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LETTER

A New Method of Noise Variance Estimation from

Low-Order Yule-Walker Equations

Jonah GAMBA†a), Student Member and Tetsuya SHIMAMURA†, Member

SUMMARY The processing of noise-corrupted signals is a
common problem in signal processing applications. In most of
the cases, it is assumed that the additive noise is white Gaussian
and that the constant noise variance is either available or can be
easily measured. However, this may not be the case in practical
situations. We present a new approach to additive white Gaus-
sian noise variance estimation. The observations are assumed to
be from an autoregressive process. The method presented here is
iterative, and uses low-order Yule-Walker equations (LOYWEs).
The noise variance is obtained by minimizing the difference in
the second norms of the noisy Yule-Walker solution and the esti-
mated noise-free Yule-Walker solution. The noise-free solution is
constrained to match the observed autocorrelation sequence. In
the iterative noise variance estimation method, a variable step-
size update scheme for the noise variance parameter is utilized.
Simulation results are given to confirm the effectiveness of the
proposed method.
key words: noise variance, Yule-Walker equations, autoregres-
sive process, subspace method

1. Introduction

Autoregressive (AR) parameter estimation has been ex-
tensively studied in the literature [1]–[3]. It finds appli-
cation in various fields including forecasting, economics,
and speech processing. Parameter estimation of AR
processes corrupted by white Gaussian noise requires a
priori knowledge of the noise variance or it has to be
estimated from an available data sequence. In practi-
cal situations, however, the noise variance cannot be
known a priori.

The method proposed in [5] assumes that the
noise variance is available before parameter estimation.
Many methods have been proposed to address the prob-
lem of noise variance estimation from an observed data
sequence [6]–[8]. These methods rely on different strate-
gies such as the use of prefiltering, higher-order Yule-
Walker equations (HOYWEs), modified least-squares
methods and eigendecomposition. The best perfor-
mance is commonly achieved at high signal-to-noise ra-
tios (SNRs).

One recent method of noise variance estimation
is subspace (SS) approach [8]. In [4], the uniqueness
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of the solution via the SS method has been discussed,
and in [8] the superiority of that to the other effective
methods has been demonstrated. However, in addition
to requiring the use of both LOYWEs and HOYWEs,
the SS method further have to deal with a computa-
tionally intensive quadratic eigenvalue problem to ob-
tain an estimate of the noise variance. Therefore, we
herein propose a simpler alternative, which relies only
on LOYWEs. The proposed method is iterative and
utilizes the noisy Yule-Walker equation. At each itera-
tion an estimate of the noise-free Yule-Walker solution
is obtained by adjusting the noise variance parameter
and constraining the solution to match the autocorre-
lation sequence of the observed data sequence. The
adjustment is achieved through a step-size parameter
which depends on the current value of the noise vari-
ance parameter. The true noise variance minimizes
the difference between the second norms of the noisy
Yule-Walker solution and the estimated noise-free Yule-
Walker solution.

This paper is organized as follows. In Sect. 2 we
outline the noisy AR model. The effect of additive noise
on AR parameters is highlighted. Section 3 presents the
proposed iterative noise variance estimation (INVE)
method. In Sect. 4 simulation results are presented.
Concluding remarks in Sect. 5 end this paper.

2. Noisy AR Model

A stationary AR process {x(n)} of order p is defined
by
∑p

i=0 a(i)x(n − i) = e(n), where {e(n)} is an un-
correlated driving white noise sequence of variance σ2

e

and a(i)’s are the noise-free AR parameters (a(0) = 1).
The autocorrelation function (ACF) at lag k for {x(n)}
is defined by rxx(k) = E[x(n)x(n + k)] where E is
the expectation operator. The rxx(k) is given in the
above case by rxx(k) = −∑p

i=1 a(i)rxx(k− i)+ δ(k)σ2
e ,

k ≥ 0, where δ(k) is the Kronecker delta function. In
the presence of noise, the observed data sequence be-
comes y(n) = x(n) + w(n), where w(n) is assumed to
be zero-mean additive white Gaussian noise of variance
σ2

w. The ACF for {y(n)} is similarly defined like that
for {x(n)} and denoted by ryy(k).

