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SUMMARY A general circuit model of a filter having one
cross coupling path is analyzed, and a new theory is developed
for the design of a filter with transmission zeros in its stopband.
By using the derived formulas, the reactance element values in
the cross coupling path are determined readily. The transmission
zeros can thus be assigned at desired frequencies. Various design
examples are provided, together with simulated results, which
validate the proposed theory.
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1. Introduction

In order to realize a high performance filter with low
insertion-loss in its passband and sharp attenuation in
its stopband, it is usually tried to introduce transmis-
sion zeros in the stopband of the filter. A representative
is the elliptic function filter which requires cross cou-
plings between pairs of nonadjacent resonators of the
filter [1]. The problem associated with the elliptic func-
tion filter is that it is usually rather difficult to realize
physically the demanded multiple cross couplings. As
an alternative, a technique easier to implement is to in-
troduce only one cross coupling path between a pair of
nonadjacent resonators [2], [3]. As a consequence, while
the elliptic function filter exhibits equal ripple in its
stopband, a filter designed with one cross coupling path
has generally one finite transmission zero (or one pair of
transmission zeros) only in its stopband, and exhibits
drastic attenuation at frequencies around the pole(s).
Since specifications of many filters require sharp atten-
uation at some frequencies only in its stopband, this
technique is getting recent interest [2]–[5]. Levy [2] de-
veloped an approximate synthesis method based on a
lowpass prototype filter. This method is simple and
useful in many cases. But it suffers from inaccuracy,
and can even fail for very highly selective filters [3], [4].
Hong [3] provided some tables and approximate formu-
las that were obtained by curve fitting. However, they
are of limited usage, particularly they are only feasible
for filters with even numbers of resonators.

In this paper, we develop a new theory for the de-
sign of a filter having one cross coupling path to pro-
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duce transmission zeros in its stopband. We provide
answers, including new formulas, to the following ques-
tions encountered in the design of such a filter
(1) Where can the cross coupling path be introduced.
(2) Which type of coupling should be used.
(3) How to determine the reactance element values

of the cross coupling path in order to get transmission
zeros at the assigned frequencies.

The theory in this paper is derived by using a novel
ABCD matrix technique, and is verified by numerical
design examples. The results show that both symmetri-
cal and asymmetrical transmission zeros can be realized
by the proposed method. The design of our filter be-
gins with the use of the well-known formulas for Butter-
worth or Chebyshev bandpass filters, and complicated
synthesis process and/or formulas are avoided.

2. Theory

We assume that we begin with a Butterworth or
Chebyshev bandpass filter (BPF). A generalized But-
terworth or Chebyshev BPF circuit, using impedance-
inverters and lossless series-type resonators, is shown
in the dotted-line box in Fig. 1 [6]. The values of the
impedance-inverter Ki,i+1 (i = 0, 2, · · · , n) and res-
onator reactance Xi(ω) (i = 1, 2, · · · , n) are calculated
from the specifications of the filter, using formulas pro-
vided in [6]. In the case a Chebyshev filter, the formulas
are as follows
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where gi is the lumped element value of the proto-
type lowpass filter, R0 is the source/load impedance,
ω1 and ω2 are the lower and upper edge-frequencies of
the equal-ripple passband, respectively, ω0 is the center
frequency of the filter, w is the fractional bandwidth,
χi is the reactance slope-parameter of the resonator.

The Butterworth or Chebyshev filter has transmis-
sion zeros at dc and infinite frequencies only. In order
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Fig. 1 A generalized bandpass filter circuit using impedance-inverters and series-type
resonators. A cross coupling path with reactance X(ω) is introduced between the i-th
and j-th resonator.

Fig. 2 Four types of cross couplings. (a) An inductor L, (b)
a capacitor C, (c) a series LC resonator, and (d) a shunt LC
resonator.

Fig. 3 ABCD matrix representation of the filter shown in
Fig. 1.

to get finite transmission zeros in the stopband, a cross
coupling path with reactance X(ω) is introduced be-
tween the i-th and j-th resonator, as shown in Fig. 1.
The cross coupling reactance X(ω) can be an induc-
tor L, a capacitor C, a series or shunt LC resonator,
as shown in Fig. 2, to represent electric, magnetic, and
mixed electromagnetic coupling, respectively.

