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PAPER

Equalizer-Aided Time Delay Tracking Based on L1-Normed Finite
Differences

Jonah GAMBA†a), Student Member and Tetsuya SHIMAMURA†, Member

SUMMARY This paper addresses the estimation of time delay between
two spatially separated noisy signals by system identification modeling
with the input and output corrupted by additive white Gaussian noise. The
proposed method is based on a modified adaptive Butler-Cantoni equal-
izer that decouples noise variance estimation from channel estimation. The
bias in time delay estimates that is induced by input noise is reduced by
an IIR whitening filter whose coefficients are found by the Burg algorithm.
For step time-variant delays, a dual mode operation scheme is adopted in
which we define a normal operating (tracking) mode and an interrupt op-
erating (optimization) mode. In the tracking mode, only a few coefficients
of the impulse response vector are monitored through L1-normed finite for-
ward differences tracking, while in the optimization mode, the time delay
optimized. Simulation results confirm the superiority of the proposed ap-
proach at low signal-to-noise ratios.
key words: time delay estimation, adaptive Butler-Cantoni equalizer, delay
optimization, L1-norm, finite difference

1. Introduction

1.1 Background

Time delay estimation (TDE) between noise-corrupted sig-
nals incident on two spatially separated sensors is important
in various fields such as radar, sonar and geophysics [3].
The TDE problem considers two discrete-time signals in-
cident on two sensors, which are sampled at time t = kTs

where Ts is the sampling period and expressed as

xk = sk + vk (1)

yk = sk−D + nk (2)

where xk and yk are the noisy reference and delayed signals,
respectively. The sk corresponds to the noise-free source
signal and sk−D is its delayed one. The nk and vk are the un-
correlated zero-mean white Gaussian noise of variances σ2

n
and σ2

v , respectively. The index parameter D represents the
unknown time delay to be estimated, which is approximated
to an integer closest to the true delay in the discrete-time
model. The TDE problem from the observations of two sig-
nals as given by (1) and (2) is very well-established and var-
ious solutions can be found in the literature [2]–[9]. Among
them, we focus in this paper on adaptive TDE and assume
sinusoidal source signals.
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Fig. 1 Modeling time delay estimation as system identification. The se-
quences {hi} and {gi} are the system impulse response and identifier coeffi-
cients, respectively.

The LMS algorithm is popularly used for TDE due to
its simplicity [7], [12]. In employing the LMS algorithm, the
TDE is modeled as a system identification problem with the
sampled input xk and output yk as shown in Fig. 1. The prob-
lem here is to estimate the system impulse response which is
ideally equal to z−D. Commonly, the solution minimizes the
mean-square error (MSE) at the output of the system identi-
fier. However, in the form depicted in Fig. 1, the use of the
LMS algorithm has been known to result in a biased esti-
mate of the time delay due to the presence of the input noise
vk [6].

In this paper we propose an LMS-based TDE method,
referred to as the ABCTDE method. The method uses
a modified version of the adaptive Butler-Cantoni (ABC)
equalizer derived in [13]. For the ABC equalizer, the un-
known system is a communication channel. The ABC
method decouples the noise variance estimation from the
channel estimation process and uses indirect updating of
equalizer filter coefficients. We utilize this decoupling prop-
erty to obtain the time delay. The use of the adaptive equal-
izer affords us the opportunity to use the output error and
simultaneously control the effects of the input noise.

To allow for time-variant delays to be tracked, a dual
mode operation scheme is considered in which we define
a normal operating mode and an interrupt operating mode.
In the normal operating mode, only a few coefficients of
the impulse response vector are monitored, while in the in-
terrupt operating mode, delay optimization is performed.
This dual mode provides a superior performance in the case
where the delay changes abruptly after some period of sta-
bility.

1.2 Motivation of the Proposed Method

It was argued and shown in [12] that two popular measures
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of performance for adaptive filters, namely the time constant
and mean square error (MSE), are not good performance in-
dicators for TDE because the weights, from which the time
delay is extracted, converge to the required time delay much
faster than the MSE (for example in a fraction of the time
constant). The signal-to-noise ratio (SNR) becomes an im-
portant factor in adaptive TDE, and hence noise elimination
could speed-up the convergence to the correct delay. The
initial gradient of MSE convergence characteristics also be-
comes very important. Hence a steep gradient in the first
iterations will be desired. A two-stage approach to TDE
utilizing steep initial gradient MSE convergence character-
istics and removal of the effects of noise in both the input
and output could be more effective. The adaptive equalizer
based on the Butler-Cantoni method [1] derived in [13] suits
the two-stage approach at reduced computational complex-
ity. The two-stage approach has been actually employed in
[14] for TDE, and shown to perform well as a preliminary
work.

A recent method based on system identification mod-
eling of TDE has been presented in [15], which has good
convergence properties and robustness against noise. How-
ever, the method assumes that the ratio of the input to output
noise variances needs to be known a priori and to be identi-
cally equal to unity. If the noise variance ratio is not known
a priori, then it may be necessary to perform singular value
decomposition [17] at each iteration and hence it would be
computationally expensive.

