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A Fast Converging RLS Equaliser

Tetsuya SHIMAMURA†, Regular Member

SUMMARY It is well known that based on the structure of
a transversal filter, the RLS equaliser provides the fastest con-
vergence in stationary environments. This paper addresses an
adaptive transversal equaliser which has the potential to provide
more faster convergence than the RLS equaliser. A compari-
son is made with respect to computational complexity required
for each update of equaliser coefficients, and computer simula-
tions are demonstrated to show the superiority of the proposed
equaliser.
key words: equaliser, transversal �lter, RLS algorithm, channel

estimator, fast convergence

1. Introduction

One of the most important things subjected to adaptive
equalisers is that of convergence speed in the training
mode. This is true, in particular, for polling communi-
cation systems where fast start-up equalisation, which
is accomplished by fast convergence for the equaliser in
the training mode, is often required.

For the last three decades, much efforts were made
toward the development of a fast converging adaptive
equaliser [3]–[12]. While the least mean square (LMS)
transversal equaliser [1],[2] was modified by most of re-
searchers to achieve faster convergence than the orig-
inal one, Godard [3] derived a transversal equaliser
whose coefficients are adapted by the Kalman filter
or the recursive least squares (RLS) algorithm. The
Godard’s RLS equaliser was much more complicated
for the adaptation of the equaliser coefficients than the
LMS equaliser, but accomplished much faster conver-
gence in a relatively insensitive fashion to variations
in the eigenvalue spread of the input correlation ma-
trix. Also, by Gitlin et al. [5], it was shown that the
RLS equaliser is the best self-orthogonalising adaptive
equaliser to accomplish the fastest initial convergence.
Based on these results, it is well known that the RLS
equaliser provides the gradient adaptation to achieve
the fastest convergence based on the structure of a lin-
ear transversal filter in stationary environments.

On the other hand, recently, Shimamura et al. [13]
proposed a two-stage equaliser which behaves robustly
against additive noise as well as the eigenvalue spread of
the input correlation matrix. The structure of the two-
stage equaliser is also suitable for tracking rapidly time
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variant communications channels [14]. The two-stage
scheme involves two linear transversal filters; channel
estimator and equalisation filter. The coefficients of
the equalisation filter is updated by using the Butler-
Cantoni method being a non-adaptive method [15] for
each iteration, based on the results of the channel es-
timator. Thus, the two-stage equaliser is recognised
as one realisation of adaptive version of the Butler-
Cantoni method. This is why the two-stage equaliser is
called adaptive Butler Cantoni (ABC) equaliser in this
paper.

This paper investigates the performance for the
ABC equaliser on stationary channels. We deploy a
channel estimator adapted by the RLS algorithm in-
stead of the LMS algorithm used in [13], and investi-
gate particularly the convergence of the resulting ABC
equaliser, the RLS based ABC equaliser.

2. RLS Equaliser

Let us assume the following discrete-time finite impulse
response channel model:

xk =
L−1∑

i=0

hiuk−i + nk (1)

where ho, h1, ..., hL−1 is the channel coefficients, nk is
a Gaussian white noise, and uk is the transmitted se-
quence being pseudo-random sequence with the values
+1 or −1. The output of the channel, xk, is used as an
input sequence for the equaliser.

Figure 1 shows the configuration of a linear
transversal equaliser in the training mode where it is
assumed that a delayed transmitted sequence, uk−d, is
obtained at the receiver side. When the RLS adap-
tation is used for the linear transversal equaliser, the

Fig. 1 Linear transversal equaliser.
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coefficient update procedure is described as follows:

yk = x(k)T c(k − 1) (2)

fk = uk−d − yk (3)

Kc(k) =
Pc(k − 1)x(k)T

λ + x(k)TPc(k − 1)x(k)
(4)

Pc(k) =
1
λ
[Pc(k − 1)−Kc(k)x(k)TPc(k − 1)] (5)

c(k) = c(k − 1) +Kc(k)fk (6)

where c(k) is the equaliser coefficient vector for k iter-
ations given by

c(k) = [c0(k), c1(k), , , , cM−1(k)]T , (7)

and x(k) is the input vector given by

x(k) = [xk, xk−1, , , , xk−M+1]T . (8)

The Kc(k) is the Kalman gain, and λ corresponds to
the forgetting factor. The above RLS adaptation is
initialised by

c(0) = 0 (9)

P(0) =
1
α
I (10)

where I denotes the unit matrix and α is a positive real
number.

