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PAPER

Coefficients—Delay Simultaneous Adaptation Scheme for Linear
Equalization of Nonminimum Phase Channels

Yusuke TSUDA†a), Jonah GAMBA†∗, Student Members, and Tetsuya SHIMAMURA††b), Member

SUMMARY An efficient adaptation technique of the delay is intro-
duced for accomplishing more accurate adaptive linear equalization of non-
minimum phase channels. It is focused that the filter structure and adap-
tation procedure of the adaptive Butler-Cantoni (ABC) equalizer is very
suitable to deal with a variable delay for each iteration, compared with a
classical adaptive linear transversal equalizer (LTE). We derive a cost func-
tion by comparing the system mismatch of an optimum equalizer coeffi-
cient vector with an equalizer coefficient vector with several delay settings.
The cost function is square of difference of absolute values of the first el-
ement and the last element for the equalizer coefficient vector. The delay
adaptation method based on the cost function is developed, which is in-
volved with the ABC equalizer. The delay is adapted by checking the first
and last elements of the equalizer coefficient vector and this results in an
LTE providing a lower mean square error level than the other LTEs with
the same order. We confirm the performance of the ABC equalizer with the
delay adaptation method through computer simulations.
key words: adaptive channel equalizer, linear transversal filter, optimum
delay, nonminimum phase channel, channel estimation, Levinson-Trench
algorithm

1. Introduction

Modern telephone network systems have required efficient
and effective elimination of the intersymbol interference for
accomplishing a fast data transmission [1]. Therefore, fast
convergence called “fast start-up equalization” is desired for
adaptive equalizers in the training mode. From this point
of view, two commonly used linear transversal equalizers
(LTEs), the least mean square (LMS) and recursive least
square (RLS) transversal equalizers, have been investigated
and modified by many researchers [2]–[8].

Recently, Shimamura et al. have proposed an adaptive
LTE involving a channel estimator, which is called the adap-
tive Butler-Cantoni (ABC) equalizer [9], [10]. The ABC
equalizer converges faster than the LMS and RLS transver-
sal equalizers, because it is indirectly adapted from the re-
sults of the channel estimator by use of the Butler-Cantoni
non-iterative method [11] for each iteration. The conver-
gence property of the adaptive Butler-Cantoni equalizer de-
pends only on the input signal for the channel estimator,
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which is in many cases a pseudo-random sequence. This
fact of the ABC equalizer leads to a fastest converging LTE.

The LTEs usually require a fixed delay for a nonmini-
mum phase channel, which is often set to half of the equal-
izer length. This is because we have no priori information
about the channel. However, this is not ideal for channel
equalization, because the delay setting affects the perfor-
mance of the adaptive LTEs [12]. The delay is desired to
be adjusted at the receiver side, but this is not easy.

In noniterative channel equalization, some techniques
have been introduced for the delay adjustment [11], [13].
Halpern et al. [13] have derived a determination method of
the delay for the LTEs. They have focused that a nonmin-
imum phase channel can be constructed by a cascade con-
nection of a minimum phase channel and a maximum phase
channel. This fact means that, when the minimum phase
part of the nonminimum phase channel is canceled by em-
bedding its inverse in the LTE, the remaining part becomes
the maximum phase one. Then, the delay adjustment prob-
lem for the nonminimum phase channel reduces that for
the maximum phase channel. Thus, the delay setting be-
comes easy. The determination method, however, has two
problems for its application to adaptive equalization. The
first problem is that the determination method is too com-
plicated. This is because the calculation of the zeros of the
channel is required for suppressing the minimum phase part
at each iteration. The second problem is that we cannot de-
ploy the determination method in noisy environments. The
signal-to-noise ratio (SNR) is a factor to decide the delay.
The determination method, however, utilizes only the chan-
nel impulse response and does not utilize the information of
the SNR. From the above reasons, it is difficult to apply the
determination method to adaptive equalization.

On the other hand, Butler and Cantoni [11] have sug-
gested a delay selection method to minimize the mean
square error (MSE). The delay selection method compares
error signals with several delay settings. Therefore, the se-
lection method requires to solve the normal equation and to
calculate the equalizer output and the error signal at each
delay setting. The additional computational complexity is
proportional to M2, where M is the equalizer length, which
makes the delay selection method complicated. However,
we can utilize an efficient recursive algorithm [11] in the
delay selection method. Then, the additional computational
complexity is proportional to M. However, the selection
method is still complicated for its application to adaptive
equalization. This is because the computation of the ABC
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equalizer itself even is proportional to M2.
In adaptive channel equalization, some methods [14]–

[16] have been developed against the delay adjustment prob-
lem. Qureshi [14] has developed a gradient-direct method to
search the optimum delay, which allows the LTE to adapt the
delay for 200 iterations. This method, however, may require
a lot of number of iterations to converge. The other meth-
ods [15], [16] are suitable on only multichannels. Hence, we
cannot treat them as traditional methods.

