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PAPER

Spectrum Estimation by Noise-Compensated Data Extrapolation

Jonah GAMBA†a), Student Member and Tetsuya SHIMAMURA†, Member

SUMMARY High-resolution spectrum estimation techniques have
been extensively studied in recent publications. Knowledge of the noise
variance is vital for spectrum estimation from noise-corrupted observations.
This paper presents the use of noise compensation and data extrapolation
for spectrum estimation. We assume that the observed data sequence can
be represented by a set of autoregressive parameters. A recently proposed
iterative algorithm is then used for noise variance estimation while autore-
gressive parameters are used for data extrapolation. We also present analyt-
ical results to show the exponential decay characteristics of the extrapolated
samples and the frequency domain smoothing effect of data extrapolation.
Some statistical results are also derived. The proposed noise-compensated
data extrapolation approach is applied to both the autoregressive and FFT-
based spectrum estimation methods. Finally, simulation results show the
superiority of the method in terms of bias reduction and resolution im-
provement for sinusoids buried in noise.
key words: spectrum estimation, noise variance, Yule-Walker equations,
autoregressive process

1. Introduction

Traditional methods of spectrum estimation solely rely on
the discrete Fourier transform (DFT) to obtain the power
spectrum of an observed data sequence [1]–[3]. Popular
among these are the periodogram and Blackman-Turkey
methods. Their major weakness, however, is that they
fail to resolve closely spaced spectral peaks when short-
duration data sequences are used. This weakness is the
main motivation behind the so-called high-resolution tech-
niques; notably the autoregressive (AR) [4]–[6] and eigen-
decomposition techniques [7]. Although these high resolu-
tion techniques give better-resolved spectrum estimates, it is
only at high signal-to-noise ratios (HSNR’s) that their per-
formance can be guaranteed to be superior to the traditional
methods [8]. The reason for this could be attributed to the
inability to accurately separate the signal subspace from the
noise subspace at low signal-to-noise-ratios (LSNR’s). The
presence of noise is a serious problem for AR parameter es-
timation [9]–[11], usually involving the use of higher-order
Yule-Walker equations (YWE’s) [12]. The use of autore-
gressive moving average (ARMA) models for noisy AR has
been recommended in [8]. However, the resulting nonlin-
ear equations cannot be easily solved, thus making the fre-
quency estimates sub-optimal. At LSNR’s the distinction
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between large and small eigenvalues becomes obscure and
hence methods like rank reduction fail to produce satisfac-
tory results. In particular, MUSIC [13] performs badly at
LSNR’s.

Another approach that has been successfully used to
enhance the spectral resolution for two-dimensional [14]–
[16] and also one-dimensional [17] spectrum estimation is
the data extrapolation method. However, the data extrapo-
lation method employed alone has been shown to result in
rapid decrease in the magnitude of extrapolated data points
[16]. This trend has been intuitively attributed to the in-
crease in prediction error [24]. Nonetheless, this method can
become very attractive if it is coupled with noise compen-
sation [18]. If the noise variance can be estimated from the
observed data sequence, then the data extrapolation method
can improve frequency resolution and bias considerably.
The aim of this paper is therefore to analytically character-
ize the data extrapolation process and to demonstrate the ef-
fectiveness of the noise-compensated data extrapolation as a
spectrum estimation technique.

To achieve the abovementioned goals we use a recently
proposed iterative noise variance estimation (INVE) tech-
nique based on low-order YWE’s [19]. The noise variance
estimate is used in extracting the AR parameters from the
observed data sequence. These AR parameters are in turn
used in conjunction with data extrapolation for spectrum
estimation. We analyze the effect of data extrapolation in
both the time domain and the frequency domain to reveal
the characteristics of the extrapolated data points. Such an
analysis, in relation to noise-compensated data extrapola-
tion, has not been formally presented in the literature. The
relationship between data extrapolation, noise variance, bias
and resolution is also unveiled. In this paper it is shown that
the decrease in value of the extrapolated data points is ex-
ponential in nature and has the effect of smoothing the spec-
trum.

