(∆ tan δ)/Rs is 3 percents, when
(∆ tan δ)/ tan δ is assumed to be 50 percents [8]. In the
actual measurements, however, ∆Qu/Qu was 10 per-
cents by inferior repeatability of the resonator setting.
As a result, ∆Rs/Rs was estimated to be 17 percents,
which was comparable to ∆Rs/Rs of 20 percents ob-
tained from the round robin test of Rs performed at
12 GHz in the IEC/TC90/WG8.

5. Conclusions

The measurement system applicable up to 60 GHz in
the cryogenic temperature was developed. It was veri-
fied that the millimeter-wave measurement system us-
ing the coaxial cable was useful to measure the temper-
ature dependence of Rs. In the future, we will discuss
for the improvement of the measurement precision of
Qu.
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