We investigate the delay adjustment problem for the
LTE on nonminimum phase channels in noiseless and white
noise environments. First, we discuss two LTEs, the clas-
sical LTE and the ABC equalizer. The coefficients of the
classical LTE is directly adapted with feedback of error sig-
nals. The coefficients of the ABC equalizer is, however, in-
directly adapted by using information of the channel esti-
mator. From this reason, we mention that the filter structure
and adaptation procedure of the ABC equalizer is very suit-
able to change the delay at each sampling time rather than
the classical LTE. Next, we derive a new cost function [17].
The cost function is derived by comparing the system mis-
match between an optimum equalizer coefficient vector and
an equalizer coefficient vector with several delay settings.
The cost function is square of difference of absolute values
of the first and last elements of the coefficient vector for the
LTE, which is minimized when the optimum delay is set.
We evaluate the cost function by comparing numerical re-
sults with simulation results. Following the derivation and
the evaluation, we develop a delay adaptation scheme based
on the cost function, which is involved in the ABC equalizer.
The delay adaptation method minimizes the cost function
when the adaptation is enough. The computation required
by the delay adaptation method is proportional to neither M
nor the length of the channel. We consider the performance
of the delay adaptation scheme in white noise environments.
We evaluate the performance of the ABC equalizer with the
delay adaptation method in noiseless and white noise envi-
ronments through computer simulations.

The rest of this paper is organized as follows. Sect. 2
gives preliminaries where the classical LTE and the ABC
equalizer are briefly discussed. Sect. 3 proposes the de-
lay adaptation method and explains its actual implementa-
tion in the ABC equalizer. Sect. 4 demonstrates the per-
formance of the ABC equalizer with the delay adaptation
method through simulation results. Sect. 5 draws conclud-
ing remarks.

2. Preliminaries

2.1 Discrete-Time Channel Model

It is assumed that a digital communication channel is given
by the following equation:

xn = sn + vn (1)

=

L−1∑
k=0

hkun−k + vn (2)

Fig. 1 System configuration of a classical linear transversal equalizer in
the training mode.

where h0, h1, . . . , hL−1 are the channel impulse response, un

is the transmitted signal with values of +1 or −1, and vn is
an additive white Gaussian noise uncorrelated with un. The
channel output xn corresponds to the received signal, which
is used as the input signal for an adaptive equalizer.

2.2 Classical Adaptive LTEs

Figure 1 illustrates the system configuration of a classical
LTE in the training mode where a D sample delayed trans-
mitted signal, un−D, is assumed to be generated at the re-
ceiver side (D is a constant number). When the LMS adap-
tation is deployed for the LTE, the coefficients adaptation
procedure is described as follows:

yn = X(n)T C(n) (3)

en = un−D − yn (4)

C(n + 1) = C(n) + ∇lms(n) (5)

= C(n) + µenX(n) (6)

where T denotes transpose and X(n) and C(n) are the in-
put and coefficient vectors for the equalization filter at n-th
iteration, which are given by

X(n) = [xn, xn−1, . . . , xn−M+1]T (7)

and

C(n) = [c0(n), c1(n), . . . , cM−1(n)]T , (8)

respectively. The µ is the step size parameter for the LMS
adaptation, which controls the convergence.

As shown by the above descriptions, the LMS adapta-
tion scheme for the classical LTE are performed by adding
the gradient vector, ∇lms(n), to the current coefficient vector
C(n). Thus, the previous coefficient vector C(n − 1) directly
affects the current coefficient vector C(n). This fact means
that the delay used at previous iteration also directly affects
the current coefficient vector. This is because the gradient
vector contains the error signal being the difference between
the delayed transmitted signal un−D and the LTE output yn.
Hence, it seems to be difficult for the classical adaptive LTEs
to change the delay D at each sampling time.
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Fig. 2 System configuration of the adaptive Butler-Cantoni equalizer in
the training mode.

2.3 ABC Equalizer

The system configuration of the ABC equalizer is illustrated
in Fig. 2. The ABC equalizer has two linear transversal fil-
ters, the channel estimator and the equalization filter. The
equalization filter has M coefficients, the output signal of
which is also calculated by (3). The channel estimator has L
coefficients, the output signal of which is obtained by

gn = U(n)T W(n) (9)

where U(n) and W(n) are the input and coefficient vectors
for the channel estimator, which are given by

U(n) = [un, un−1, . . . , un−L+1]T (10)

and

W(n) = [w0(n), w1(n), . . . , wL−1(n)]T , (11)

respectively. Here, we deploy the LMS adaptation scheme
for updating the coefficients of the channel estimator given
by

fn = xn − gn, (12)

W(n + 1) = W(n) + µ fnU(n). (13)

By utilizing the coefficients of the channel estimator,
the coefficients of the equalization filter are calculated by
solving the following normal equation:

C(n) = A(n)−1B(n) (14)

for each iteration, where A(n) and B(n) denote the auto-
correlation matrix and the cross-correlation vector at the n-
th iteration. Equation (14) can be efficiently solved with the
Levinson-Trench algorithm [11]. In the ideal case, A(n) and
B(n) reduce to the true auto-correlation matrix A and the true
cross-correlation vector B, respectively. The elements of A
and B are given by

ai j =

L−1∑
m=0

hmhm+|i− j| + σ2δ(i − j),

i, j = 0, 1, . . . ,M − 1 (15)

bi = hD−i,

i = 0, 1, . . . ,M − 1 (16)

where σ2 is the variance of additive noise and | · | and δ(·)
denote the absolute value operation and the Kronecker delta
function, respectively.