The proposed method brings two new points to the con-
ventional methods. Firstly, the delay optimization is based
on noise-compensated coefficients, thus reducing the bias in
the time delay estimate. Secondly, the time delay is esti-
mated under less constraints on the input and output noise.
The proposed method can provide better performance in low
input SNR environments, and also in situations where the
time delay and/or noise variance statistics can be variable
with time. One such application where the noise power
could be equal to or greater than the signal power is in un-
derwater acoustics [4].

This paper is organized as follows. Section 2 describes
the ABC equalizer. In Sect. 3, we describes how unbiased
time delay estimates can be found. Section 4 gives details of
the proposed method and discuss computational complex-
ity. Section 5 gives simulation results for tracking of time
delay at different SNR’s. In Sect. 6 we consider the tracking
of time variant delays. Finally, we conclude this paper in
Sect. 7.

2. ABC Equalization Scheme

This section describes the ABC equalizer. The ABC equal-
izer coefficient-update equations and its properties are given.

2.1 ABC Equalizer

Figure 2 shows the ABC equalizer configuration [13].
The equalizer coefficient vector at the kth iteration,

Fig. 2 Configuration of the ABC equalizer (hi is the channel impulse
response, gi the estimator coefficients and ci the equalizer coefficients).

c(k) = [c0(k), . . . , cM−1(k)]T , can be expressed as

c(k) = A(k)−1b(k) (3)

where A(k) is an M × M matrix whose elements are given
by

ai j(k) =
L−1∑
m=0

hm(k)hm+|i− j|(k) + σ2δ(i − j)

i, j = 0, . . . ,M − 1 (4)

and b(k) is an M × 1 vector

bi(k) = hl−i(k), i = 0, . . . ,M − 1 (5)

where l is the system delay for nonminimum phase chan-
nels, and σ2 the variance of the channel output noise nk

and δ(·) denotes the Kronecker delta function. The vector
h(k) = [h0(k), . . . , hL−1(k)]T is the channel impulse response
at time k.

Using the channel estimator output error ek, the vari-
ance of the channel output noise is estimated based on

σ̂2(k) =
1
P

P−1∑
i=0

(ek−i)
2 (6)

where P is the number of samples required to be averaged.
The vector g(k) = [g0(k), . . . , gN−1(k)]T where T de-

notes transpose is the channel estimate at the kth iteration.
The channel estimator parameters are updated by the LMS
algorithm using the equation

g(k + 1) = g(k) + µekr(k) (7)

where µ is the step-size parameter to be suitably chosen and
r(k) is the input vector given by r(k) = [rk, . . . , rk−N+1]T .

In [10], (3) is solved by the Levinson-Trench algorithm
where gi(k) obtained from (7) and σ̂2(k) obtained from (6)
are used instead of hi(k) and σ2, respectively, in (4) and (5).
The equalizer output ok is produced by the convolution of
the equalizer input qk with ci.

The equalizer is primarily used for the elimination of
intersymbol interference (ISI) of band-limited dispersive
channels. Various equalizer configurations can be found in
the literature [21]. One such configuration is the ABC equal-
izer [13]. For the ABC equalizer, minimizing the MSE of
the channel estimator leads to the equalizer design.
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Fig. 3 Configuration of the proposed ABCTDE method (vk is the input
noise, Pe(k) is the channel estimator output error power and Pn(k) channel
output noise power, zk and Pz(k) are the IIR filter output error and the error
power at time k, respectively).

2.2 The ABC Equalizer for TDE

The proposed TDE scheme, ABCTDE method, is shown in
Fig. 3. The channel output in the ABCTDE method is the
delayed input signal, sk−D. The input to the equalizer be-
comes yk = sk−D + nk. The equalizer coefficients can be
obtained by using the output error defined by

ζk = dk − d̂k (8)

where dk = sk−D denotes the desired signal and d̂k = uk the
equalizer output. By employing the orthogonality principle,
we seek the equalizer coefficients that make the error ζk or-
thogonal to the equalizer input sequence, that is,

E[ζkyk−m] = 0 (9)

for m = 0, . . .M − 1, where E[·] denotes expectation. Ex-
panding the left hand side of (9) results in

E[ζkyk−m] = E[(dk − d̂k)(dk−m + nk−m)]

= E[dkdk−m]

−
M−1∑
j=0

c jE[(dk− j + nk− j)dk−m]

= E[dkdk−m]

−
M−1∑
j=0

c jE[dk− jdk−m] (10)

where we used the fact that the desired sequence and the
noise nk are uncorrelated to arrive at (10). The term un-
der the summation in (10) can further be simplified if we

consider the fact that for time delay estimation problem un-
der consideration, the channel impulse response is such that
hi(k) = 1 for i = D and hi(k) = 0 for i � D. If we further put
the constraint that hT (k)c(k) = 1, then we can write (10) as

E[ζkyk−m] = E[dkdk−m]

−
M−1∑
j=0

c jE[sk− j−Dsk−m−D]

= E[dkdk−m] − E[sk−2Dsk−m−D]