This paper is organized as follows. In Sect. 2 we review
the INVE method. Section 3 presents the proposed method
of spectrum estimation. Section 4, which is an expansion on
Sect. 3, gives a more detailed analysis of the data extrapola-
tion method and implications in both the time and frequency
domains. Statistical assessment of the method is also given
in this section. In Sect. 5 simulation results are presented.
Concluding remarks in Sect. 6 end this paper.
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2. Review of the INVE Method

In this section, we review the INVE method [19] since it
will be useful in understanding the analysis of the noise-
compensated data extrapolation method. The INVE method
is based on low order YWE’s. The INVE method is itera-
tive and at each iteration, an estimate of the noise-free Yule-
Walker solution is obtained by adjusting the noise variance
parameter and constraining the solution to match the auto-
correlation sequence of the observed data sequence. The
adjustment is achieved through a step-size parameter which
depends on the current value of the noise variance param-
eter. The true noise variance minimizes the difference be-
tween the second norms of the noisy Yule-Walker solution
and the estimated noise-free Yule-Walker solution.

2.1 Formulation of the Noisy AR Model

For the purpose of noise variance estimation, we define a
stationary AR process y(n) of order p by

y(n) = −
p∑

i=1

a(i)y(n − i) + e(n),

where e(n) is an uncorrelated driving white noise sequence
of variance σ2

e and the a(i)’s are the noise-free AR parame-
ters. The autocorrelation function (ACF) at lag k for y(n) is
defined by ryy(k) = E[y(n)y(n + k)] where E[·] is the expec-
tation operator. The ryy(k) is given in the above case by

ryy(k) = −
p∑

i=1

a(i)ryy(k − i) + δ(k)σ2
e k ≥ 0

where δ(k) is the Kronecker delta function. In the pres-
ence of noise, the observed data sequence becomes x(n) =
y(n)+w(n), where w(n) is assumed to be zero-mean additive
white Gaussian noise of variance σ2

w. The ACF for x(n) is
similarly defined like that for y(n) and denoted by rxx(k).

The AR parameters can be estimated by using the
YWE’s [1] given by

Ryya = −ry (1)

Rxxâ = −rx (2)

where Ryy and Rxx are p × p autocorrelation matrices
(ACM’s) of the sequences y(n) and x(n) respectively. The
column vectors on the right hand sides of Eqs. (1) and (2)
are rT

y = [ryy(1) . . . ryy(p)] and rT
x = [rxx(1) . . . rxx(p)]. The

T denotes the transposition operation. The p × 1 vectors a
and â are the noise-free and noisy solutions to the YWE’s,
respectively. The AR parameter estimates from Eq. (2) are
biased since rxx(k) = ryy(k) + δ(k)σ2

w. Using Eqs. (1) and
(2), the following relationship between ACM’s is validated
for noise compensation,

Ryy = Rxx − σ2
wI (3)

where I is a p × p identity matrix.

2.2 Noise Variance Estimation

Equations (1)–(3) can be utilized in the estimation of the
noise variance σ2

w. It can be shown that it is possible to es-
timate σ2

w from the low-order YWE’s by defining a function
f (α) such that

f (α) = ‖â‖ − ‖ã(α)‖ (4)

where α is a parameter that gives an estimate of σ2
w and

ã(α) corresponds to the solution of noise-compensated Yule-
Walker equation obtained by combining Eq. (1) with Eq. (3).
The value of α that gives the minimum of f (α) results in the
noise variance estimate. This property of the function f (α)
is described analytically in [19] and forms the basis of the
INVE method. We extract the minimum of f (α) by adjust-
ing the α in an iterative fashion.

3. Spectrum Estimation

Given a finite length of data sequence x(0), x(1), . . .,
x(N − 1), suppose that based on the INVE method the f (α)
is minimized when α = α1. Then the spectrum estimation
by noise-compensated data extrapolation can proceed as fol-
lows.