Actually, instead of A and B, we use A(n) and B(n), the
elements of which are given by

ai j(n) =
L−1∑
m=0

wm(n)wm+|i− j|(n) + σ̂2(n)δ(i − j),

i, j = 0, 1, . . . ,M − 1 (17)

bi(n) = wD−i(n),

i = 0, 1, . . . ,M − 1 (18)

from the results of the channel estimator. The σ̂2(n) is a
noise variance estimate obtained by the averaging operation
shown as

σ̂2(n) =
1
P

P−1∑
k=0

f 2
n−k (19)

where P is a sample number.
As described above, in the ABC equalization scheme,

the previous coefficient vector C(n − 1) does not directly
affect the current vector C(n) as shown by (14). This fact
means that the delay used at previous iteration does not af-
fect the current coefficient vector. Therefore, it is very easy
for the ABC equalizer to change the delay D at each sam-
pling time. This property of the ABC equalizer is utilized
in the delay adaptation scheme, which will be described in
Sect. 3.3.

3. Delay Adaptation for LTEs on Nonminimum Phase
Channels

In this section, we derive the delay adaptation for the LTE on
nonminimum phase channels. This section consists of five
subsections. Sect. 3.1 gives a motivation to this subject and
derives the cost function for the delay adaptation in noiseless
cases. In Sect. 3.2, the cost function is evaluated. Sect. 3.3
develops an actual technique of delay adaptation. Perfor-
mance of the derived cost function in noisy environments is
investigated in Sect. 3.4. Sect. 3.5 discusses the complexity
of the delay adaptation technique.

3.1 Motivation and Derivation of the Cost Function

The transfer function of the nonminimum phase channel
given by (2) is reexpressed by
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H(z) =
L−1∑
k=0

hkz−k (20)

= h0

L−1∏
k=1

(1 − rkz−1) (21)

where rk and z denote the zeros of H(z) and the forward shift
operator, respectively(h0 � 0 is assumed here). In noiseless
environments, an inverse of H(z), C(z), is expressed with a
delay Dc in the form of partial fraction expansion [12] as

C(z) =
z−Dc

H(z)
(22)

=
1
h0

( L−1∑
k=1

qk

1 − rkz−1

)
z−Dc (23)

=
1
h0

(∑
s

qs

1 − rsz−1
+
∑

t

qt

1 − rtz−1

)
z−Dc (24)

where |rs| > 1 and |rt | < 1. From the expression of (24), the
impulse response of C(z), ci, is given by

ci =


1
h0

∑
s −qs(rs)i−Dc 0 ≤ i ≤ Dc − 1

1
h0

∑
t qt(rt)i−Dc Dc ≤ i ≤ M − 1.

(25)

Equation (25) denotes the impulse response of C(z) with Dc.
The impulse response of C(z) with Dc + κ (κ is an integer) is
therefore expressed by

ci =


1
h0

∑
s −qs(rs)i−Dc −κ ≤ i ≤ Dc − 1

1
h0

∑
t qt(rt)i−Dc Dc ≤ i ≤ M − 1 − κ. (26)

The delay D required for the LTE in Sect. 2 is related
with Dc as

D = Dw + Dc (27)

where Dw is the delay by which |hDw | becomes greater than
any other |hk | for k = 0, . . . , L − 1. Equation (27) means that
the main peak of the transmitted pulse is delayed by Dw in
the channel and it is further delayed by Dc in the equaliza-
tion filter. The decision of the delay D does not affect Dw,
because Dw is determined by H(z). However, Dc is affected.
Thus, we investigate how to decide Dc to minimize the MSE
of the equalizer output.

From (25), we can see that ci for i = 0, . . . ,Dc − 1 is
used for equalization of the maximum phase part of the non-
minimum phase channel, because ci for i = 0, . . . ,Dc − 1
includes rs. Similarly, ci for i = Dc, . . . ,M − 1 is used
for equalization of the minimum phase part, because ci

for i = Dc, . . . ,M − 1 includes rt. Thus, in a situation
where |rs| is close to 1, equalization of maximum phase
part is an ill-condition for adaptive channel equalization.
Then, the residual MSE becomes larger one and |ci|/|cDc | for
i = 0, . . . ,Dc−1 also becomes larger value. Also, in the case
of |rt|, such a property is satisfied. Therefore, we deduce that
equalization accuracy of the maximum phase part depends
on |ci|/|cDc | for i = 0, . . . ,Dc − 1 and that of the minimum

phase part depends on |ci|/|cDc | for i = Dc + 1, . . . ,M − 1.
We will further investigate the effects of decision of

Dc on the behavior of ci. In particular, we study a relation
between M and ci because we consider that M is also an im-
portant factor to decide Dc. If M ≈ ∞ is satisfied in noise-
less environments, Dc ≈ ∞ is satisfied in the case where
Dc = M/2. This satisfaction and (25) result in |c0| ≈ 0 and
|cM−1| ≈ 0.

On the other hand, if M is set to a smaller number in
noiseless environments, both |c0| and |cM−1| become larger.
From these relationships between M and ci in noiseless
cases, we consider that equalization accuracy of the maxi-
mum phase part depends on |c0|/|cDc | and that of the mini-
mum phase part depends on |cM−1|/|cDc |. From this point of
view, if Dc is set so that

|c0|
|cDc |

≈ |cM−1|
|cDc |

, (28)

equalization accuracy of the maximum phase part becomes
close to that of the minimum phase part. In stationary cases,
|cDc | is considered to be constant. Hence, we reduce (28) to

|c0| ≈ |cM−1|. (29)

In this paper, it is presented that (29) is satisfied when
the optimum delay is set. To derive (29), we utilize the fol-
lowing knowledge [12]:


MMS EDopt < MMS EDopt−1 < MMS EDopt−2 < · · ·
MMS EDopt < MMS EDopt+1 < MMS EDopt+2 < · · ·