In order to get the frequency response of the fil-
ter with an additional cross coupling path, we divide
the circuit into three parts, as indicated by the dashed-
line boxes in Fig. 1. We use three ABCD matrices,
AIBICIDI , AIIBIICIIDII , and AIIIBIIICIIIDIII , to
represent these three parts, as shown by Fig. 3. The
first and the third part in Fig. 1 consist of cascaded
impedance-inverters and series-type resonators. There-
fore, AIBICIDI and AIIIBIIICIIIDIII are the prod-
ucts of the ABCD matrix of the impedance-inverter[

A B
C D

]
=

[
0 jKi,i+1
j

Ki,i+1
0

]
(2)

Fig. 4 Two shunt ABCD matrices with, (a) inphase
connection, and (b) outphase connection.

and that of the series-type resonator[
A B
C D

]
=

[
1 jXi(ω)
0 1

]
(3)

The second part in Fig. 1 has two paths. The up-
per path consists of cascaded impedance-inverters and
series-type resonators, and its overall ABCD matrix,
A1B1C1D1, is the products of the ABCD matrices ex-
pressed by (2) and (3). The lower path is the cross
coupling path with a reactance X(ω), whose ABCD
matrix, A2B2C2D2, is expressed by (3). Therefore, the
second part in Fig. 1 can be represented by two shunt
ABCD matrices, as shown in Fig. 4. Figures 4(a) and
(b) represent inphase and outphase connections, respec-
tively. Note that in Fig. 1, only the inphase connection
is drawn for brevity. The overall ABCD matrix of the
second part, AIIBIICIIDII , is related to the two shunt
ABCD matrices by the following expressions:

AII =
A1B2 + A2B1

B2 ± B1
(4a)

BII =
B1B2

B2 ± B1
(4b)

CII = (C1 ± C2) +
(A2 ∓ A1)(D1 ∓ D2)

B2 ± B1
(4c)

DII =
B1D2 + B2D1

B2 ± B1
(4d)

where in the sign ± or ∓, the upper one corresponds
to the inphase connection, and the lower one outphase
connection.

Finally, the overall ABCD matrix of the filter is
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readily obtained by multiplying the ABCD matrices
of these three parts. The reflection and transmission
response of the filter are calculated then by using the
following equations:

S11(ω) =
AT R0+BT − CT R20 − DT R0
AT R0+BT+CT R20+DT R0

(5a)

S21(ω) =
2R0

AT R0+BT+CT R20+DT R0
(5b)

where AT , BT , CT , and DT are the elements of the
overall ABCD matrix of the filter. We observed that
all the elements AT , BT , CT , and DT in (5a) and (5b)
have a common denominator, (B2 + B1) in the case of
inphase connection, or (B2−B1) in the case of outphase
connection. Here B1 and B2 are the elements of the
shunt ABCD matrices shown in Fig. 4. Therefore, at
an assigned frequency ωp, if we let

B2(ωp) = −B1(ωp) (6)

in the case of inphase connection, or

B2(ωp) = B1(ωp) (7)

in the case of outphase connection, we will have
S21(ωp)=0, i.e., we will get a transmission zero at the
assigned frequency. For a Butterworth or Chebyshev
bandpass filter having one cross coupling path, (6) or
(7) provides the condition (at least sufficient condition)
to introduce one transmission zero at an assigned fre-
quency.

By referring to Fig. 1 and Fig. 4, we see that B1 in
(6) and (7) can be easily calculated by cascading the
ABCD matrices of the impedance-inverters and series-
type resonators. On the other hand, if the cross cou-
pling element is an inductor L, (6) and (7) become

B2(ωp) = jωpL = ∓B1(ωp) (8)

and if the cross coupling element is a capacitor C, (6)
and (7) become

B2(ωp) = 1
/
(jωpC) = ∓B1(ωp) (9)

From (8) or (9), we can calculate the value of L or
C with which the transmission zero will appear at the
assigned frequency ωp.

If we want to get two transmission zeros simulta-
neously at frequencies ωp1 and ωp2, we can use a cross
coupling path with a series or shunt LC resonator, as
shown in Figs. 2(c) and (d), instead of a single L or C.
We have then

B2(ωpi) = j
[
ωpiL − 1/(ωpiC)

]
= ∓B1(ωpi), i = 1, 2 (10)

in the case of a series LC resonator, or

B2(ωpi) = jωpiL
/(

1− ω2piLC
)

= ∓B1(ωpi), i = 1, 2 (11)

in the case of a shunt LC resonator. Both (10) and (11)
are simple linear equations of two variables L and C,
from which L and C are solved readily.

