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An ARMA Prefiltering Approach to Adaptive
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SUMMARY In this paper, we propose an adaptive IIR
equalizer based on prefiltering techniques. The proposed equal-
izer has a cascade structure of an ARMA prefilter and an adap-
tive FIR equalizer. The ARMA prefilter is designed based on
the transfer function estimated by the gradient-type instrumen-
tal variable algorithm. Simulation results are shown to confirm
the performance of the proposed adaptive IIR equalizer.
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1. Introduction

Much of the recent work in the area of adaptive equal-
ization has been devoted to the objective of achieving
rapid convergence [1]–[5], [14], [15]. Transversal or fi-
nite impulse response (FIR) filters have been commonly
used for the adaptive equalizers in practice due to the
simplicity of their structures. This type of equalizers
typically uses the so-called LMS algorithm developed
by Widrow and Hoff [6]. The LMS algorithm, however,
has a rather severe disadvantage that the convergence
degrades as the channel distortion increases.

Since all-zero nature of the adaptive FIR equaliz-
ers frequently results in degraded performance, infinite
impulse response (IIR) equalization is attractive. IIR
filters have poles as well as zeros. This type of equaliz-
ers can result in a significant reduction of the equalizer
length [7].

Recently, system identification techniques have
been discussed in the context of adaptive filtering [8],
[9]. In [9], it is shown that the recursive algorithm for
the instrumental variable method, the recursive instru-
mental variable (RIV) algorithm, is a powerful candi-
date for adaptive IIR filtering algorithms. The RIV
algorithm gives consistent parameter estimates for col-
ored noise, and the estimates cannot be stuck in local
minima. On the under-parameterized case, the RIV al-
gorithm also provides meaningful approximation mod-
els. These properties seem preferable for the purpose
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of identification of a communication channel. However,
computational complexity of the RIV algorithm is very
high, because the RIV algorithm basically has the same
formula as the recursive least squares (RLS) algorithm.
In general, complicated calculations are not preferable
in communication systems, so the RIV algorithm is de-
sired to be modified into its more reduced-complexity
version. In this paper, a gradient-type instrumental
variable (GIV) algorithm is derived by replacing the
correlation matrix in the RIV algorithm with a scaled
matrix.

Main contribution of this paper is to propose an
adaptive IIR equalization scheme using a channel es-
timation technique. The proposed adaptive equalizer
contains a pole-zero or autoregressive moving average
(ARMA) filter which is designed based on the channel
estimates obtained by the GIV algorithm. The ARMA
filter is cascaded with an adaptive FIR equalizer. That
is, the ARMA filter behaves as a prefilter to the cas-
caded adaptive FIR equalizer. Using the ARMA pre-
filter, we can reduce the effects of severe distortion of
the data acquired at the receiver. The output of the
ARMA filter has a small degree of correlations and
as a result, the start-up time wasted on the cascaded
adaptive FIR equalizer can be significantly shortened.
Despite of its fast convergence, the proposed adaptive
equalization algorithm needs no computational com-
plexity such as inverse matrix calculations required in
the RLS algorithm. Also, its stability is guaranteed by
a simple operation.

Performance of the proposed adaptive IIR equal-
izer will be favorably compared with that of the com-
monly used adaptive FIR equalizer. The proposed
adaptive equalizer achieves faster convergence and more
reduced mean squared error (MSE) even under the con-
dition that the channel distortion is rather severe. It
is pointed out that the ARMA prefiltering approach
to channel equalization is more efficient than the AR
filtering approach previously proposed by the authors
[10].

Section 2 is devoted to the derivation of the GIV
algorithm. In Sect. 3, the structure and adaptation al-
gorithm for the proposed adaptive IIR equalizer are
described. Section 4 shows some simulation based ex-
perimental results. Conclusions are drawn in Sect. 5.
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2. System Modeling

We consider a dynamical system described by

y(n) = G(z−1)u(n) + v(n) (1)

where y(n) is the output at time n, u(n) is the in-
put and v(n) is additive noise. G(−1) is a stable filter
and z−1 denotes the backward shift operator such that
z−1u(n) = u(n − 1), etc. Assume that the system is
modeled as

y(n) =
B(z−1)
A(z−1)

u(n) + ε(n) (2)

where ε(n) is the output error. The polynomial A(z−1)
and B(z−1) are represented by

A(z−1) = 1 + a1z
−1 + . . .+ anz

−na (3)

B(z−1) = b0 + b1z
−1 + . . .+ bnz

−nb. (4)

The vector θ = [a1 . . . anab0b1 . . . bnb]T is the parameter
vector to be estimated from the available data.