(30)

where MMS EDopt denotes the minimum MSE (MMSE) of
the equalizer output with an optimum delay Dopt on a non-
minimum phase channel. Hence, we can compare and con-
sider the characteristics of the LTE with only Dopt, Dopt − 1,
and Dopt + 1. We first prepare three coefficient vectors with
Dc, Dc − 1, and Dc + 1 given by

CDc = [c0, c1, . . . , cM−2, cM−1]T , (31)

CDc−1 = [c1, c2, . . . , cM−1, cM]T , (32)

CDc+1 = [c−1, c0, . . . , cM−3, cM−2]T , (33)

where all ci are calculated with (25). To simplify the com-
parison of CDc , CDc−1, and CDc+1, C

′
Dc
= CDc z

−1 and C
′
Dc−1 =

CDc−1z−2 are made and zero padding in C
′
Dc

and C
′
Dc+1 is as-

sumed, which yield

C
′
Dc
= [0, c0, c1, . . . , cM−2, cM−1, 0]T , (34)

C
′
Dc−1 = [0, 0, c1, c2, . . . , cM−1, cM]T , (35)

C
′
Dc+1 = [c−1, c0, . . . , cM−3, cM−2, 0, 0]T . (36)

Then, for the comparison, we will obtain system mismatch
of the three coefficient vectors for the LTE. As an optimum
coefficient vector, we deploy an infinite impulse response
(IIR). This is because performance of the LTE with the IIR
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Table 1 Coefficient vectors for the LTE where CIIR , C
′′
Dc

, C
′′
Dc−1, and C

′′
Dc+1 denote the IIR and FIR

with a delay, Dc, Dc − 1, Dc + 1, respectively.

CIIR c−∞ · · · c−2 c−1 c0 c1 · · · cM−2 cM−1 cM cM+1 · · · c+∞

C
′′
Dc

0 · · · 0 0 c0 c1 · · · cM−2 cM−1 0 0 · · · 0

C
′′
Dc−1 0 · · · 0 0 0 c1 · · · cM−2 cM−1 cM 0 · · · 0

C
′′
Dc+1 0 · · · 0 c−1 c0 c1 · · · cM−2 0 0 0 · · · 0

is generally better than that with a finite impulse response
(FIR) when we tackle an inverse modeling problem like
channel equalization. Table 1 gives the IIR and the FIRs
where CIIR denotes the IIR, the elements of which are also
calculated with (25). For the comparison, in the FIRs, C

′
Dc

,
C
′
Dc−1, and C

′
Dc+1, zero padding is made as C

′′
Dc

, C
′′
Dc−1, and

C
′′
Dc+1, which are also shown in Table 1. As described above,

the comparison is made with system mismatch defined by

V = E[(Copt − C)T (Copt −C)] (37)

where Copt denotes the optimum coefficient vector, E[·] is
an expectation operation, and CIIR is used as Copt. We here
focus on E[CIIR] = CIIR and E[C] = C, which we can see
in (25). Instead of (37), therefore, we actually use

V = (CIIR − C)T (CIIR − C). (38)

Then, the system mismatches are obtained as

VDc = (CIIR −C
′′
Dc

)T (CIIR −C
′′
Dc

)

=

−2∑
i=−∞

c2
i + c2

−1 + c2
M +

+∞∑
i=M+1

c2
i , (39)

VDc−1 = (CIIR −C
′′
Dc−1)T (CIIR −C

′′
Dc−1)

=

−2∑
i=−∞

c2
i + c2

−1 + c2
0 +

+∞∑
i=M+1

c2
i , (40)

VDc+1 = (CIIR −C
′′
Dc+1)T (CIIR −C

′′
Dc+1)

=

−2∑
i=−∞

c2
i + c2

M−1 + c2
M +

+∞∑
i=M+1

c2
i . (41)

where VDc , VDc−1, and VDc+1 are the system mismatches of
C
′′
Dc

, C
′′
Dc−1, and C

′′
Dc+1, respectively.

Along the strategy of (30), we obtain VDc−1 − VDc and
VDc+1 − VDc as

VDc−1 − VDc = c2
0 − c2

M, (42)

and

VDc+1 − VDc = c2
M−1 − c2

−1, (43)

respectively. Equations (42) and (43) are represented as

VDc−1 − VDc = c2
0 − α2

1c2
M−1 (44)

and

VDc+1 − VDc = c2
M−1 − α2

2c2
0, (45)

respectively, where |cM | = α1|cM−1| and |c−1| = α2|c0| (α1

and α2 are positive real numbers). If (29) is satisfied, both

VDc−1 − VDc ≈ c2
0(1 − α2

1) > 0 (46)

and

VDc+1 − VDc ≈ c2
0(1 − α2

2) > 0 (47)

are satisfied because both

0 < α1 < 1 (48)

and

0 < α2 < 1 (49)

are roughly satisfied under the following constraint:

|cDc | > |cDc−1| > · · · > |c1| > |c0|
|cDc | > |cDc+1| > · · · > |cM−2| > |cM−1|. (50)

Thus, when (50) is satisfied, both (46) and (47) are satis-
fied. Therefore, we insist that when the optimum delay is
set, the difference between |c0| and |cM−1| is minimized, the
property of which may be used as the cost function for delay
adaptation.