= Rdd(m) − Rss(m − D) (11)

where Rdd(l) = E[dkdk−l] and Rss(m−D) = E[sk−2Dsk−m−D].
The orthogonality principle is satisfied if

Rdd(m) = Rss(m − D). (12)

By appropriately setting the delay D, the equalizer coeffi-
cients can be found for which (12) is satisfied, and hence,
the error ζk is minimized. Since the desired channel output is
unknown and only the noise-corrupted version is available,
the left hand side of (12) cannot be evaluated. For the ABC
equalizer, the optimum delay D is obtained during the train-
ing period of delay tracking for which a training sequence
is required. In the tracking mode, the delay is fixed for the
equalizer but changes in the error ζk are monitored since the
changes can be used to indicate a change in the impulse re-
sponse of the channel or a change in the delay. However,
the ABC method cannot be used without modification when
both the input and output are corrupted by additive white
noise as described in the next section.

3. Unbiased Estimate for Time Delay

In this section the effect of input noise on the estimated
channel coefficients is shown. We also show how to get
unbiased time delay estimates from the estimated channel
coefficients.

3.1 Relationship with the Conventional Techniques

As shown in Fig. 3, the observed noise-corrupted desired se-
quence is given by

yk =

L−1∑
i=0

hi(k)sk−i + nk = dk + nk. (13)

The output of the channel estimator when it is excited by the
noise-corrupted input xk of (1) is

ŷk =

N−1∑
i=0

gi(k)sk−i +

N−1∑
i=0

gi(k)vk−i. (14)

The channel estimator output error is given by

ek = yk − ŷk. (15)
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Lets define here as follows:

dk =

L−1∑
i=0

hisk−i

d̃k =

N−1∑
i=0

gi sk−i

fk =
N−1∑
i=0

givk−i.

With the above definitions it can be shown from (15) that

ek = (dk + nk) − (d̃k + fk)

= (dk − d̃k) + (nk − fk)

= ed(k) + en(k) (16)

with obvious notation. The error power, which includes the
additive noise variances, becomes

(ek)2 = (ed(k))2 + (en(k))2 + 2en(k)ed(k).

When the input noise for the channel estimator, vk, is absent,
the channel estimator could eliminate the noise effects as

E[(ek)2] = E[(ed(k))2 + (nk)2] = σ2
n(k). (17)

This is because the channel estimator output error is pre-
dominantly due to the additive noise. In this case, the chan-
nel estimator provides an unbiased estimate of the vector
h(k). When the input noise for the channel estimator, vk, is
present, on the other hand,

E[(ek)2] = E[(ed(k))2 + (en(k))2]

= σ2
n(k) + σ̂2

v (k). (18)

This means that σ̂2
v (k) remains a part of E[(ek)2] and could

result in a biased estimate of the vector h(k). In fact we can
show the degree of bias as follows. Substituting for ŷk in
(15) yields

ek = yk −
N−1∑
i=0

gi(k)xk−i. (19)

Squaring both sides of (19), substituting for yk and xk−i, set-
ting L = N, and taking expectations gives the MSE as

E[(ek)2] = σ2
s(k)

N−1∑
i=0

[hi(k) − gi(k)]2

+ σ2
n(k) + σ2

v (k)
N−1∑
i=0

gi(k)2 (20)

where σ2
s(k) is the variance of the channel input signal. The

bias in the parameters can be seen if we differentiate (20)
with respect to gi(k) and equating the result to zero, that is,

σ2
s(k)

N−1∑
i=0

hi(k) = (σ2
s(k) + σ2

v (k))
N−1∑
i=0

gi(k)

N−1∑
i=0

gi(k) =
S NRi(k)

S NRi(k) + 1

N−1∑
i=0

hi(k)

= β(k)
N−1∑
i=0

hi(k) (21)

where S NRi(k) = σ
2
s (k)
σ2
v (k)

denotes the input signal-to-noise ra-

tio and β(k) = S NRi(k)
S NRi(k)+1 . It is clearly seen that the input

noise variance introduces bias in the estimated channel co-
efficients determined by the value of β(k). Let us write (18)
as

Pe(k) = σ2
n(k) + σ̂2

v (k). (22)

Dividing Pe(k) in (22) by σ̂2
v (k) gives

Pe(k)/σ̂2
v (k) = σ2

n(k)/σ̂2
v (k) + σ̂2

v (k)/σ̂2
v (k)

= R(k) + 1 (23)

where R(k) = σ2
n(k)/σ̂2

v (k). From the above equation
(23) we see that if the ratio R(k) is known a priori, then
Pe(k)/σ̂2

v (k) can be easily found. In this case, we can ob-
tain σ̂2

v (k) because it is possible to measure Pe(k) from the
channel estimator output. The problem can be solved by
the approach taken in [15] where the knowledge of R(k) can
be used to minimize the channel output error. In practice,
it may be difficult to know the ratio R(k) a priori and we
therefore the need to find a way to deal with the unknown
ratio R(k). Unless the input noise is completely eliminated,
the channel estimator parameters will always be biased.