The convergence of the coefficient vector for the
RLS equaliser is, for M � k < ∞, subject to [16]

E[c(k)] = copt −
α

k
A−1copt (11)

where E[·] denotes the expectation operation and copt

means the optimal estimate of the coefficient vector.
The A corresponds to the input correlation matrix.
Equation (11) suggests that the RLS equaliser asymp-
totically provides an unbiased estimate of the coeffi-
cient vector, and that the equalisation error decreases
linearly with the evolution of time or the number of
iterations.

In a similar fashion with (11), the mean square
error (MSE) for the RLS equaliser is given by [3]

E[f2
k ] = σ2 +

M

k
σ2 (12)

where σ2 denotes the variance of the output error of the
equaliser whose coefficients are given by copt. Equation
(12) suggests that the excess MSE increases linearly
with the number of coefficients and decreases with the
number of iterations.

Fig. 2 Adaptive Butler-Cantoni equaliser.

3. ABC Equaliser

Figure 2 shows the configuration of the ABC equaliser
where the equalisation filter has M coefficients, the out-
put of which is given by

yk = x(k)T c(k). (13)

The channel estimator has N coefficients, g0(k),
g1(k), ..., gN−1(k), the output of which is given by

zk =
N−1∑

i=0

gi(k)uk−i. (14)

For the channel estimation, we deploy the RLS
adaptation scheme as follows:

ek = xk − zk (15)

Kg(k) =
Pg(k − 1)u(k)T

λ + u(k)TPg(k − 1)u(k)
(16)

Pg(k) =
1
λ
[Pg(k−1)−Kg(k)u(k)TPg(k−1)](17)

g(k) = g(k − 1) +Kg(k)ek (18)

where g(k) is the coefficient vector for the channel es-
timator given by

g(k) = [g0(k), g1(k), , , , gN−1(k)]T , (19)

and u(k) is the input vector given by

u(k) = [uk, uk−1, , , , uk−N+1]T . (20)

The channel estimator invokes the estimate of
noise variance as well as the estimate of channel coeffi-
cients. The variance of additive noise is estimated by
the average of e2

k such as

σ̂2(k) =
1
P

P−1∑

i=0

(ek−i)2 (21)

where P is the sample number to be required for the
average operation.
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Based on the results of the channel estimator, the
coefficients of the equalisation filter is obtained by solv-
ing for

c(k) = A(k)−1b(k) (22)

for each iteration, where A(k) and b(k) denote the in-
put correlation matrix and cross-correlation vector for
k iterations. The above Eq. (22) is efficiently solved by
making use of the Levinson-Trench algorithm [15]. Be-
cause the elements of A and b are, in the ideal case,
given by

aij =
L−1∑

m=0

hmhm+|i−j| + σ2δ(i − j)

i, j = 0, 1, , , , M − 1 (23)

bi = hd−i i = 0, 1, , , , M − 1 (24)

respectively where δ(·) denotes the Kronecker delta
function, we can use the following

aij(k) =
N−1∑

m=0

gm(k)gm+|i−j|(k) + σ̂2(k)δ(i − j)

i, j = 0, 1, , , , M − 1 (25)

bi(k) = gd−i(k) i = 0, 1, , , , M − 1 (26)

for the elements of A and b, respectively. Adapting
the channel estimator and evaluating Eqs. (22),(25) and
(26) simultaneously, we can produce the output of the
equalisation filter, yk, which turns out to be the esti-
mate of uk−d.

The equalisation filter for the ABC equaliser is in-
directly adapted by the channel estimator. This means
that the ABC equaliser replaces the task of channel
equalisation with that of channel estimation. This
replacement may be beneficial for any adaptive algo-
rithm, because for channel estimation, the input se-
quence is pseudo-random, leading to the ideal state
for adaptive systems, while for channel equalisation,
in general, the input sequence is coloured, making a
certain spread of eigenvalues of the input correlation
matrix. It is well known that the convergence of an
adaptive algorithm is affected by the input sequence.
In particular, the LMS algorithm is rescued by the re-
placement, because its convergence is largely affected
by the eigenvalue spread of the input correlation ma-
trix. A large spread of that causes the LMS adaptation
requiring a long time to reach the state of convergence.
Due to this reason, the ABC equaliser involving the
LMS channel estimator behaves insensitively to varia-
tions in the eigenvalue spread of the input correlation
matrix, and provides faster convergence than the LMS
equaliser [13].