The commonly used Yule-Walker equations
(YWEs) [1] are

Rxxa = −rx (1)
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Ryyâ = −ry (2)

where Rxx and Ryy are p × p autocorrelation matri-
ces (ACMs) of the sequences x(n) and y(n) respec-
tively. The column vectors on the right hand sides
of Eqs. (1) and (2) are rT

x = [rxx(1) . . . rxx(p)] and
rT

y = [ryy(1) . . . ryy(p)]. The T denotes the transpo-
sition operation. The p × 1 vectors a and â are the
noise-free and noisy solutions to the YWEs, respec-
tively. The AR parameter estimates from Eq. (2) are
biased since ryy(k) = rxx(k) + δ(k)σ2

w. Using Eqs. (1)
and (2), the following relationship between ACMs is
validated for noise compensation,

Rxx = Ryy − σ2
wI (3)

where I is a p × p identity matrix.

3. Noise Variance Estimation

3.1 Proposed Method

The above relationships for a noisy AR model can be
used to obtain an estimate of the noise variance σ2

w as
follows. From Eq. (1)–Eq. (3) and the fact that rx = ry,
we have

Ryy(â − a) = −σ2
wa. (4)

Taking the norms (any norm) of both sides of Eq. (4)
results in the relationship

σ2
w‖a‖ = ‖Ryy(â− a)‖. (5)

Equation (5) shows that the noise variance is a function
of the Euclidean distance between â and a.

Letting ∆a = â−a, Eq. (5) can be expressed more
compactly as

σ2
w‖a‖ ≤ ‖Ryy‖‖∆a‖. (6)

Working with the square norm, it is well known [9] that
‖Ryy‖ = λymax, where λymax is the maximum eigen-
value of Ryy. Equation (6) can therefore be written
as

σ2
w‖a‖ ≤ λymax‖∆a‖ ≤ λymax|‖â‖ − ‖a‖|. (7)

From Eq. (7), it is possible to obtain an estimate
of σ2

w. To achieve this, a function

f(α) = ‖â‖ − ‖ã(α)‖ (8)

is defined where α is a parameter that gives an esti-
mate of σ2

w and ã(α) corresponds to the solution of
noise-compensated Yule-Walker equation obtained by
combining Eq. (1) with Eq. (3). The value of α that
gives the minimum of f(α) results in the noise vari-
ance estimate. This property of the function f(α) is
described analytically in Appendix. In the proposed
method, by adjusting the α in an iterative fashion, the
minimum of f(α) is sought. The full INVE method is
described below.

The INVE Method

1. Obtain an estimate of the biased noisy autocorre-
lation sequence {r̂yy(k)} as

r̂yy(k) =
1
N

N−1−|k|∑
n=0

y(n)y(n+ |k|) (9)

where N is the length of the observed noisy data
sequence, and solve Eq. (2) by the Levinson-Durbin
algorithm to obtain an â.

2. Set M as a large real number and initialize the
noise variance parameter and the step-size param-
eter as

α =
1
M

(10)

s =
α

M
(11)

respectively.
3. Substitute Eq. (3) into Eq. (1) with the setting of

σ2
w = α and solve Eq. (1) to obtain an estimate of

a denoted by ã(α).
4. Calculate Eq. (8).
5. If α ≥ r̂yy(0), terminate and obtain the value of α

for which f(α) is minimum. Otherwise, go to Step
6.

6. Calculate s according to

s =
{

r̂yy(0)/M, if α ≥ 1
α/M, otherwise (12)

and increase α by the value of s as

α = α + s. (13)

7. Go to Step 3.

3.2 Step-size Adjustment

The INVE method requires the step-size parameter s
to increase the value of α at each iteration. The use of
a constant step-size parameter will result in high vari-
ance in the estimated values of noise variance. This
phenomenon is especially pronounced at high SNRs.
To understand the increase in variance we observe that
if the step value is kept constant at a value for example
β, then only noise variance with at most a value with
some order of magnitude greater than β can be possi-
bly estimated. Therefore the step-size parameter must
be adjusted according to the SNR of the observed se-
quence. For this purpose the adjustment of Eq. (12) is
used. For SNRs less than 0 dB, the step-size parameter
s is kept constant. For SNRs more than 0 dB, however,
s is decreased at each iteration.