The RIV algorithm is a powerful tool to estimate
the parameter vector θ[9]. The algorithm is described
as follows.

θ̂(n) = θ̂(n− 1) +K(n)ε(n) (5)

ε(n) = y(n)− ϕT (n)θ(n− 1) (6)

P (n) = P (n− 1)− P (n− 1)z(n)ϕT (n)P (n− 1)
1 + ϕT (n)P (n− 1)z(n)

(7)

K(n) = P (n)z(n) (8)

where

ϕ(n) = [−y(n− 1)− y(n− 2)
. . .− y(n− na)u(n)u(n− 1) . . . u(n− nb)]T(9)

In (5), θ̂(n) denotes the estimate of θ based on the data
up to and including time n. Distinguishing ε(n) in (2),
we call ε(n) in (6) the equation error.

The vector z(n) is the instrumental variable vector
and can be chosen in several ways. The popular two
examples are

z1(n) = [−x̂(n− 1)− x̂(n− 2)
. . .− x̂(n− na)u(n)u(n− 1) . . . u(n− nb)]T

(10)

and

z2(n) = [u(n)u(n− 1) . . . u(n− na− nb)]T . (11)

Comparison of using (10) and (11) in the RIV algorithm

is made in [16].
Although the RIV algorithm gives good perfor-

mance, it suffers from its implementation which is sim-
ilar with that of the RLS algorithm. The major prob-
lems are its high computational complexity and numer-
ical instability. For adaptive filtering applications, sim-
pler algorithms are preferable in many cases. Thus, we
derive a simple version of the RIV algorithm, which is
the GIV algorithm.

The derivation of the GIV algorithm is not so dif-
ficult. This is because it has been suggested in [9] that
the general recursive identification algorithm can re-
duce to its gradient version by matrix manipulations.
However, we actually do not obtain the specific descrip-
tion of the gradient version of the RIV algorithm from
literature [9]. Thus, we specifically derive it here. The
GIV algorithm is derived from the RIV algorithm by
approximating the correlation matrix P (n) by a scaled
unit matrix µI where I denotes the unit matrix. The
GIV algorithm is given by

θ̂(n) = θ̂(n− 1) + µz(n)ε(n) (12)

ε(n) = y(n)− ϕT (n)θ(n− 1) (13)

where µ corresponds to the step-size parameter.
This algorithm is similar to the LMS equation error

(LMSEE) algorithm [11]:

θ̂(n) = θ̂(n− 1) + µϕ(n)ε(n) (14)

ε(n) = y(n)− ϕT (n)θ(n− 1). (15)

The LMSEE is an efficient algorithm for adaptive IIR
filtering. The parameter estimate by the LMSEE algo-
rithm, however, is biased if the additive noise v(n) is
present. This is explained by the fact that the relation-
ship

E[ε(n)ϕ(n)] �= 0 (16)

is satisfied at the convergence point of the LMSEE al-
gorithm. Inserting (13) into (16) obviously leads to a
biased estimate of θ. On the other hand, the GIV al-
gorithm gives consistent estimates if the instrumental
variable vector is appropriately chosen, because at the
convergence point of the GIV algorithm the following
equation

E[ε(n)z(n)] = 0 (17)

is valid. In this case, an unbiased estimate is obtained.
The GIV algorithm preserves good properties of

the RIV algorithm. However, implementation of the
GIV algorithm is significantly simpler than that of the
RIV algorithm, because the computational complexity
of the GIV algorithm is proportional to O(na+nb+1)
while that of the RIV algorithm is O((na+ nb+ 1)2).
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Fig. 1 Scheme of the proposed equalization system. After the
channel estimation in which the switch is on S1, the switch is
connected with S2 and the FIR filter C(z−1) is adapted.

3. Channel Equalization

In this section, we consider a channel equalization sce-
nario. The basic scheme of the proposed channel equal-
ization system is illustrated in Fig. 1.

3.1 Transmission Model

Assume that the channel G(z−1) has an infinite impulse
response. The channel output, y(n), is given by

y(n) =
∞∑

i=0

giu(n− i) + v(n) (18)

where gi, i = 0, 1, . . . ,∞ is the channel impulse re-
sponse, u(n) is a discrete message sequence of ±1
(pseudo-random sequence) with zero mean and vari-
ance σ2

d, and v(n)is additive white Gaussian noise with
zero mean and variance σ2

v . u(n) is assumed uncorre-
lated with v(n).