If the LMS channel estimator is replaced by the
RLS channel estimator, then it is expected that more
advantages are obtained for the ABC equaliser. This

is because for system identification problem, which is
equivalent to the channel estimation problem, the RLS
adaptation provides faster convergence than the LMS
adaptation [18],[19].

A remaining subject is to compare the RLS based
ABC equaliser with the RLS equaliser. One may be in-
terested in knowing which provides better performance
by commonly using the RLS adaptation.

With respect to the speed of convergence, the
RLS based ABC equaliser may be superior to the RLS
equaliser. This is because for the RLS based ABC
equaliser, the adaptation is subjected to the RLS chan-
nel estimator and the convergence of the coefficient vec-
tor is given by

E[g(k)] = gopt −
α

k
gopt (27)

where gopt means the optimal channel coefficient vec-
tor. Equation (27) produces the best convergence curve
the RLS adaptation can provide, because the conver-
gence is not affected by the input correlation matrix
for the RLS adaptive filter. On the other hand, for the
RLS equaliser, the convergence is relatively insensitive
to variations in the eigenvalue spread of the input cor-
relation matrix. However, as shown by (11), the con-
vergence of the coefficient vector is certainly affected
by A−1. If the coefficient error vector

ε(k) = copt − c(k) (28)

is deployed here, then the affection is more visually
shown by evaluating the coefficient error correlation
matrix

R(k) = E[ε(k)ε(k)T ]. (29)

As the number of iterations approaches infinity, R(k)
is approximated by

R(k) ≈ σ2

k
A−1. (30)

Taking the norm of both sides, we get

||R(k)|| ≈ σ2

k
||A−1||. (31)

If the minimum eigenvalue of the input correlation
matrix is expressed by λmin, then ||A−1|| reduces to
1/λmin. Therefore, we get the following

||R(k)|| ≈ σ2

kλmin
. (32)

This equation obviously suggests that when λmin is
small, the convergence degrades and requires a long
time.

Usually, the length of channel estimator may be
less than that of channel equaliser. This fact leads
to further two advantages for the RLS based ABC
equaliser. One is the reduction in computational com-
plexity, which will be discussed in the next section. The
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Table 1 Computational complexity of adaptive equalisation
algorithms. The RLS, ABC(RLS) and ABC(LMS) denote the
RLS, RLS based ABC and LMS based ABC equalisers, respec-
tively.

Algorithm Multiplications Divisions
RLS 2.5M2 + 4.5M 2
ABC(RLS) 2M2 − 3M + 2.5N2 + 4.5N + 2 2M − 2
ABC(LMS) 2M2 − 3M + 4N + 3 2M − 2

other is obtained from the excess MSE being propor-
tional to the number of coefficients to be adapted. For
the RLS based ABC equaliser, the expression of (12) is
changed such as

E[e2
k] = η2 +

N

k
η2 (33)

where η2 corresponds to the output error variance for
the channel estimator, which is less than σ2 in (12).
When N � M , Eq. (33) suggests that the RLS channel
estimation is more accurate than the RLS equalisation.
This means that the equalisation filter directly derived
from the channel estimator for the RLS based ABC
equaliser essentially behaves more accurately than the
RLS equaliser.

4. Computational Complexity

The RLS based ABC equaliser requires, at each adap-
tation step of the channel estimator, to solve for a set
of M linear equations and to estimate the variance of
the additive noise. The computational requirements are
5
2N2 + 9

2N multiplications and 2 divisions per iteration
for the channel estimator, which are derived from the
RLS adaptation results in [17], and 2M2 − 3M mul-
tiplications and 2M − 3 divisions per iteration for the
Levinson-Trench algorithm. Furthermore, the calcula-
tions of the variance of additive noise is added. If we
use the following operation for this purpose:

σ̂2(k) = σ̂2(k − 1) +
e2
k − e2

k−P

P
(34)

the computational requirements become 2 multiplica-
tions and 1 division per iteration for the estimation
of the variance of additive noise. The total computa-
tional requirements for the RLS based ABC equaliser
are summarised in Table 1, in which the computational
requirements for the RLS and LMS based ABC equalis-
ers are also shown as a comparison.