1. Estimate the biased noisy autocorrelation sequence
rxx(k) from the data sequence as

r̂xx(k) =
1
N

N−1−|k|∑
n=0

x(n)x(n + |k|). (5)

2. Defining σ̂2
w as the estimate of the noise variance from

the INVE method, and substituting it in Eq. (3), obtain
the noise-compensated AR parameters from Eq. (1),
denoted by ã(α1), and use these parameters to extrap-
olate the data sequence x(n) as described in [18]; that
is,

x̂(n) = −
p∑

k=1

[ã(α1)]k x(n − k) (6)

where x̂(n) denotes the extrapolated points, [·]k is
the kth element of ã(α1), and n ≥ N. The result-
ing extrapolated data sequence is denoted by x′(n) =
[x(0), x(1), . . . , x(N − 1), x̂(N), , . . . , x̂(Z − 1)], where Z
is the total data sequence length and Z > N.

3. Obtain new AR parameters from x′(n) by solving
Eq. (2) using the Levinson-Durbin algorithm.

4. Estimate the spectrum from the extrapolated data se-
quence x′(n) by either of the following methods.

• Through the FFT approach, using the DFT of
x′(n) which is defined by

X′(k) =
1
Z

Z−1∑
n=0

x(n)e− j2πkn/Z (7)

for k = 0, . . . , Z − 1. The power spectrum is then
given by |X′(k)|2/Z.
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• Using the AR approach, with the AR power spec-
tral density Par( f ) which is given by [1]

Par( f ) =
g2

|A( f )|2 (8)

and A( f ) =
∑p

k=0 [â′]ke− j2π f k, (a0 = 1), where
the AR parameters â′ and gain power g2 are ob-
tained from Step 3 through the Levinson-Durbin
algorithm.

In Step 2, the value of Z can be determined from practical
considerations such as resolution requirements. For given
length of available data sequence, the spectral resolution
limit for the DFT can be readily determined. However, in
the case of AR spectrum estimation, the optimum value of
Z would depend on both the order and the SNR and in that
case the DFT resolution requirements can be used as a guide
to the amount of data extrapolation necessary. We also note
that instead of performing eigendecomposition as in [18],
the noise compensated AR parameters are obtained through
the INVE method. As compared to previous methods, the
above spectrum estimation method eliminates the need for
adjustment parameters suggested in [5] and [18] during the
process of noise variance estimation. The a priori knowl-
edge of σ2

w as in [4] also becomes unnecessary.

4. Analytical Assessment of Data Extrapolation

In this section, we analyze the effect of noise-compensated
data extrapolation in both the time and frequency domains.
We also present the implications of noise-compensated data
extrapolation from a statistical perspective.

4.1 Time Domain Effect

Given the observed data sequence x(0), x(1), . . . , x(N − 1),
we can extrapolate the sequence using prediction coeffi-
cients to arrive at the following expression for the (i + 1)th
extrapolated data sample:

x̂(N + i) ≈ α0e−βi, (9)

where β can be taken to be a positive real number corre-
sponding to the rate of decay of the extrapolated data sam-
ples. The derivation of Eq. (9) is given in Appendix. Equa-
tion (9) could explain the tapering effect of the extrapolated
data points observed in [16]; that is, the extrapolated section
can be approximated by a decreasing exponential function
of the data, with initial value equal to α0 as shown in Fig. 1.

4.2 Frequency Domain Effect

The effect of the extrapolated points in the frequency do-
main can be explained with the help of Heaviside’s unit
step function u(t) and the replicating symbol (function) as
defined in [22]. We will represent the replicating symbol
(function) by �(t) in the sequel. The t here is an indepen-
dent variable.

Fig. 1 Extrapolated data points from an observation of length N.

From the observed data sequence x(0), x(1), . . . , x(N −
1), we can obtain the extrapolated sequence as described in
the preceding section. Suppose that the extrapolated data
sequence becomes x′(0), x′(1), . . . , x′(N − 1), x′(N), x′(N +
1), . . . , x′(N+N1−1), with N1 new data points. Let us refer to
this process of obtaining x′(n) as forward data extrapolation.
We recognize that

x′(n) = x(n) n = 0, . . . ,N − 1 (10)

x′(n) = x̂(n) n = N, . . . ,N + N1 − 1. (11)