In the above comparison of system mismatches with
(46) and (47), we consider only (29) as the cost function.
Thus, we will further investigate a general form of (29) ex-
pressed as

|c0|γ ≈ |cM−1|γ (51)

where γ is a positive integer and is not equal to 1. We will
compare, in particular, (29) and

|c0|2 ≈ |cM−1|2, (52)

for use as the cost function. This is because (46) and (47)
consist of square of the equalizer coefficients.

Equations (29) and (52) mean minimization of

||c0| − |cM−1|| (53)

and
∣∣∣|c0|2 − |cM−1|2

∣∣∣ = ||c0| + |cM−1|| × ||c0| − |cM−1|| , (54)

respectively. Thus, the distinction between (53) and (54) is

|c0| + |cM−1|. (55)
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Here, let us consider a situation as

|cM−1| − |cM | = |c1| − |c0|. (56)

Equation (56) may be satisfied because of (50). Then, (56)
is represented as

|c0| + |cM−1| = |c1| + |cM |. (57)

In this case, an addition of absolute values of first and last
coefficients for CDc (i.e. |c0| + |cM−1|) is equivalent to that
for CDc−1 (i.e. |c1| + |cM |). Equation (54) is, in the case of
Dc − 1, presented as
∣∣∣|c1|2 − |cM |2

∣∣∣ = ||c1| + |cM || × ||c1| − |cM || . (58)

It means that the first term of the right-hand side in (54) is
equivalent to that of (58). Hence, (55) is not always desired
to be minimized. Thus, we insist that minimization of (53)
is suitable for delay adaptation. Also, from the point of com-
putational complexity, minimization of (53) is favored. We
therefore consider the use of (29), that is (53), as the cost
function. Its evaluation by comparing numerical and simu-
lation examples will be given in the following subsection.

By the way, to derive the cost function, we have utilized
(20) under the constraint of h0 � 0. In the case of dispersive
channels like the raised cosine channel [18], however, h0 =

0. In this case, we focus that, with H(z), the transfer function
of a dispersive channel can be expressed as

Hdis(z) = H(z)z−1. (59)

The essential difference between H(z) and Hdis(z) is the
number of the zeros. The zeros of H(z) are rk(k = 1, . . . , L−
1). On the other hand, the zeros of Hdis(z) are rk(k =
1, . . . , L − 1) and 0. From this point of view, 1/Hdis(z) with
Dc is equivalent to 1/H(z) with Dc + 1 because of (25).
Hence, we can also deploy the cost function for the delay
adaptation method on dispersive channels.

3.2 Evaluation of the Cost Function

In this subsection, we evaluate the derived cost function by
comparing numerical and simulation results. Figure 3 de-
picts the dependency on the delay for the ABC equalizer on
a nonminimum phase channel:

H1(z) = 1 + 2.2z−1 + 0.4z−2 (60)

where M = 11 and the SNR is 100 dB. It is confirmed that
D = 8 provides the lowest MSE level. From this point of
view, in this situation, D = 8 is the optimum delay for the
LTE.

Table 2 gives equalizer coefficient vectors with three
delay settings (D = 7, D = 8, and D = 9) on H1(z) in
the case of SNR of 100 dB. The equalizer coefficients are
calculated by the normal equation(ideal case of (14)):

C = A−1B. (61)

The elements of A and B are calculated by (15) and (16),

Fig. 3 Dependency on the delay for the ABC equalizer on H1(z).

Table 2 Relation between coefficients and delay for the ABC equalizer
where D = 7, D = 8, and D = 9 mean that the fixed delay, D, is 7, 8, and
9, respectively. All the coefficients are calculated with (61).

D = 7 D = 8 D = 9

c0 0.0059 −0.0029 0.0015

c1 −0.0158 0.0079 −0.0039

c2 0.0339 −0.0170 0.0085

c3 −0.0690 0.0345 −0.0172

c4 0.1387 −0.0693 0.0346

c5 −0.2777 0.1388 −0.0693

c6 0.5555 −0.2777 0.1387

c7 −0.1111 0.5555 −0.2773

c8 0.0222 −0.1109 0.5547

c9 −0.0044 0.0219 −0.1094

c10 0.0008 −0.0038 0.0192

||c0 | − |c10 || 5.1 × 10−3 0.9 × 10−3 1.77 × 10−2

|c0 | + |c10| 6.7 × 10−3 6.7 × 10−3 2.07 × 10−2

(|c0 | − |c10|)2 2.60 × 10−5 8.1 × 10−7 3.133 × 10−4

∣∣∣|c0|2 − |c10|2
∣∣∣ 3.42 × 10−5 6.03 × 10−6 3.664 × 10−4

respectively. Then, to derive A, σ2 = 6×10−10 is considered,
because of E[s2

n] = 6. With the derived cost function:

ξ = ||c0| − |cM−1|| , (62)

the following cost functions are also drawn.
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ξ2 = (|c0| − |cM−1|)2 (63)

ξ′ =
∣∣∣|c0|2 − |cM−1|2

∣∣∣ (64)

ξ′′ = |c0| + |cM−1| (65)

From Table 2, we can see that the important relation between
the equalizer coefficients given by (50) is satisfied. Also,
we can confirm that ξ, ξ2, and ξ′ with D = 8 are smaller
values than those with D = 7 or D = 9, respectively. On the
contrary, ξ′′ with D = 8 is equivalent to that with D = 7. As
mentioned above, these examples demonstrate that ξ′′ is not
always desired to be minimized and it suggests that ξ′ is not
also favored for use as the cost function, because of

ξ′ = ξ × ξ′′. (66)

We will further evaluate the derived cost function. To
derive the cost function, we utilize the relationships that ci

with Dc is equivalent to ci−1 with Dc − 1 and that ci with Dc

is equivalent to ci+1 with Dc + 1. However, the relationships
are not strictly satisfied as shown in Table 2. We can see
that c0 with D = 7 is 0.0059 and c1 with D = 8 is 0.0079.
Hence, we can insist that satisfaction of the relationships
is not necessarily strict. As a conclusion, the derived cost
function ξ in (62) is suitable under the following constraints.