3.2 Unbiased Estimate

If we take a closer look at (4) and again use the knowledge
that hi(k) = 0 for i � D, then we can further simplify (4) to

ai j(k) = hD(k)hD+|i− j|(k) + σ2(k)δ(i − j)

i, j = 0, . . . ,M − 1. (24)

Equation (24) suggests that ai j(k) = 0 for |i− j| � 0 otherwise
matrix A(k) in (3) would be an all-zero matrix. We see that
A(k) is diagonal in our case. Without any other modification
to the ABC equalizer except for the inclusion of channel
estimator input noise we get elements of A(k) as

âi j(k) = hD(k)hD+|i− j|(k)

+(σ2
n(k) + σ̂2

v (k))δ(i − j). (25)

In the case where we can compensate for the channel esti-
mator input noise, then (25) reduces to

âi j(k) = hD(k)hD+|i− j|(k) + (σ2
n)δ(i − j).

Since these coefficients must be calculated before updating
the equalizer coefficients, when the input noise level is high,
reducing the bias in ai j(k) could improve the rate at which
the equalizer coefficients attain their true values.

The proposed method is based on the principle that we
extract the noise power from the noisy input signal of the
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channel estimator and subtract it from Pe(k) prior to updat-
ing the equalizer coefficients. Since the channel estimator
coefficients and equalizer coefficients are decoupled, we can
also compensate for the bias due to the input noise before
adjusting the equalizer coefficients. In this way, changes in
the output error ζk would be primarily due to the changes in
the delay.

Based on the above-mentioned principle a whitening
filter is used to estimate the noise in the input. As shown in
Fig. 3, the zk is the output of the IIR whitening filter and is
given by

zk =

N1∑
i=0

wi(k)xk−i, w0 = 1

with a transfer function equals to 1/W(z) and whose order
N1. Let us denote the signal power of zk as Pz(k) = E[z2

k].
When the input signal consists of sinusoids corrupted by
white noise (which is the same situation as assumed in this
paper), the whitening filter behaves as a notch filter and
could produce an output whose power approximates the
noise power [19], [22], [23]. This is achieved when the out-
put power of the whitening filter is minimized. This behav-
ior can be explained by the innovations approach to optimal
Wiener filtering, in which it is possible to use an IIR filter to
predict the input signal [20]. The Burg algorithm [11] min-
imizes Pz and finds the filter coefficients of 1/W(z) which
provides Pz(k) = σ̂2

v (k). When the Burg algorithm is used,
the stability of the whitening filter is assured.

The proposed method is expected to work well if the
input noise is a white process. However, when the input
noise is colored (correlated), the whitening filter attempts to
whiten the input signal with the result that the estimate of
the input noise variance, σ̂2

v (k), becomes generally less than
the expected value depending on the bandwidth and total
power of the correlated input noise. The proposed method
may, therefore, be unable to give satisfactory performance
under these circumstances.

4. ABCTDE Method

In this section we give details of how the parameters in the
ABCTDE method are updated.

4.1 Implementation

Since the set of channel coefficients {hi(k)} is unavailable,
the first step is to obtain an estimate, {gi(k)}, through the
channel estimator. The channel estimator parameters are up-
dated by the LMS algorithm, with the input vector x(k) =
[xk, . . . , xk−N+1]T . That is, the resulting update scheme is
given by

g(k + 1) = g(k) + µekx(k) (26)

where the step parameter µ is appropriately chosen. Having
obtained the biased channel parameters {gi(k)}, the next step
would be the estimate of the input noise variance using the

output error and the IIR filter. The output error power is
estimated as

P̂e(k) =
1
P1

P1−1∑
i=0

(ek−i)
2 (27)

where P1 is the number of data points to be averaged. We
can similarly obtain the average input error power Pz(k) as

P̂z(k) =
1
P1

P1−1∑
i=0

(zk−i)
2. (28)

From (27) and (28), the output noise variance to be used in
the estimation of equalizer coefficients can be found as

P̂n(k) ≈ σ2
n(k) = P̂e(k) − P̂z(k). (29)

4.2 Delay Optimization

In order to estimate the delay D in the tracking mode, we
propose to use an optimization scheme as follows. By using
an exhaustive search method for a permissible delay range
of [0, lm], which in practice is generally known [16], and
based on (8), we define the output error associated with each
delay i in the range [0, lm] as

ζik = sk−i − d̂k, 0 ≤ i ≤ lm. (30)

The delay estimate is initially set to zero. At each iteration,
we minimize the error with respect to each delay and use the
delay corresponding to the minimum error as the delay esti-
mate at that time. Denote this delay as Dest(k). The estimate
of the equalizer coefficients can be written as

ĉ(k) = Ã(k)−1b̂(k) (31)

where Ã(k) is an M × M matrix whose elements are given
by

ãi j(k) = gDest (k)gDest+|i− j|(k)

+P̂n(k)δ(i − j) (32)

and b̂(k) has elements

b̂i(k) = gDest−i, i = 0, . . .M − 1. (33)

This calculation of equalizer coefficients is done for the first
Q (small) iterations. Since the delay estimate at each itera-
tion is Dest(k − 1), at the (Q + 1)st iteration an estimate of
the optimal delay D̂ is calculated as