If we assume that the observed data sequence is a realization
of a continuous time signal x(t), the original data sequence
can be arrived at by sampling with the�(t) so that we have
x(t)�(t). The periodicity of N samples can be achieved by
convolution to get r(t) which can be expressed as

r(t) = [x(t)�(t)] ∗ �(t)/N, (12)

where the asterisk (∗) denotes the convolution operation.
Assuming that the Fourier transform of x(t) exists, then the
Fourier transform of r(t) also exists, and can be written as
R( f ) = [X( f )∗�( f )]�(N f ), where f denotes the frequency.
We see that R( f ) is the Fourier transform of x(t) sampled at
1/N intervals. Extending similar arguments on the extrap-
olated data sequence x′(n) as on x(t), the addition theorem
of Fourier transforms, can be used to separate x′(n) into two
sequences x′1(n) and x′2(n) of length N1 such that

x′1(n) =

{
x′(n) n = 0, . . . ,N − 1
0 n = N, . . . ,N + N1 − 1

x′2(n) =

{
0 n = 0, . . . ,N − 1
x′(n) n = N, . . . ,N + N1 − 1.

This separation of data into two sequences is depicted in
Fig. 2. In Fig. 2 the shape of the observed data is arbitrarily
chosen. The data sequences x′1(n) and x′2(n) can be thought
as those resulting from employing the sampling and repli-
cating operations on continuous-time signals x′1(t) and x′2(t).
Performing the Fourier transformation of the two data se-
quences and combining the results, we get

X′( f ) = [X′1( f ) ∗ �( f )]�(Ne f )

+ [X′2( f ) ∗ �( f )]�(Ne f ) (13)

where Ne = N + N1. Equation (13) can be simplified to
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Fig. 2 Splitting of data sequence x′(n) into two: (a) observed data se-
quence with trailing zeros x′1(n), (b) extrapolated data sequence with lead-
ing zeros x′2(n) and (c) addition of (a) and (b) to get x′(n).

X′( f ) = [X′1( f ) ∗ �( f )

+ X′2( f ) ∗ �( f )]�(Ne f ). (14)

In Eq. (14) we can interpret X′2( f )∗�( f ) as the Fourier trans-
form of Eq. (9) multiplied by a delayed Heaviside’s unit step
function if Eq. (9) is taken into consideration. Since the re-
sulting function is exponential in nature, it has the effect of
smoothing the Fourier transform of the original data sam-
ples. The smoothing effect can be verified by considering
the following. For Heaviside’s unit step function u(t), the
Fourier transform pairs are defined by [23]

Ft e−µtu(t) = Fp(ω) =
1

µ + jω
(15)

Ft eµtu(−t) = Fn(ω) =
1

µ − jω
(16)

where the “Ft” denotes the Fourier transform operator, ω =
2π f is the radian frequency and µ > 0. Equation (15) is
similar to the one used for forward data extrapolation; that
is, extrapolation into positive time indices to get x̂(N), x̂(N+
1), . . .. The Fourier transform of x′1(n) is the same as that of
zero-padded x(n) while that of x′2(n) is the Fourier transform
of time-shifted Eq. (15). According to the shift theorem the
magnitude spectrum of x′2(n) is the same as that of Eq. (15)
and is given by

|Fp(ω)| = 1/(µ2 + ω2)1/2.

Data extrapolation, therefore, by the exponential decay na-
ture of the extrapolated data points, produces a smoothing
effect in the frequency domain. This smoothing effect dis-
tinguishes data extrapolation by prediction from data extrap-
olation by zero-padding where any oscillatory behavior in
the Fourier transform of x(n) is left unaffected. Additionally
the spectrum is sampled at 1/Ne intervals instead of 1/N for
the original.

We notice that Eq. (16) could be handy if backward
data extrapolation was also performed; that is, extrapolation
to negative indices before n = 0 to x̂(−1), x̂(−2), . . .. Utiliza-
tion of both the forward and backward data extrapolation
could be postulated to give better results in the frequency
domain than either applied separately.

4.3 Statistical Considerations

Extensive analysis of linear prediction in respect of autore-
gressive processes has been carried in [25]–[28]. Since data
extrapolation is based on linear prediction, the results of that
analysis could be useful in explaining the effects of data ex-
trapolation on the AR parameters and also on the spectrum
estimate.