1. Equation (50) is satisfied as strictly as possible.
2. Difference between ci with Dc and ci−1 with Dc − 1 is

small.
3. Difference between ci with Dc and ci+1 with Dc + 1 is

small.

The detail of the proposed adaptation scheme based on the
cost function will be described in the following subsection.

3.3 Adaptation Procedure

Based on the derived cost function, involved with the ABC
equalization scheme, the proposed delay adaptation is im-
plemented at the n-th iteration as follows.

1. We calculate |c0(n)| and |cM−1(n)| by solving (14) with
the Levinson-Trench algorithm [11].

2. The average of the delays is calculated as

Dav(n) =
1
Q

Q−1∑
q=0

D(n − q) (67)

where D(n) denotes the estimated delay at the n-th iter-
ation and Q is a positive even number.

3. The absolute value of the difference between D(n) and
Dav(n) is calculated as

ζ(n) = |D(n) − Dav(n)| . (68)

4. If all the elements of ζ(n − q) for q = 0, . . . ,Q − 1 are
not equal to 0.5, go to Step 7. Otherwise, go to the next
step.

5. Instead of ξ,

ξ̂(n) = ||c0(n)| − |cM−1(n)|| (69)

is calculated.
6. If ξ̂(n) > ξ̂(n − 1),

D(n + F) = D(n − 1). (70)

Otherwise,

D(n + F) = D(n) (71)

where F = 1, 2, . . . ,∞. Go to Step 8.
7. If |c0(n)| > |cM−1(n)|,

D(n + 1) = D(n) + 1. (72)

Otherwise,

D(n + 1) = D(n) − 1. (73)

8. The iteration number n is set to n+ 1 and return to Step
1.

Note that W(n), C(n), and D(n) are initialized as W(0) = 0,
C(0) = 0, and D(0) = M/2, respectively, before the adapta-
tion.

Let us discuss the behavior of the delay adaptation
scheme. First, let us consider the use of only Steps 1, 7, and
8 and their behavior. Step 1 calculates |c0(n)| and |cM−1(n)|
to be used in the cost function. The purpose of Step 7 is
given as follows. If |c0(n)| > |cM−1(n)|, equalization per-
formance of the minimum phase part is better than that of
the maximum phase part. Then, we must add D(n) and
a positive integer so that equalization performance of the
minimum phase part become close to that of the maximum
phase part. Here, we use 1 as the positive integer. Hence,
the operation given by (72) is implemented. Similarly, if
|c0(n)| ≤ |cM−1(n)|, we must add D(n) and a negative inte-
ger (−1 is used) as shown by (73). Therefore, with only the
three steps, it is expected that the convergence of the ABC
equalizer leads to either


D(n + F) = Dopt

D(n + F + 1) = Dopt + 1
(74)

or 
D(n + F) = Dopt

D(n + F + 1) = Dopt − 1.
(75)

Thus, Dopt is either D(n+ F) or D(n+ F + 1). With only the
three steps, however, we do not know which is Dopt. Thus,
the remaining steps are necessary.

Next, Steps 2, 3, and 4 are discussed. These three steps
are implemented to check that either (74) or (75) is satisfied.
When (74) is satisfied, Dav(n) becomes

Dav(n) =
1
Q

(Q
2

(Dopt + 1) +
Q
2

Dopt

)

= Dopt +
1
2
. (76)
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Similarly, when (75) is satisfied, Dav(n) becomes

Dav(n) =
1
Q

(Q
2

(Dopt − 1) +
Q
2

Dopt

)

= Dopt − 1
2
. (77)

From the results, when either (74) or (75) is satisfied, we
have ζ(n) = 0.5. Hence, when all the elements of ζ(n − q)
for q = 0, . . . ,Q − 1 are equal to 0.5, either (74) or (75) is
satisfied. To accomplish the above operation, Q must be a
large even number. This is because Q/2 must be an integer
and neither (74) nor (75) is satisfied with small Q.

Steps 5 and 6 are finally discussed. The ξ in Step 2 is
the cost function to select either D(n + F) or D(n + F + 1)
as Dopt. If ξ̂(n) > ξ̂(n − 1), D(n − 1) is selected as Dopt.
Otherwise, D(n) is selected. Equations (70) and (71) mean
that the delay is fixed at the n + F-th iteration. Therefore,
Step 2 calculates the cost function and Step 5 fixes the delay,
which is also used in the tracking mode.

3.4 Discussions

In Sect. 3.1, we have investigated the delay adjustment prob-
lem in noiseless cases. In this subsection, we discuss the
use of the derived cost function and that based delay adapta-
tion technique for linear equalization of nonminimum phase
channels in white noise environments.

We consider that the delay adjustment problem in a
noiseless case is essentially equivalent to that in a white
noise case. In this case, (30) is satisfied even in white noise
case. Hence, we discuss to take the same approach to the de-
lay adjustment problem for the LTE on nonminimum phase
channels in white noise as that in noiseless. In particular, we
focus on the satisfaction of (50) in white noise.