D̂ = Dest(Q). (34)

4.3 Computational Complexity

The computational complexity of the ABC equalizer in mul-
tiplications per iterations was analyzed in [18] and can be
shown to be 2M2−M+4(N+1). The additional step of noise
variance estimation employing the Burg algorithm has the
computational complexity of order O(N2). If N is assumed
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to be equal to M, then the overall computational complex-
ity would be of order O(M2). On the other hand, if the in-
put and output noise variances are not known a priori, the
method proposed in [15] may require performing singular
value decomposition at each iteration. Hence the computa-
tional complexity would be of order O(M3) for an M × M
matrix [10]. In this respect, the proposed method could be
less demanding.

5. Simulation Example

This section gives a simulation example of TDE by the pro-
posed method for a fixed delay at different SNR’s.

Computer simulation was carried out to evaluate the
performance of the proposed method. The source signal sk

consisted of a sinusoid and the input signal xk was corrupted
by white Gaussian noise vk as given by

xk = A cos(2π f0k) + vk (35)

where the frequency of the input signal, f0, was set to 120
Hz per sample and the amplitude A was set to unity. The
signal was sampled at 1 kHz. The corresponding output sig-
nal yk was generated according to the relationship (2). In
the simulation, the ratio of the input to output noise variance
was assumed to be 1 for the So (SOLMS) method [15] while
no assumptions were made for both the proposed method
and the least mean square TDE (LMSTDE) method [12].
For all methods, a fixed step-size of 0.001 was used and
100 independent runs were averaged. Only integer delays
were simulated because it was considered that non-integer
delays can be obtained by use of a variety of interpolation
techniques already well known. The filter orders for the pro-
posed method were set to N = M = 16. The IIR filter order
N1 was set to 8. This filter order was sufficient for whitening
the noisy single-sinusoid input signal. The estimate of Pe(k)
was found with P1 = 20. The Q was set to 100 samples and
lm to 4. It was observed that the power Pn at time k used to
update the Levinson-Trench algorithm sometimes become
negative. To avoid the negative power, the following update
strategy for the noise power was used in the simulation

Pn(k) =

{
Pe(k) − Pz(k), if Pe(k) > Pz(k)
Pe(k), otherwise.

Throughout the simulation, the SNR denotes the input SNR
in decibels (dB) and is defined as 10 log(1/2σ2

v ). The output
SNR, defined by 10 log(1/2σ2

n), was set to 10 dB.
Figures 4 and 5 show that the delay convergence prop-

erties of the simulated methods. Figure 4 shows that at a
high SNR all the methods converge to the true delay at about
the same rate. However, at a low SNR the robustness of
the proposed method can clearly be seen in Fig. 5 where the
proposed method converges to the true delay of 2×Ts much
faster than the other two methods. The choice of the input
SNR’s for illustration was based on the following consider-
ation. Above 10 dB, most TDE methods perform well since
the signal power is dominant. However, below 0 dB, when

Fig. 4 Comparison of the proposed method with the SOLMS and LM-
STDE methods for a time delay of 2 × Ts at an SNR of 10 dB averaging
100 independent runs.

Fig. 5 Comparison of the proposed method with the SOLMS and LM-
STDE methods for a time delay of 2 × Ts at an SNR of 0 dB averaging 100
independent runs.

the noise power becomes dominant, most algorithms fail to
perform well. Thus, these two input SNR points could pro-
vide a good performance indication. From Figs. 4 and 5,
we can observe that the proposed method and the other two
methods perform well at high input SNR as expected. How-
ever, at low SNR, the proposed method performs much bet-
ter than the other methods.

In order to assess the effect of the statistical characteris-
tics of the input-side noise process on the performance of the
proposed method, colored additive Gaussian noise was used
in (35). The colored noise was generated by a first-order
autoregressive (AR) model. The output of the AR filter, vk,
was given by vk = −0.8vk−1 + uk, where uk represents the
driving white Gaussian noise process of unit variance. With
this input noise model, the true delay was set to 2 × Ts and
the tracking ability of the proposed method was compared
with that of the SOLMS and the LMSTDE methods. The
simulation results are shown in Fig. 6. The colored noise
tends to have the effect of slowing down the convergence
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Fig. 6 Comparison of the proposed method with the SOLMS and LM-
STDE methods for a time delay of 2 × Ts when the input noise is a colored
Gaussian process, averaging 100 independent runs.

speed of the proposed method. This could be because in an
attempt to whiten the input process, the estimate of the input
noise variance comes closer to that of uk. The result is an in-
crease in the bias of the channel estimator coefficients that
reduces the rate at which the coefficients attain their true
values. However, the convergence speed of the proposed
method still appears to be faster than that of the other two
methods. The LMSTDE method works well only for white
input noise processes while the SOLMS method does not
explicitly control the input noise.

6. Time-Variant Delay Tracking

This section describes how the ABCTDE method can be
used to track a time variant delay.