The transmission model is true when the channel
filter has poles close to the unit circle of the z-plane.
A very long impulse response as visualized in (18) has
examples in magnetic recording and telephone channels
[12], [13].

3.2 Channel Estimation by GIV

For the training mode, the message sequence is avail-
able at the receiver side. In this case, we can identify
the unknown channel filter from the input and output
data.

We assume the channel model described by (2) to
the input-output data given by (18). The channel filter
is estimated as

G(z−1) =
B̂(z−1)
Â(z−1)

(19)

by using the GIV algorithm, (12) and (13).
In general, adaptive IIR filtering algorithms based

on the output errors suffer from their slow convergence
speed. However, the GIV algorithm is based on the
equation errors and its convergence speed is faster than
those based on the output errors, because the GIV al-
gorithm has no local convergence and needs no filter
stability monitoring. Such convergence property of the
GIV algorithm is extremely preferable for the purpose
of channel estimation.

3.3 Design of ARMA Prefilter

The transfer function obtained by the GIV algorithm,
B̂(z−1)/Â(z−1), provides a good estimate of the true
channel filter if its structure is known a priori. Even if
its structure is unknown, the GIV algorithm will pro-
vide a good approximation of the channel filter, because
the GIV algorithm is essentially based on the RIV al-
gorithm that guarantees a good matching of the whole
system weighting sequence [9].

In order to design the prefilter P (z−1), we use an
inverse system of B̂(z−1)/Â(z−1). The prefilter can be
designed as

P (z−1) =
Â(z−1)
B̂(z−1)

. (20)

However, to guarantee the stability of P (z−1), we fac-
torize the denominator polynomial B(z−1) as

B̂(z−1) = (1− β1z
−1)(1− β2z

−1) · · · (1− βnbz
−1).

(21)

Then we replace the zeros out of the unit circle, βi, by
their reciprocals, and construct again the polynomial
Bs(z−1). Therefore, the stable filter can be obtained
as

P (z−1) =
Â(z−1)
B̂s(z−1)

. (22)

In previous work [10], we proposed a structure of
adaptive IIR equalizer in which a prefilter is cascaded
with an adaptive FIR equalizer. The remarkable fea-
ture was that during the adaptation of the cascaded
adaptive FIR filter, the prefilter coefficients are fixed.
In [10], we used an AR filter as the prefilter which was
designed based on the estimation results obtained by
the channel estimator with FIR structure. The chan-
nel estimator was adapted by the LMS algorithm. In
this paper, we propose to use the ARMA prefilter (22)
instead of the AR prefilter in the cascaded structure.

Advantages of using the ARMA filter ((22)) over
the AR filter (which corresponds to the setting of
Â(z−1) = 1 in (22)) are to decrease the number of co-
efficients for the prefilter in order to achieve the same
performance and to decrease the computational com-
plexity required in factorizing the polynomial B̂(z−1)



2038
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.10 OCTOBER 2000

(which corresponds to (21)). For the transmission sys-
tem such as (18), if we use an adaptive FIR filter for the
purpose of channel estimation, a very long filter is re-
quired and the factorization of the polynomial becomes
terrible computation. In such a case, the channel es-
timation by the GIV algorithm becomes effective and
efficient. Also, we can flexibly control the structure
for the model of the channel filter so that the order
of B̂(z−1) is small and that of Â(z−1) is large, com-
paratively. This property of the GIV algorithm can-
not be shared with the AR prefiltering approach. Fur-
thermore, although the LMS algorithm for the channel
estimation in [10] cannot give consistent estimates for
colored noise, the GIV algorithm can do that. Such
robustness to additive noise will lead to more accurate
equalization performance.

3.4 Adaptive Equalization with ARMA Prefilter

The prefiltered signal

w(n) =
Â(z−1)
B̂s(z−1)

y(n) (23)

is used for the cascaded adaptive FIR filter with M +
1 adjustable tap coefficients as the input signal. The
adaptive FIR filter output, d(n), is given by

d(n) =
M∑

i=0

ci(n)w(n− i) (24)

where ci(n), i = 0, 1, . . . ,M are the adjustable tap coef-
ficients at time n. The difference between the adaptive
FIR filter output d(n) and the desired signal u(n−D),

e(n) = u(n−D)− d(n), (25)

is the error sequence of the adaptive FIR filter where
u(n−D) is the delayed message signal obtained for the
training mode. The tap coefficients of the adaptive FIR
filter are updated to minimize the mean squares of e(n)
using the LMS algorithm:

Ĉ(n) = Ĉ(n− 1) + γζ(n)e(n) (26)

e(n) = u(n−D)− ĈT (n)ζ(n) (27)

where Ĉ(n) is the estimate at time n of the Wiener
solution C = [c0c1 . . . cM ]T and ζ(n) = [w(n)w(n −
1) . . . w(n−M)]T . γ is the step-size parameter to con-
trol the convergence of the LMS algorithm.