4. Simulation Examples

Computer simulations were carried out to evaluate the
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Fig. 1 RMSE of noise variance estimation for the SS and INVE
methods at SNRs varying from 5dB to 15 dB.

performance of the INVEmethod. The aim of the simu-
lations was to compare the proposed method with other
established methods for noise variance estimation. The
INVE method was compared to the SS method for the
reasons already stated in Sect. 1. In order to make this
performance assessment, an AR process with the fol-
lowing transfer function was generated.

H(z) =
(
1− 1.7466z−1 + 1.9112z−2

−1.7030z−3 + 1.3450z−4

−0.7839z−5 + 0.2266z−6
)−1

. (14)

The transfer function H(z) was obtained from conju-
gate poles with amplitudes {0.70, 0.80, 0.85} and re-
spective frequencies of {0.10π, 0.30π, 0.60π} radians per
sample. The amplitude of the sequence was scaled to
have zero mean and unit variance. From the scaled
sequence, the last 40 data points were taken to repre-
sent the noise-free data sequence. A noisy AR data se-
quence was obtained by adding a white Gaussian noise
sequence of the same length. The SNR was varied from
5dB to 15 dB, where SNR = 10 log(1/σ2

w). The σ2
w

is the variance of the additive white Gaussian noise.
The AR order p for parameter estimation was set to
17. The order was obtained by using the approxima-
tion p = (N/3 + N/2)/2 [10], where N is the length
of the data sequence. The constant M for the INVE
method was set to 1000. The noise variance was esti-
mated at various SNRs in the above mentioned range.
In all the simulations, 100 independent runs were aver-
aged. The 100 independent runs were considered to be
sufficient to give consistently accurate estimates of the
noise variance.

Figure 1 illustrates the root mean square error
(RMSE) of noise variance estimation where the INVE
method is compared with the SS method. The RMSE
at each noise variance σ2

w has been calculated as

Table 1 The standard deviation of noise variance estimates in
the simulations.

SNR Standard Deviation
dB INVE Method SS Method
5 0.0738 0.1086
6 0.0553 0.1057
7 0.0538 0.0790
8 0.0076 0.0713

9 0.0369 0.0440
10 0.0038 0.0439
11 0.0077 0.0339
12 0.0068 0.0286
13 0.0006 0.0117
14 0.0087 0.0267
15 0.0040 0.0160

Fig. 2 f(α) at SNR=5dB (σ2
w = 0.3162).

RMSEσ2
w
=

√√√√( 1
100

100∑
i=1

(σ2
w − σ̂2

wi)2
)

(15)

where σ̂2
wi is the i-th independent estimate of σ2

w.
Figure 1 shows that while the RMSE performance is
competitive at comparatively high SNRs (with small
σ2

w), the proposed INVE method provides lower RMSE
than the SS method as the SNR is decreased (as σ2

w is
increased). The standard deviation of noise variances
estimates for the same range of SNRs was also com-
pared for the two methods. As shown in Table 1, the
proposed method shows lower standard deviation over
the SNR range studied in the simulations.

Figure 2 illustrates the application of the INVE
method at SNR=5dB. By seeking the minimum point
of f(α) the INVE method can accurately give a noise
variance estimate at a low SNR. The function f(α) has
negative values and if the minimum point is found, then
the location of that point, α, corresponds to the esti-
mate of noise variance. Figure 2 shows that α becomes
very close to the true one 0.3162.



LETTER
273

5. Concluding Remarks

In this paper we have proposed a noise variance es-
timation method. The noise is assumed to be white.
The proposed INVE method is capable of accurately
estimating the noise variance. Simulation results have
shown that the INVE method performs better than the
SS method, especially at low SNRs. Future work would
aim to analyze the statistical properties of the proposed
method and also to investigate its performance in the
case where the noise is colored.
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Appendix: Analytical Derivation

Let there be α such that 0 ≤ α ≤ ryy(0). From Eq. (3)
there exists an ACM R̃xx such that

R̃xx = Ryy − αI. (A· 1)
If the solution to the system of Eq. (1) is constrained
such that the autocorrelation sequence is preserved, we
can write