6.1 Dual Mode Technique

Time-variant delay tracking can be considered as operating
in two modes: the normal mode and the interrupt mode. The
interrupt mode occurs when the time delay being tracked
suddenly changes. The tracking of time delay proceeds as
follows. At the (k − 1)th iteration, three transitions are pos-
sible to the (k)th iteration for the channel impulse response
vector. Assume that the channel impulse response vector at
the (k − 1)th iteration is

h(k − 1) = [0, . . . , 0, hD(k − 1), 0, . . . , 0]T (36)

where hD(k − 1) is a non-zero value (ideally equal to one)
occurring in the position of the vector corresponding to the
time delay. The subscript D is equivalent to the optimal de-
lay. Then, at the kth iteration the following vectors are pos-
sible in the event of a change in the time delay

−1h(k) = [0, . . . , hD−1(k), 0, 0, . . . , 0]T

0h(k) = [0, . . . , 0, hD(k), 0, . . . , 0]T

+1h(k) = [0, . . . , 0, 0, hD+1(k), . . . , 0]T . (37)

The possible transitions are h(k − 1) →0 h(k), h(k − 1) →

−1h(k) and h(k − 1)→+1 h(k). These transitions correspond
to a decrease in time delay by one sample period, no change
in the time delay, and an increase in the time delay by one
sample period, respectively. In (37) we recognize that

E[hD(k)] = E[hD−1(k)] = E[hD+1(k)] = 1.

Let T H(k) be the matrix formed from the possible channel
impulse response vectors after transition to iteration k de-
fined by

T H(k) = [−1h(k),0 h(k),+1 h(k)]. (38)

We can also define the matrix at the (k − 1)th iteration as

H(k − 1) = [h(k − 1), h(k − 1), h(k − 1)] (39)

which is an M × 3 matrix with all its columns consisting of
h(k − 1). Using (38) and (39) we formulate a sum matrix at
the kth iteration defined as

sH(k) =T H(k) +H(k − 1). (40)

If the matrices T H(k) and H(k − 1) are sparse, then the ma-
trix sH(k) will also be sparse. Furthermore, if the largest
elements of T H(k) are very close in magnitude to those of
H(k − 1), the largest element of sH(k) may be easily found.
We can employ the matrix norm properties to get the largest
element of sH(k). The maximum absolute column sum norm
of a matrix Cm×n is defined from the L1-norm as

||C||1 = max
j

n∑
i=1

|ci j| (41)

where ci j are the elements of C. From (41), we can define
the column number satisfying (41) as α(k) so that

α(k) = arg ||sH(k)||1. (42)

From (40) we can see that it is possible to utilize the
minimum matrix norm, if the matrix H(k − 1) has its first
and third column shifted by one row in opposite directions
such that the maximum element of each of the vectors lies
on the same diagonal. Referring to the resulting matrix as
H′(k−1) and taking the difference instead of the sum in (40),
the minimized argument corresponding to the delay can be
found. By similarly defining the other matrices, the set of
equations corresponding to (40)–(42) becomes

sH′(k) = T H(k) −H′(k − 1) (43)

min||sH′(k)||1 = min
j

n∑
i=1

|[sH′(k)]i j| (44)

α′(k) = arg[min ||sH′(k)||1] (45)

D(k) = argmax
i

[sH′α′(k)(k)]i (46)

where notation [Xi(k)] j denotes the jth element of the ith
column of matrix X(k). We recognize sH′(k) as a matrix that
is a function of the finite forward differences of the channel
impulse response. The finite forward difference ∆hk is de-
fined by ∆hk = hk+1 − hk.
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From (40)–(42) and (44)–(46), we also observe that if
the time delay could be constant for a long period, continu-
ous system delay optimization could be unnecessary. In this
case the vector norms can be used instead of matrix norms
by setting a threshold value for the equalizer error for which
the delay optimization should be performed. It can be ob-
served that the changes in the L1-norm between h(k − 2),
h(k − 1) and h(k) remain approximately constant unless the
time delay changes. These changes can be captured by the
ratio

γ(k) =
||h(k)||1 − ||h(k − 1)||1
||h(k − 1)||1 − ||h(k − 2)||1 . (47)

This ratio is approximately equivalent to one in the normal
operation mode. By setting a threshold η as

γ(k) ≥ η, (48)

the delay optimization can be started every time. Equations
(47) and (48) result in the condition

||h(k)||1 ≥ (1 + η)||h(k − 1)||1 − η||h(k − 2)||1. (49)

From (49) we have the condition for which the operation
mode changes to the interrupt mode during the normal op-
eration. As previously discussed, changes in ζk will be
predominantly due to delay changes. A possible threshold
could be determined by the ratio

κ(k) =
|ζk | − |ζk−1|
|ζk−1| − |ζk−2| ≥ ρ (50)

for changing to the interrupt mode. Therefore, by monitor-
ing changes in the magnitudes of both γ(k) and ζk, changes
in delay can be tracked.