4. Simulations

The behavior of the proposed adaptive IIR equalizer
has been examined with a series of computer simulation
experiments. In this section we present some of the
experimental results.

Fig. 2 Convergence of the GIV and LMSEE algorithms.

In the first example, the performance of the chan-
nel estimation by the GIV algorithm has been exam-
ined. The message signal u(n) was generated as ±1
pseudo-random sequence with zero mean and unit vari-
ance. The channel output y(n) was generated by filter-
ing the pseudo-random sequence by a first-order all-pole
filter:

G(z−1) =
1

1− 0.9z−1
(28)

whose output was disturbed by unit variance white
noise. Under the setting of model orders of na = 1
and nb = 0, the step-size µ = 0.02 was used for the
update and z1(n) was chosen as the instrumental vari-
able vector. For initialization of the parameter vector,
all-zero set was used. For comparison, the LMSEE al-
gorithm was also implemented under the same model
order setting, with the step-size µ = 0.014 and with all-
zero initialization. Figure 2 plots the normalized norm
squared parameter error:

V (n) = 10 log10(
‖ θ(n)− θ∗ ‖2

‖ θ∗ ‖2
) (29)

where θ∗ denotes the true parameter vector. Figure 2
shows that while both algorithms achieve the conver-
gence for the same iterations, which are about 150, the
GIV algorithm gives more reduced level of V (n). This
means that the GIV algorithm gives more accurate es-
timate of the parameter vector than the LMSEE algo-
rithm. This result is suggested by the fact that the es-
timate by the GIV algorithm is unbiased, while that by
the LMSEE algorithm is biased. Figure 2 also indicates
that the GIV algorithm is a fast converging algorithm
for adaptive IIR filtering.

Secondly, we give an example of the channel equal-
ization. The output signal y(n) was generated by filter-
ing the pseudo-random sequence by a first-order pole /
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Fig. 3 Comparison of the convergence rate for the proposed
adaptive IIR equalizer and the adaptive FIR equalizer.

first-order zero filter:

G(z−1) =
0.27− 0.26z−1

1 + 0.85z−1
(30)

whose output was disturbed by white noise with vari-
ance of 0.001. This channel impulse response itself had
unit variance and hence the signal-to-noise ratio of the
channel output was 30 dB. For the proposed equalizer,
the GIV algorithm gave the channel estimates from a
sample set of 250 input-output data with the step-size
µ = 0.03. The model orders were set to na = 1 and
nb = 1. For the instrumental variable vector, z1(n)
was again chosen. For initialization of the parameter
vector, all-zero set was used. The cascaded adaptive
FIR filter was set to the order of M = 17 and was up-
dated with the step-size of γ = 0.001. For comparison,
the commonly used adaptive FIR equalizer was also im-
plemented with the above step-size 0.001 and with the
order 20. The delay D was set to 10 in both equal-
ization algorithms. To compare the convergence rate of
both equalizers, Fig. 3 plots the MSE performance. The
MSE for the proposed adaptive IIR equalizer was evalu-
ated from the prefiltered data and the delayed massage
sequence. The MSE for the adaptive FIR equalizer was
evaluated from the received data and the delayed mas-
sage sequence. From Fig. 3, we see that the proposed
adaptive IIR equalizer gives more reduced MSE than
the adaptive FIR equalizer. Also, it is observed that
even if the number of iterations wasted on the channel
estimation (250 in this simulation case) is considered,
the convergence of the proposed adaptive IIR equalizer
is faster than that of the adaptive FIR equalizer.

5. Conclusion

In this paper, an adaptive IIR equalizer has been pro-

posed. The equalizer has the ARMA prefilter designed
based on the channel estimation by the GIV algorithm.
The coefficients of the ARMA prefilter are fixed during
the adaptation of the cascaded adaptive FIR filter. The
ARMA prefilter has an effect to reduce the correlations
of the received signals from the channel, leading to ac-
celeration of the convergence of the cascaded adaptive
FIR filter. Even if the channel distortion is severe, the
convergence speed of the GIV algorithm is fast and the
proposed adaptive IIR equalizer provides better perfor-
mance than the commonly used adaptive FIR equalizer.
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