In [25] it was shown that the error of prediction of the
x(N + s)-th sample using the most recent p observations as-
suming that the predictions were made from data samples
independent of those used to construct estimators for pa-
rameters, is expressed as

(x̂(N + s) − x(N + s)) ≈

−
s−1∑
k=0

bkeN+s−k + (â − a)T Mhyn, (17)

where Mh is the first p×p sub-matrix of
∑s−1

k=0((AT )k⊕As−1−k.
The ⊕ represents the Kronecker delta product and is defined
for matrices Am×n and Bq×t by the matrix Dmq×nt = A ⊕
B = [ai jB]. If {x(n)} is a stationary AR(p) process, A is
a p × p matrix such that x(n) = Ax(n − 1) + e(n), where
x(n) = [x(n), . . . x(n− p+1)]T and e(n) = [e(n), 0, . . . , 0]T is
a p× 1 zero mean constant variance white noise vector. The
bk’s are the MA equivalent parameters for the AR process.

Often, as in our case, the same observation sequence is
used for prediction and parameter estimation, hence Eq. (17)
can be modified such that the error of the predictor can be
written as [26]

X̂(N + s) − X(N + s) ≈

−
s−1∑
k=0

AkeN+s−k − (Âs − As)X(n), (18)

where X(n) is [[x(n)]T , 1]T . Both Eqs. (17) and (18) depend
on the bias vector (â−a) of the AR parameters. It was shown
in [27] that for the case where the input white noise is un-
correlated with the AR parameters the bias in Yule-Walker
AR parameter estimates BAR is

BAR = N−1


R−1ξ +

σ2
eR−11
p∑

i=0

a(i)

+ EBAR

 , (19)

where p is assumed to be even, 1 is a p × 1 vector of ones,
EBAR is a residual error of BAR mainly constituted by fourth
order cumulant of e(n) and ξ is a p × 1 vector such that
ξ j =

∑p
k=0 | j − k|rxx( j − k)a(k), j = 1, . . . p. The log-bias of

the spectral density function log P( f̂ ) − log P( f ) in the least
squares sense was shown in [28] to be related to the bias
vector of the AR parameter estimates (â − a) as follows:

log P( f̂ ) − log P( f )

=
σ4

e − (σ̂e
2 − 2σ2

e)2

2σ4
e
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− a′T Hf (â′ − a′)
G( f , a′)

+ (â′ − a′)T Hf a′â′
T

Hf −G( f , a′)Hf

2G2( f , a′)
(â′ − a′)

+ Res( f , a′), (20)

where a′ = [1, aT ]T , â′ = [1, âT ]T , G( f , a′) = |A( f , a′)|,
A( f , a′) = a′T e f , and e f = [1, e j f , . . . , e jp f ]T . The vector Hf

is defined as Hf = e f eH
f + eH

f e f , where eH
f is the Hermitian

transpose of e f . The quantity Res( f , a′) is a residual term of
order O(1/N). Equation (20) can be simplified to

log P( f̂ ) − log P( f )

= E2
σ2

e
− a′T Hf (â′ − a′)/G( f , a′)

+ B′TAR

Hf a′â′
T

Hf −G( f , a′)Hf

2G2( f , a′)
B′AR

+ Res( f , a′), (21)

where E2
σ2

e
is the prediction error term and B′AR = â′ −

a′T . Equations (18)–(21) show that noise-compensated
data extrapolation has desired effect of reducing the bias
in the spectral estimates since noise compensation mini-
mizes E2

σ2
e

in Eq. (21). As mentioned above, besides in-
creasing the smoothness, and also compactness, of the spec-
trum, data extrapolation has the inherent effect of reduc-
ing the bias because of the 1/N term in the Eq. (19). The
noise-compensated data extrapolation could, therefore, be
expected to invoke effective bias reduction and resolution
improvement in the frequency domain.