As shown by (15) and (16), the elements of B are given
by

bi =

M−1∑
j=0

ai jc j

i = 0, . . . ,M − 1. (78)

From this equation, magnitude of |ci| for i = 0, . . . ,M−1 be-
comes smaller as the SNR decreases. Here, we consider an
effect with decrease of the SNR on |cDc | is larger than that on
|ci| for i = 0, . . . ,Dc − 1,Dc + 1, . . . ,M − 1. This means that
magnitude of |cDc−k | for k = Dc, . . . , 1,−1, . . . ,Dc − M + 1
becomes smaller as |k| increases in low SNR cases. This is
because decrease of the SNR effects only the diagonal ele-
ments of A. Therefore, difference between |ci| and |ci−1| be-
comes smaller as the SNR decreases. However, we consider
that the relationship of (50) is still satisfied in noisy cases,
because |cDc−k| with large |k| becomes close to 0 in low SNR
environments.

They are confirmed with numerical results. Table 3
shows the coefficient vectors with D = 8 for the LTE on
H1(z) where the SNRs are 100 dB, 20 dB, 10 dB, and 0 dB,

Table 3 Effect of the SNR on the equalizer coefficients for the conven-
tional ABC equalizer on H1(z) where D = 8. All the coefficients are calcu-
lated with (61).

SNR(dB) 100 20 10 0

c0 −0.0029 −0.0023 −0.0002 0

c1 0.0079 0.0062 0.0008 0

c2 −0.0170 −0.0138 −0.0025 0

c3 0.0345 0.0290 0.0072 −0.0002

c4 −0.0693 −0.0603 −0.0205 0.0012

c5 0.1388 0.1250 0.0575 −0.0029

c6 −0.2777 −0.2589 −0.1578 −0.0126

c7 0.5555 0.5347 0.4165 0.1762

c8 −0.1109 −0.0969 −0.0255 0.0430

c9 0.0219 0.0145 −0.0180 −0.0177

c10 −0.0038 −0.0009 0.0099 0.0031

respectively. The coefficient vectors are calculated by (61),
which is the same as in Table 2. From this table, we can
observe that the important relation between the equalizer
coefficients given by (50) is satisfied in both noiseless and
noisy cases. Thus, we can insist that the derived adaptation
scheme is suitable in both the cases. Performance of the
ABC equalizer with the derived adaptation scheme is evalu-
ated in Sect. 4.

3.5 Computational Complexity

As shown in Sect. 3.3, the proposed delay adaptation
method can be implemented with the simple procedure,
which is combined with the conventional ABC equalizer [9].
In Step 2, the proposed scheme requires the average opera-
tion of (67), which is reexpressed as

Dav(n) = Dav(n − 1) +
D(n) − D(n − Q)

Q
. (79)

With the above technique, the proposed delay adaptation
scheme approximately requires five additions, one division,
and four absolute value operations for each iteration. A
point to be focused is that the additional complexity depends
on neither the length of the channel estimator, L, nor that of
the equalization filter, M.

4. Simulations

4.1 Conditions

Simulation experiments are carried out to evaluate the per-
formance of the proposed adaptive scheme. We use two
nonminimum phase channels whose transfer functions are
given by (60) and

H2(z) = 0.06 − 0.07z−1 + 0.1z−2 − 0.5z−3 − 0.9z−4

+ 1.0z−5 + 0.3z−6 + 0.2z−8 + 0.05z−9 + 0.1z−10

(80)
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where the conventional and proposed ABC equalizers are
compared. The two ABC equalizers commonly use µ =
0.01 and P = 20. The length of channel estimator for the
ABC equalizers is L = 3 for H1(z) and L = 11 for H2(z),
which are equivalent to the channel length, respectively. The
proposed ABC equalizer uses Q = 100 for use in Step 2 de-
scribed in Sect. 3.3. The MSE performance is evaluated by
averaging 100 individual trials and the BER performance is
evaluated by averaging 10 individual trials.

4.2 Performance in High SNR Environments

Figure 4 illustrates the convergence of the conventional and
proposed ABC equalizers on H1(z) where M = 11 and the
SNR is 100 dB (this is considered as a noiseless environ-
ment). From this figure, it is confirmed that the proposed
ABC equalizer provides an improvement of about 18 dB,
compared with the conventional one with D = 5 being half

Fig. 4 Convergence of the two ABC equalizers on H1(z) where M =

11 and the SNR is 100 dB. The solid and dotted lines correspond to the
conventional and proposed ABC equalizers, respectively.

Fig. 5 Delay behavior of the proposed ABC equalizer in the case of
Fig. 4.

of equalizer length. We can also see that the convergence of
the proposed ABC equalizer is very similar with that of the
conventional one with D = 8 being optimum in the sense of
providing the lowest MSE level. The delay behavior of the
proposed scheme is depicted in Fig. 5. The convergence of
the proposed ABC equalizer leads to (75) as shown around
the range of 350–450 iterations. Furthermore, it is observed
that the final decision of the delay using (69) is performed
around 450 iterations.

Figure 6 depicts the convergence of the ABC equaliz-
ers on H2(z) where M = 16 and the SNR is 100 dB. We can
see that the convergence of the proposed ABC equalizer is
similar with that of the conventional one with Dopt = 16.
Figure 7 illustrates the delay behavior of the proposed ABC
equalizer in the case of Fig. 6. We can confirm that the pro-
posed adaptation scheme succeeds in estimating the opti-
mum delay on H2(z) which has multiple zeros whose abso-
lute values are greater than 1 and multiple zeros whose ab-
solute values are less than 1. Also, we can observe that the

Fig. 6 Convergence of the two ABC equalizers on H2(z) where M = 16
and the SNR is 100 dB.