In the tracking mode, the following set of equations are
used to get the time D̂(k) as given by (46):

T Ĥ(k) = [−1g(k),0 g(k),+1 g(k)]

Ĥ(k − 1) = [g(k − 1), g(k − 1), g(k − 1)]

sĤ′(k) = T Ĥ(k) − Ĥ′(k − 1)

α̂′(k) = arg[min ||sĤ′(k)||1]

D̂(k) = argmax
i

[sH′α̂′(k)(k)]i. (51)

The above set of equations is derived directly from (38),
(39), (43), (44), and (46), respectively.

The parameter γ(k) is estimated as

γ̂(k) =
||g(k)||1 − ||g(k − 1)||1
||g(k − 1)||1 − ||g(k − 2)||1 . (52)

6.2 Simulation

Some simulation examples of time-variant delay tracking
are shown. The settings in Sect. 5 were used in the simula-
tion with the following additional requirements. The param-
eter ηwas set to 300 while ρwas set to 10. These two values
were experimentally determined. The delay was suddenly

Fig. 7 The step delay schemes.

Fig. 8 Comparison of the proposed method with the SOLMS and LM-
STDE methods for time-variant delay changing from 2×Ts to 3×Ts at the
250th iteration at an SNR of 10 dB, and averaging 100 independent runs.

Fig. 9 Comparison of the proposed method with the SOLMS and LM-
STDE methods for time-variant delay changing from 2×Ts to 3×Ts at the
500th iteration at an SNR of 10 dB, and averaging 100 independent runs.

changed at the 250th and 500th iterations, respectively, as
shown in Fig. 7. Figures 8 and 9 show the performance
of the proposed time variant delay estimation method com-
pared to the other two methods. The results show that the
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Fig. 10 Comparison of the proposed method with the SOLMS and LM-
STDE methods for sudden change of noise variance from 10 dB to 0 dB at
the 250th iteration with the delay held at 2 × Ts, and averaging 100 inde-
pendent runs.

Fig. 11 Comparison of the proposed method with the SOLMS and LM-
STDE methods for sudden change of noise variance from 10 dB to −5 dB
at the 250th iteration with the delay held at 2×Ts, and averaging 100 inde-
pendent runs.

proposed method performs much better for sudden changes
in delay by adapting to the new delay faster than the other
methods. The bias in delay for the proposed method is evi-
dently low at the 1000th iteration while the other two meth-
ods show considerable bias. This could be attributed to the
ability of the proposed method to accurately and rapidly
track changes in the channel impulse response and thus
adapt to new delays faster. The rate at which the proposed
method adapts to the new delay would depend on the η and
ρ. Smaller values of η and ρ would be expected to give a
more rapid convergence to the new delay. The slow change
to the new delay by the proposed method in Figs. 8 and 9 is
because during the period immediately after the change in
the delay occurs, the equalizer output error and the change
in the channel estimator coefficients are not big enough to
make γ(k) and κ(k) initiate the optimization of the delay. If
minor variations in the delay estimate at each iteration are
taken as changes in the delay to be estimated, then delay
optimization is necessary more often. In the simulation, we

determined the values of η and ρ that make the delay track-
ing unaffected by the iteration-to-iteration variance in the
delay estimate.

We also conducted an investigation on the tracking
ability of the proposed method in time-variant noise envi-
ronments. The noise variance was changed from 10 dB to
0 dB at the 250th iteration. The results as depicted in Fig. 10
show a superior tracking ability for the proposed method.
It is also shown in Fig. 11 that the proposed method still
performs better than the other methods even for sub-zero
SNR’s, where in this case the input SNR changes from
10 dB to −5 dB at the 250th iteration.

7. Conclusion

We have proposed a new ABCTDE method. The method
is based on noisy input-output system identification model-
ing of TDE using the ABC equalizer. The attractiveness of
the ABC approach is rapid convergence, reduced computa-
tional complexity and noise robustness when compared to
the other competing methods. A dual mode operation ap-
proach has been proposed for step time-variant delay track-
ing using L1-normed finite forward differences. Simula-
tion results show that the proposed method converges to
the true delay faster than the other methods with no con-
straints on the input and output noise variances. The pro-
posed method’s superiority is shown at low SNR’s. Since
the two spatially separated sensors may have different chan-
nel responses in addition to delay, it would be proper to con-
sider this case in our future work. Future work also will
aim to investigate the performance of the proposed method
for multipath delays and how further reductions in compu-
tational complexity can be achieved.

Acknowledgment

The authors are very grateful to the reviewers of the jour-
nal for their kind suggestion and advice. This work was
supported in part by a grant from Tateisi Science and Tech-
nology Foundation, Japan (No. 1042003).

References

[1] P. Butler and A. Cantoni, “Noniterative automatic equalization,”
IEEE Trans. Commun., vol.COM-23, no.6, pp.621–633, June 1975.

[2] C.H. Knapp and G.C. Carter, “The generalized correlation method
for estimation of time delay,” IEEE Trans. Acoust. Speech Signal
Process., vol.ASSP-24, no.4, pp.320–327, Aug. 1976.

[3] G.C. Carter, “Time delay estimation for passive sonar signal pro-
cessing,” IEEE Trans. Acoust. Speech Signal Process., vol.ASSP-
29, no.3, pp.463–470, June 1981.