5. Computer Simulation

The following relationship was used for simulations

y(n) =
q∑

i=1

Ai exp( j2π fin) + v(n), (22)

where q is the number of frequencies, Ai is the amplitude of
the i-th normalized frequency and v(n) is zero-mean white
noise of varianceσ2

v . The simulation example is clearly seen
to be that of sinusoids in white noise. This signal model
choice has been made based on the observation that the AR
model interpretation of linear prediction gives high resolu-
tion in the case of sinusoids in white noise and can be used
as a good benchmark for performance evaluation [29]. The
sinusoidal signal model commonly arises in frequency es-
timation problems where the nature of the signal is known
beforehand. However since the poles of AR model for si-
nusoids are located on the unit circle, the locations of the
largest poles can be used to estimate the frequencies. In the
noiseless case, poles on the unit circle corresponds sharp
peaks in the spectrum while additional spurious peaks arise
in the noisy case. Thus, the spectrum of sinusoids can be
analyzed by an AR model. Since we are also considering
short data sequences with closely spaced spectral peaks at

LSNR’s, this signal model choice could be useful for illus-
tration purposes. Furthermore, with little information about
the nature of the signal under investigation, it could be prac-
tical to use the AR model for a given data sequence.

The settings in Eq. (22) were: q = 2, f1 = 0.20, f2 =
0.22, and A1 = A2 = 1. The data sequence of length 40 was
generated and used in the simulations. The AR order p for
parameter estimation was set to 18. The order was obtained
by using the approximation p = (N/3 + N/2)/2 [6], where
N is the length of the observed data sequence, and p was
set to be even. The constant M for the INVE method was
set to 1000. For the noise-compensated extrapolation of the
proposed method, the data was extended to two times the
original length. The SNR, given by the relationship S NR =
10 log(Pi/σ

2
v ), where Pi = |Ai|2, was varied from −10 dB to

30 dB. A complex-valued sequence has be chosen since it
is more general and simpler to work with in the frequency
domain. The AR parameters will accordingly be complex
although strictly speaking, it would not be a disadvantage.

In Figs. 3–6, the rapid decrease in the amplitude of the
extrapolated data points due to the use of noisy AR parame-
ters is illustrated. The effect is more severe at LSNR’s. With
noise-compensated AR parameters it is possible to obtain a
much longer non-zero sequence as shown in Fig. 6.

As shown in Figs. 7 and 8, the effect of noise on the
spectrum estimate is more severe with MUSIC than DFT to

Fig. 3 Extrapolation of a noise-corrupted data sequence with no com-
pensation at SNR of 5 dB. The original data length is 40.

Fig. 4 Extrapolation of a noise-corrupted data sequence with compensa-
tion at SNR of 5 dB. The original data length is 40.
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Fig. 5 Extrapolation of a noise-corrupted data sequence with no com-
pensation at SNR of 0 dB. The original data length is 40.

Fig. 6 Extrapolation of a noise-corrupted data sequence with compensa-
tion at SNR of 0 dB. The original data length is 40.

Fig. 7 Spectrum estimate at HSNR (30 dB) for both DFT and MUSIC by
averaging 100 independent runs.

the extent that the two frequencies can be hardly resolved
at −5 dB by MUSIC. Both methods give a good estimate as
shown by position of peaks. On the other hand, there is a
general degradation in the estimates obtained from DFT and
an evident increase in side-lobe power. Decreasing the SNR
renders the MUSIC method ineffective but the DFT method
still shows the presence of two frequency components de-
spite an increased bias.

Figures 9 and 10, and Table 1, show that the noise-
compensated data extrapolation method invokes the best es-

Fig. 8 Spectrum estimate at LSNR (−5 dB) for both DFT and MUSIC
by averaging 100 independent runs.

Fig. 9 Spectrum estimate by the proposed method and DFT at relatively
HSNR (5 dB) by averaging 100 independent runs. NCDE-DFT denotes the
noise-compensated data extrapolation and FFT processing.

Fig. 10 Spectrum estimate by the proposed method and DFT at LSNR
(−5 dB) by averaging 100 independent runs. NCDE-DFT denotes the
noise-compensated data extrapolation and FFT processing.

timate for the two frequencies in the given range of SNR.
The results also show a considerable decrease in bias by the
proposed method.