Fig. 7 Delay behavior of the proposed ABC equalizer in the case of
Fig. 6.
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Fig. 8 Convergence of the two ABC equalizers on H2(z) where M = 16
and the SNR is 5 dB. The fixed delay for the conventional ABC equalizer
is set to D = 8, which is M/2.

behavior of the delay becomes close to (74) as the proposed
ABC equalizer converges and (69) is implemented around
400 iterations. Furthermore, through Figs. 4–7, we can see
that the speed of convergence of the delay is approximately
equivalent to that of the MSE. Therefore, the proposed ABC
equalizer accomplishes both fast start-up and excellent ac-
curacy with a small increase of computation.

4.3 Performance in Low SNR Environments

In the previous subsection, the performance of the proposed
ABC equalizer in noiseless environments has been investi-
gated. In this subsection, further simulations are carried out
to investigate the performance of the proposed ABC equal-
izer in white noise environments.

Figure 8 compares the MSE performance of the two
ABC equalizers on H2(z) where M = 16, the SNR is 5 dB,
and the conventional ABC equalizer uses D = M/2 = 8 be-
ing half of the equalizer length. From this result, we can see
that the proposed ABC equalizer provides an improvement,
compared with the conventional one with D = M/2 = 8
Behavior of adapted delay of the proposed ABC equalizer
in the case of Fig. 10 is shown in Fig. 9. Similarly in noise-
less cases, the convergence speed of the adapted delay of
the proposed ABC equalizer is roughly the same with that
of the MSE. Comparison of the conventional ABC equalizer
with the optimum delay and the proposed ABC equalizer is
depicted in Fig. 10. We can observe that the convergence
of the proposed ABC equalizer is similar with that of the
conventional one with Dopt = 14.

As shown in Fig. 9, however, the average of the adapted
delays is not always an integer in noisy cases. This means
that the additive noise corrupts both the equalizer coeffi-
cients and the delay for the proposed ABC equalizer. For
the tracking mode of the proposed adaptation scheme in
noisy cases, the delay is recommended to be fixed. To solve
this problem, we use an integer close to the average of the

Fig. 9 Delay behavior of the proposed ABC equalizer in the case of
Fig. 8.

Fig. 10 Convergence of the two ABC equalizers on H2(z) where M =

16 and the SNR is 5 dB. The optimum delay, Dopt = 14, is used for the
conventional ABC equalizer.

adapted delays Dav(n). In the case of Fig. 9, D = 14 is a
closest integer, which we deploy in the tracking mode. In
noisy environments, we use Dav(n) for the proposed ABC
equalizer in the tracking mode.

It is desired to investigate a bit-error-rate (BER) perfor-
mance in addition to the MSE performance. Figure 11 illus-
trates the BER performance on H2(z) where both the ABC
equalizers commonly use M = 16. Here, D = M/2 = 8 is
used for the conventional ABC equalizer. From this figure,
it is shown that the proposed ABC equalizer provides better
performance than the conventional one with D = 8. We can
also observe that a degree of performance improvement be-
comes larger as the SNR becomes higher. This is because
the effect of decision of the delay for the LTE on nonmini-
mum phase channels becomes larger as the SNR increases.

Figure 12 shows the BER performance of the two ABC
equalizers against the equalizer length on H2(z) where the
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Fig. 11 BER performance of the two ABC equalizers on H2(z) against
the SNR where M = 16.

Fig. 12 BER performance of the two ABC equalizers on H2(z) against
the equalizer length where the SNR is 15 dB.

SNR is 15 dB. We can see that a degree of performance
improvement provided by the proposed delay adaptation
scheme becomes larger as the equalizer length M becomes
smaller. This is because the absolute values of first and last
coefficients for the equalization filter become larger as M
becomes a smaller positive integer. This fact results in worse
error performance of the conventional ABC equalizer as dis-
cussed in Sect. 3.1. The proposed scheme is, however, more
insensitive to the equalizer length than the conventional one
as shown in this figure. Hence, we can insist that the pro-
posed delay adaptation scheme works well in both noiseless
and noisy environments.

5. Concluding Remarks

The problem of delay adaptation for the LTE on nonmin-
imum phase channels has been investigated. We have fo-
cused that the filter structure and adaptation procedure of

the ABC equalizer are very suitable to change the delay at
each sampling time. Also, we have derived the novel cost
function, which is square of difference of absolute values of
the first and last elements of the equalizer coefficient vector.
We have evaluated the cost function by comparing numeri-
cal and simulation examples. As a result, it has been shown
that the cost function is suitable for delay adaptation un-
der the constraints described in Sect. 3.2. Based on the cost
function, we have developed the delay adaptation method,
which is involved with the ABC equalization scheme. Com-
puter simulations have demonstrated that the proposed ABC
equalizer succeeds in estimating the optimum delay and pro-
vides lower MSE level than the other LTEs with a delay be-
ing set to half of the equalizer length. Furthermore, we have
shown that the optimum delay for the LTE on nonminimum
phase channels depends on

1. channel impulse response
2. equalizer length
3. SNR

and the proposed scheme succeeds in estimating the opti-
mum delay. The proposed ABC equalizer will be reinforced
by using more excellent channel estimators than the LMS
estimator.
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