[4] M.-A. Pallas and G. Jourdain, “Active high resolution time delay es-
timation for large BT signals,” IEEE Trans. Signal Process., vol.39,
no.4, pp.781–788, April 1991.

[5] Y.T. Chan, J.M. Riley, and J.B. Plant, “Modeling time delay and its
application to nonstationary delays,” IEEE Trans. Acoust. Speech
Signal Process., vol.ASSP-29, no.4, pp.577–581, Aug. 1981.

[6] Z. Cheng and T.T. Tjhung, “A new time delay estimator based on
ETDE,” IEEE Trans. Signal Process., vol.51, no.7, pp.1859–1869,
July 2003.



GAMBA and SHIMAMURA: EQUALIZER-AIDED TIME DELAY TRACKING
987

[7] P.L. Feintuch, N.J. Bershad, and F.A. Reed, “Time delay estima-
tion using LMS algorithm-dynamic behavior,” IEEE Trans. Acoust.
Speech Signal Process., vol.ASSP-29, no.3, pp.571–576, June 1981.

[8] M.J. Hinich and G.R. Wilson, “Time delay estimation using the
cross bispectrum,” IEEE Trans. Signal Process., vol.40, no.1,
pp.106–113, Jan. 1992.

[9] J. Li, “An efficient algorithm for time delay estimation,” IEEE Trans.
Signal Process., vol.46, no.8, pp.2231–2235, Aug. 1998.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hop-
kins University Press, Baltimore and London, 1989.

[11] S.M. Kay, Modern Spectral Estimation: Theory and Application,
Prentice Hall, Englewood Cliffs, NJ, 1988.

[12] F.A. Reed, P.L. Feintuch, and N.J. Bershad, “Time delay estimation
using LMS algorithm-static behavior,” IEEE Trans. Acoust. Speech
Signal Process., vol.ASSP-29, no.3, pp.561–571, June 1981.

[13] T. Shimamura and J. Suzuki, “Adaptalisation of Butler-Cantoni
method for fast start-up equalization,” IEICE Trans. Fundamentals
(Japanese Edition), vol.J81-A, no.4, pp.622–630, April 1998.

[14] J. Gamba, Y. Tsuda, and T. Shimamura, “An adaptive Butler-Cantoni
based time delay estimation (ABCTDE) method—IIR whitening fil-
tering approach,” Proc. IEEE International Symposium on Circuits
and Systems, vol.3, pp.265–268, Vancouver, Canada, 2004.

[15] H.C. So, “Noisy input-output system identification approach for
time delay estimation,” Signal Process., vol.82, no.10, pp.1471–
1475, Oct. 2002.

[16] H.C. So, “Time delay estimation for sinusoidal signals,” IEE Proc.,
Radar Sonar Navig., vol.148, no.6, pp.318–324, Dec. 2001.

[17] K.V. Fernando and H. Nicholson, “Identification of linear systems
with input and output noise: The Koopmans-Levin method,” IEE
Proc. D, vol.132, no.1, pp.31–36, Jan. 1985.

[18] T. Shimamura, S. Semnani, and C.F.N. Cowan, “Equalization of
time-variant communications channels via channel estimation based
approaches,” Signal Process., vol.60, no.2, pp.181–193, July 1997.

[19] D.V.B. Rao and S.Y. Kung, “Adaptive notch filtering for the retrieval
of sinusoids in noise,” IEEE Trans. Acoust. Speech Signal Process.,
vol.ASSP-32, no.4, pp.791–802, Aug. 1984.

[20] J.G. Proakis and D. Manolakis, Digital Signal Processing: Princi-
ples, Algorithms and Applications, 3rd ed., Prentice Hall, 1995.

[21] J.G. Proakis, Digital Communications, 4th ed., McGraw-Hill, 2001.
[22] D.R. Morgan, “Steady-state response of a delay-constrained adap-

tive linear predictor filter to a sinusoid in white noise,” IEEE Trans.
Acoust. Speech Signal Process., vol.ASSP-31, no.4, pp.1039–1043,
Aug. 1983.

[23] J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE,
vol.63, pp.561–580, April 1975.

Jonah Gamba received BSc. (Hons) de-
gree in electrical and electronics engineering
from the University of Zimbabwe, Harare, Zim-
babwe, in 1994 and an MSc. degree in computer
science and engineering from Zhejiang Univer-
sity, Hangzhou, China, in 2000. He is currently
with Saitama University, Saitama City, Japan,
pursuing a doctor degree course in mathematical
information systems. His present research inter-
ests include spectrum estimation, time delay es-
timation and adaptive channel equalization.

Tetsuya Shimamura received the B.E.,
M.E., and Ph.D. degrees in electrical engineer-
ing from Keio University, Yokohama, Japan, in
1986, 1988, and 1991, respectively. In 1991, he
joined Saitama University, Saitama City, Japan,
where he is currently an Associate Professor.
His interests are in digital signal processing and
applications to speech and communication sys-
tems. He is a member of IEEE, EURASIP, and
the Acoustical Society of America.