Figures 11 and 12 compare the use of the proposed
noise compensation data extrapolation method to the direct
use of YWE’s. It can be seen that the proposed method can
result in better amplitude response and reduction in bias than
using YWE’s only. The suppression of the power of spuri-
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Table 1 Estimates of the two frequencies at −5 dB, 0 dB, and +5 dB for
DFT, NCDE-DFT and MUSIC by averaging 100 independent runs.

SNR DFT NCDE-DFT MUSIC
dB f̂1 f̂2 f̂1 f̂2 f̂1 f̂2
−5 0.1973 0.2207 0.1992 0.2207 0.1992 0.2031
0 0.1973 0.2207 0.1992 0.2207 0.1992 0.2051
+5 0.1973 0.2207 0.2012 0.2207 0.1992 0.2070

Fig. 11 Spectrum estimate by the proposed method and Yule-Walker AR
at 0 dB by averaging 100 independent runs. NCDE-AR denotes the noise-
compensated data extrapolation and Yule-Walker AR processing.

Fig. 12 Spectrum estimate by the proposed method and Yule-Walker AR
at 5 dB by averaging 100 independent runs. NCDE-AR denotes the noise-
compensated data extrapolation and Yule-Walker AR processing.

Table 2 Estimates of the two frequencies at −5 dB, 0 dB, and +5 dB for
Yule-Walker AR and NCDE-AR by averaging 100 independent runs.

SNR YuleAR NCDE-AR
dB f̂1 f̂2 f̂1 f̂2
−5 0.1933 0.2266 0.1973 0.2246
0 0.1934 0.2266 0.1973 0.2226
+5 0.1953 0.2266 0.2012 0.2226

ous peaks by the proposed method is also quite significant.
Table 2 shows some results of frequency estimates, which
suggest the superiority of the proposed method.

The proposed method also performs better than the
DFT and Yule-AR at a very HSNR as shown by peak lo-
cations in Figs. 13 and 14. Table 3 shows less bias in the
estimate of f1 by the proposed method.

A comparison of the proposed method with the Burg

Fig. 13 Spectrum estimate by the proposed method and DFT at very
HSNR (30 dB) by averaging 100 independent runs. NCDE-DFT denotes
the noise-compensated data extrapolation and FFT processing.

Fig. 14 Spectrum estimate by the proposed method and Yule-Walker AR
at very HSNR (30 dB) by averaging 100 independent runs. NCDE-AR de-
notes the noise-compensated data extrapolation and Yule-Walker AR pro-
cessing.

Table 3 Estimates of the two frequencies at +30 dB by the DFT, the
Yule-Walker AR and NCDE-AR and by averaging 100 independent runs.

SNR 30 dB
fi f̂1 f̂2

DFT 0.1934 0.2266
YuleAR 0.1934 0.2266

NCDE − AR 0.1953 0.2266

method was also done at SNR’s of −5 dB and −10 dB as
shown in Figs. 15 and 16. For the Burg method, only the
original data sequence of length 40 was used. The proposed
method appears to give better amplitude response at −5 dB
and also still distinguishes two peaks at a SNR of −10 dB.
Table 4 gives some estimates from the Burg method and the
proposed method. A comparison of the proposed method
and the Burg method was also made with the data length
made equal to that of the extrapolated data sequence, that is,
80 samples. The frequency estimates are shown in Table 5.

Comparing the performance of the proposed method in
Table 4 to that of the Burg method in Table 5, we see that
the Burg method is better than the proposed method, getting
a longer length of the data sequence. However, if the same
length of the data sequence is used for the proposed method,
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Fig. 15 Spectrum estimate by the proposed method and the Burg method
at −5 dB by averaging 100 independent runs.

Fig. 16 Spectrum estimate by the proposed method and the Burg method
at −10 dB by averaging 100 independent runs.

Table 4 Estimates of the two frequencies at −5 dB, 0 dB, and +5 dB for
Burg AR and NCDE-AR using the original data sequence of length 40, by
averaging 100 independent runs.