R̃xxã = −rx. (A· 2)
By using the fact that rx = ry, it is possible to es-
tablish the relationship between the noisy solution and
the estimated solution. Replacing ry with rx in Eq. (2)
and inserting the left side of Eq. (A· 2) into the resulting
equation gives

Ryyâ = R̃xxã. (A· 3)
Substituting for R̃xx (Eq. (A· 1)) on the right side of
Eq. (A· 3) results in

Ryyâ = (Ryy − αI)ã,

Ryy(ã− â) = αIã = αã. (A· 4)
In order to get the relationship between the relative

magnitudes (in the norm sense) of a and ã we consider
the following. By changing the sign of both sides of
Eq. (4) and subtracting Eq. (A· 4) from it we get

Ryy(a − ã) = σ2
wa − αã. (A· 5)

Taking the norms of Eq. (A· 5) results in
‖Ryy(a − ã)‖ = ‖σ2

wa − αã‖. (A· 6)
By considering the relationship

‖rx‖ = ‖R̃xxã‖ (A· 7)
and results from the eigendecomposition theory, we can
infer the magnitude of ã in Eq. (A· 6). The following
equations can be easily verified:

Rxxa = λxa,

(Ryy − σ2
wI)a = λxa,

Ryya = (λx + σ2
w)a = λya. (A· 8)

Equation (A· 8) is the well known fact that the effect
of additive noise is to increase the eigenvalues by an
amount equal to the noise variance. Equation (8) can
be found by considering the following cases.

A. Case 0 ≤ α ≤ σ2
w

Since Rxx = Ryy −σ2
wI, R̃xx = Ryy −αI and also

considering the case where α < σ2
w, we can evaluate the

magnitudes of the eigenvalues of Rxx and R̃xx if Ryy

is known. Letting the maximum eigenvalue of Ryy be
λymax, by Eq. (A· 8), the maximum eigenvalue of Rxx is
λxmax = λymax−σ2

w and correspondingly the maximum
eigenvalue of R̃xx is λ̃xmax = λymax−α. Using Eq. (1),
‖rx‖ = ‖Rxxa‖ ≤ ‖Rxx‖‖a‖ = λxmax‖a‖ or in short
‖rx‖ ≤ λxmax‖a‖. The Euclidean length of a is then
given by the inequality ‖a‖ ≥ ‖rx‖/λxmax. Similarly
Eq. (2) gives ‖â‖ ≥ ‖rx‖/λymax and Eq. (A· 7) yields
‖ã‖ ≥ ‖rx‖/λ̃xmax. For λxmax < λ̃xmax, there exists a
range of values of α in the interval [0, ryy(0)] for which

λxmax ≤ λ̃xmax ≤ λymax,
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1/λxmax ≥ 1/λ̃xmax ≥ 1/λymax,

‖â‖ ≤ ‖ã‖ ≤ ‖a‖. (A· 9)

B. Case σ2
w < α ≤ ryy(0)

In this case the equations are similarly defined as in the
case A. The final result is that

λymax ≥ λxmax > λ̃xmax,

1/λymax ≤ 1/λxmax < 1/λ̃xmax,

‖â‖ ≤ ‖a‖ < ‖ã‖. (A· 10)
Equations (A· 9) and (A· 10) look contradictory

but can be interpreted from two points of view. First,
for 0 ≤ α ≤ σ2

w, ‖a‖−‖ã‖ ≥ 0 but for σ2
w < α ≤ ryy(0),

‖a‖−‖ã‖ < 0. On the the other hand, ‖â‖−‖ã‖ ≤ 0 for
0 ≤ α ≤ σ2

w and decreases and ‖â‖ − ‖ã‖ ≤ 0 for σ2
w <

α ≤ ryy(0) but increases towards 0 in the vicinity of
σ2

w. Therefore the minimum value of ‖â‖−‖ã‖ occurs at
α = σ2

w. Furthermore, ‖â‖−‖ã‖ can be easily evaluated
on [0, ryy(0)].

From Eqs. (A· 9) and (A· 10) and restricting α in
the interval [0, ryy(0)], we derive the following. If
‖ã‖, denoted by ‖ã(α)‖, is continuous on the interval
[0, ryy(0)], then f(α) = ‖â‖ − ‖ ˜a(α)‖ ≤ 0, with a mini-
mum value only when α = σ2

w.