3. Design Examples

Based on the theory proposed above and the derived
formulas, a computer program is developed to imple-
ment the design of a filter having one cross coupling
path. As an example, a Chebyshev filter having five
resonators is considered. The passband attenuation rip-
ple LA= 0.01 dB, the lower and upper passband edge-
frequencies f1=9.9GHz and f2=10.1GHz, respectively.
The center frequency of the filter is about 10GHz, and
the equal-ripple fractional bandwidth about 2%. The
ideal Chebyshev characteristics of this filter are shown
in Figs. 6, 8, 9, 11–13, and 15–17 by solid lines. The
cross coupling path can be connected to the filter, as
shown in Fig. 1, at a number of different places. Be-
cause of the limited space, we can not provide here all
of the results obtained with possible connections of the
cross coupling path. We show below some typical cases
with discussions.

First, the cross coupling path is connected to the
filter between the input and output feed lines, as shown
in Fig. 5. When we want to introduce a transmis-
sion zero at fp=9.6GHz in the lower stopband, our
computation shows that we can use a capacitor C =
2.1053355 × 10−15 F in the case of inphase coupling
path, or an inductor L = 1.3054986 × 10−7H in the
case of outphase coupling path. If we use an induc-
tor in the case of inphase coupling path, or a capacitor
in the case of outphase coupling path, we get nega-
tive values of L or C, which is physically meaningless.
The frequency response of the filter with the cross cou-
pling element is drawn in Fig. 6(a) by dashed lines. It
is seen from Fig. 6(a) that by introducing a cross cou-
pling path in the filter, we can get a transmission zero
exactly at the assigned frequency. On the other hand,
the attenuation in the upper stopband is reduced to
some extent as the penalty. The passband response of
the filter with a cross coupling path exhibits minor dif-
ference with that of the ideal Chebyshev filter (solid
lines) without a cross coupling path. However, if the
transmission zero is chosen very close to the passband,
it is observed that the return loss of the filter in the
passband will increase significantly.

The simulated frequency response of a filter with
an assigned transmission zero at 10.4GHz in the upper
stopband is drawn in Fig. 6(b) by dashed lines. Similar
discussions as above can be made.

The above filter circuits with our calculated ele-
ment values, including the cross coupling elements, are
also simulated by using the commercial simulator ADS
[7]. In the filter circuit for ADS simulation, the K-
inverters are replaced by T-type inductors, and the se-
ries resonators are replaced by half-wavelength uniform
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Fig. 5 The cross coupling path is introduced between the input and output feed lines.

(a) Inphase C-coupling (C = 2.1053355× 10−15 F). (b) Inphase L-coupling (L = 1.2143900× 10−7H).

Fig. 6 Frequency responses of filters with and without an attenuation pole in, (a) the
lower stopband, and (b) the upper stopband.

(a) Inphase C-coupling (C = 2.1053355× 10−15 F). (b) Inphase L-coupling (L = 1.2143900× 10−7H).

Fig. 7 Comparison of the frequency responses of the filters calculated by our computer
program and the commercial simulator ADS.

transmission lines. The obtained results are drawn in
Figs. 7(a) and (b) by solid lines for comparison with the
dashed lines calculated by our computer program. The
agreement is excellent, and this validates our formulas
derived in Sect. 2, as well as our computer program.

If we want to get two transmission zeros si-
multaneously, we can use a coupling path having
both L and C elements. As an example, let
fp1=9.4GHz, fp2=9.6GHz, both in the lower stop-
band, or fp1=10.4GHz, fp2=10.6GHz, both in the up-
per stopband. By using an inphase coupling path with a
series LC resonator, or an inphase coupling path with a
shunt LC resonator, we get the simulated results shown
in Figs. 8(a) and (b), respectively. In Fig. 8(a), in ad-
dition to the assigned two transmission zeros, an un-

expected but favorable transmission zero appeared at
about 11.0GHz in the upper stopband. There is an-
other unfavorable attenuation zero at about 9.68GHz.
This attenuation zero is caused by the resonance of the
series LC resonator in the cross coupling path, because
at this resonant frequency, the cross coupling path (a
series LC resonator) is short-circuited.