SNR Burg AR NCDE-AR
dB f̂1 f̂2 f̂1 f̂2
−5 0.1933 0.2266 0.1953 0.2246
0 0.1934 0.2266 0.1973 0.2246
+5 0.1953 0.2266 0.1973 0.2246

Table 5 Estimates of the two frequencies at −5 dB, 0 dB, and +5 dB for
Burg AR and NCDE-AR with a data sequence of length 80, by averaging
100 independent runs.

SNR Burg AR NCDE-AR
dB f̂1 f̂2 f̂1 f̂2
−5 0.1973 0.2246 0.2148 0.2148
0 0.1973 0.2227 0.2012 0.2207
+5 0.2012 0.2227 0.1992 0.2207

then the proposed method provides an improvement.

6. Concluding Remarks

In this paper we have addressed the problem of spec-
trum estimation from noisy observations using the noise-
compensated data extrapolation method. The noise vari-
ance was obtained through an iterative algorithm while ex-

trapolation was effected by linear prediction. An insight
into the time and frequency domain implications of noise-
compensated data extrapolation and some statistical impli-
cations were also given. The proposed method was shown
to be more noise-robust compared with popular methods
which include plain DFT, Yule-Walker AR and MUSIC. In
accordance with analytical results, the proposed method per-
formed better with respect to bias, resolution and spurious
peak reduction in the frequency domain.
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Appendix: Time Domain Effect

Given the observed data sequence x(0), x(1), . . . , x(N − 1),
we can extrapolate the sequence using prediction coeffi-
cients ai (with a slight change in notation for simplicity) as
follows.

x̂(N) =
p∑

i=1

aix(N − i)

= a1x(N − 1) + . . . + apx(N − p) (A· 1)

x̂(N + 1) =
p∑

i=1

aix(N + 1 − i)

= a1x(N) +
p∑

i=2

aix(N + 1 − i)

= a1x(N) + α1

where α1 =
∑p

i=2 aix(N+1−i). The x̂(N+2) and the x̂(N+3)
can be found as

x̂(N + 2) =
p∑

i=1

aix(N + 2 − i)

= a1x(N + 1) + a2x(N)

+

p∑
i=3

aix(N + 2 − i)

= a1x(N + 1) + a2x(N) + α2

x̂(N + 3) =
p∑

i=1

aix(N + 3 − i)

= a1x(N + 2) + a2x(N + 1)

+ a3x(N) +
p∑

i=4

aix(N + 3 − i)

= a1x(N + 2) + a2x(N + 1) + a3x(N) + α3

In this manner the extrapolation process can be continued.
Assuming that a1 is the dominant coefficient and that cross-
products between coefficients are small, Eq. (A· 1) can be
expressed as

x̂(N) = α0 + α (A· 2)

where α0 = a1x(N − 1) and α = a2x(N − 2) + . . . + apx(N −
p). By substituting the values of x(N), x(N + 1), . . . by their
estimates x̂(N), x̂(N + 1), . . ., the approximate values of the
extrapolated data samples can be expressed in terms of the
original data more compactly as

x̂(N) ≈ α0 + Res(0)
x̂(N + 1) ≈ a1α0 + Res(1)
x̂(N + 2) ≈ a2

1α0 + Res(2)
x̂(N + 3) ≈ a3

1α0 + Res(3)
x̂(N + 4) ≈ a4

1α0 + Res(4)
· · ·
x̂(N + i) ≈ ai

1α0 + Res(i)
· · ·

(A· 3)

where Res(·) is the residual term at each point in extrapola-
tion. Ignoring the residual terms, the (i + 1)th extrapolated
extrapolated data can be expressed as

x̂(N + i) ≈ α0ai
1. (A· 4)

If we assume that a1 > 0 and real, there is a number c for
which ai

1 = eci. If furthermore, 0 < a1 < 1, then x̂(N + i)
can be written as

x̂(N + i) ≈ α0e−βi. (A· 5)

The result confirms Eq. (9). Equation (A· 5) can be further
simplified to

x̂(N + i) ≈ x(N − 1)e−β(i+1). (A· 6)

This show that in this case the extrapolated samples depend
strongly on the value of the last sample in the data.
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