Figure 3 shows a comparative result of the compu-
tational requirements for the RLS, RLS based ABC and
LMS based ABC equalisers where the total operations
of multiplications plus divisions are compared. For the
ABC equalisers, the channel estimator is assumed to
have 3 coefficients (N = 3). Figure 3 suggests that
when the equaliser order is larger than 5, the computa-
tional requirements for the RLS based ABC equaliser
become less than those for the RLS equaliser.

Fig. 3 Computational complexity for the ABC and RLS
equalisers.

Fig. 4 Convergence of the ABC and RLS equalisers (SNR =
50 dB).

5. Simulations

To verify the performance of the RLS based ABC
equaliser, we carried out computer simulations. Figure
4 shows the convergence for the channel the transfer
function of which is given by

H(z) = 0.3482 + 0.8704z−1 + 0.3482z−2, (35)

where the RLS, RLS based ABC and LMS based
ABC equalisers are compared. The signal-to noise ra-
tio(SNR) is 50 dB. The three equalisers have the same
equalisation filter length M = 8 and delay d = 4. For
the ABC equalisers, the channel estimator length is
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Fig. 5 Convergence of the RLS based ABC and RLS equalisers
(SNR=20dB).

N = 3, which is equivalent to the channel length. Con-
stant parameter has been commonly set to the unity as
the forgetting factor (λ = 1.0) for the RLS algorithm to
be used in the RLS and RLS based ABC equalisers. For
the LMS based ABC equaliser, the step size parameter
for the LMS algorithm has been set to 0.04. Each con-
vergence curve in Fig. 4 has been evaluated by averaging
100 individual trials. Figure 4 obviously shows that the
RLS based ABC equaliser provides faster convergence
than the RLS equaliser. This is due to the transient
performance of the RLS estimator for the RLS based
ABC equaliser, which is best in the case of the input
of pseudo-random sequence or white noise. Because
the channel (35) is ill-conditioned for an equaliser and
produces a small minimum eigenvalue of the input cor-
relation matrix, the convergence of the RLS equaliser
degrades due to the small eigenvalue as shown by (11)
and (32).

From Fig. 4, it is also observed that the use of the
LMS based ABC equaliser is enough to outperform that
of the RLS equaliser. This suggests how the replace-
ment of channel equalisation with channel estimation
for the ABC equaliser is beneficial to accelerate the
speed of convergence.

Figure 5 shows the convergence of the RLS based
ABC and RLS equalisers under the same conditions as
those in Fig. 4 except for the SNR. In Fig. 5, the SNR
is 20 dB. Comparing Fig. 5 with Fig. 4, we notice that
the convergence speed of the RLS based ABC equaliser
is not affected by the amount of additive noise, while
that of the RLS equaliser is affected. This result for
the RLS equaliser is obvious from (12). When the ini-
tial value of E[f2

k ], E[f2
0 ], is much larger than σ2, the

time to reach the steady state becomes long. Thus,
the case of SNR=50 dB invokes slower convergence for
the RLS equaliser than the case of SNR=20 dB. On

the other hand, for the RLS based ABC equaliser, the
convergence behaviour is mostly determined by (27),
because the estimates of g0(k), g1(k), ..., gn−1(k) are di-
rectly used for the Levinson-Trench algorithm to pro-
duce the equaliser output. Although σ2 is also required
for the Levinson-Trench algorithm, the value of η2 is es-
sentially less than σ2 and thus is insensitive to the eval-
uation of (25). These factors preserve the insensitivity
to additive noise for the RLS based ABC equaliser.

6. Conclusion

The speed of convergence of adaptive equalisers has
been investigated on stationary channels. It has been
shown that the ABC equaliser provides better per-
formance than the RLS equaliser without increasing
computational complexity. From the results obtained
through this paper, we deduce that the RLS based ABC
equaliser provides the fastest convergence based on the
structure of a linear transversal filter in the sense which
the convergence of the RLS based ABC equaliser out-
performs that of the RLS equaliser.
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