We can also make one transmission zero appear in
the lower stopband, and the other in the upper stop-
band of the filter. As an example, let fp1=9.6GHz and
fp2=10.4GHz. When we use an inphase coupling path
with a series LC resonator, we get the result drawn
in Fig. 9(a) by dashed lines. Because of the resonance
of the series LC resonator which makes the coupling
path short-circuited, an unfavorable transmission zero
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(L = 7.3688143× 10−6H, C = 3.6649944× 10−17 F) (L = 6.3892815× 10−9H, C = 3.4725535× 10−14 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, inphase coupling.

Fig. 8 Frequency responses of filters with and without two attenuation poles in, (a) the
lower stopband, and (b) the upper stopband.

(L = 1.5728957× 10−6H, C = 1.6135019× 10−16 F) (L = 1.0079400× 10−8H, C = 2.5163279× 10−14 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, outphase coupling.

Fig. 9 Frequency responses of filters with and without one attenuation pole in the lower
stopband, and the other in the upper stopband.

Fig. 10 The cross coupling path is introduced between the 1st and 5th resonator.

appeared also in the passband, in addition to the two
assigned transmission zeros in the stopband. When we
use an outphase coupling path with a shunt LC res-
onator, we get the filter response plotted in Fig. 9(b)
by dashed lines.

When the cross coupling path is introduced be-
tween the first and the fifth resonator, as shown in
Fig. 10, the corresponding results for filters with as-
signed transmission zeros are shown in Figs. 11–13.
Similar discussions as above can be made. Compared
with results in Figs. 6, 8, and 9, the attenuation in the
stopband in Figs. 11–13 is reduced by about 20 dB.

When the cross coupling path is introduced be-
tween the second and the fourth resonator, as shown in
Fig. 14, the corresponding frequency responses of the
filters are shown in Figs. 15–17. The results are quite
close to those in Figs. 6, 8, and 9. However, the values
of the reactance elements, L and C, in the cross cou-
pling path are different with those in Figs. 6, 8, and 9,
by 1 or 2 orders. Therefore, in the design of the cross
coupling path, we can choose realizable values of reac-
tance elements by changing the place where the cross
coupling path is introduced.
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(a) Inphase C-coupling (C = 6.2947109× 10−15 F). (b) Inphase L-coupling (L = 4.0851745× 10−8H).

Fig. 11 Frequency responses of filters with and without an attenuation pole in, (a) the
lower stopband, and (b) the upper stopband.

(L = 7.6303004× 10−6H, C = 3.5816077× 10−17 F) (L = 1.7306676× 10−9H, C = 1.2958661× 10−13 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, inphase coupling.

Fig. 12 Frequency responses of filters with and without two attenuation poles in, (a)
the lower stopband, and (b) the upper stopband.

(L = 5.2766183× 10−7H, C = 4.8107639× 10−16 F) (L = 3.3804686× 10−9H, C = 7.5010968× 10−14 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, outphase coupling.

Fig. 13 Frequency responses of filters with and without one attenuation pole in the
lower stopband, and the other in the upper stopband.

4. Conclusions

We have developed a theory for the design of a filter
having one cross coupling path in order to realize trans-

mission zeros in its stopband. The examples given show
that when we want to get transmission zeros at assigned
frequencies, we can use an inductor or a capacitor, a se-
ries or a shunt LC resonator. We can choose an inphase
or outphase cross coupling path. We can introduce
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Fig. 14 The cross coupling path is introduced between the 2nd and 4th resonator.

(a) Inphase C-coupling (C = 8.6252281× 10−14 F). (b) Inphase L-coupling (L = 2.9644460× 10−9H).

Fig. 15 Frequency responses of filters with and without an attenuation pole in, (a) the
lower stopband, and (b) the upper stopband.

(L = 1.8504176× 10−7H, C = 1.4602013× 10−15 F) (L = 1.5472207× 10−10H, C = 1.4346351× 10−12 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, inphase coupling.

Fig. 16 Frequency responses of filters with and without two attenuation poles in, (a)
the lower stopband, and (b) the upper stopband.

(L = 3.8394475× 10−8H, C = 6.6100092× 10−15 F) (L = 2.4603788× 10−10H, C = 1.0308574× 10−12 F)
(a) Series LC resonator, inphase coupling. (b) Shunt LC resonator, outphase coupling.

Fig. 17 Frequency responses of filters with and without one attenuation pole in the
lower stopband, and the other in the upper stopband.
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the coupling path to the filter at a number of differ-
ent places. The developed theory and derived formu-
las provide solutions to all these possible choices, from
which we can get the best frequency response and/or
the easiest filter structure to realize.
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