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A Novel Compact HTS Interdigital Bandpass Filter Using CPW

Quarter-Wavelength Resonators
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SUMMARY A novel high temperature superconducting interdigi-
tal bandpass filter is proposed by using coplanar waveguide quarter-
wavelength resonators. The CPW resonators are arranged in parallel, and
consequently the filter becomes very compact. The filter is a 5-pole Cheby-
shev BPF with a midband frequency of 5.0 GHz and an equal-ripple frac-
tional bandwidth of 3.2%. It is fabricated using a YBCO film deposited on
an MgO substrate. The measured filtering characteristics agree well with
EM simulations and show a low insertion loss in spite of the small size of
the filter.
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1. Introduction

Recent years have seen rapid applications of various mo-
bile communication systems. As a consequence, full and
effective use of frequency resources is strongly demanded
than ever been. One prospective approach to address this
challenge is to employ low-loss and high-selective filters de-
veloped by using high-temperature superconductors (HTS).
Compared to microstrip structures, coplanar waveguide
(CPW) circuits are expected to offer the advantages of cost-
effective chip processing and easy integration with active
devices, because CPW structures have HTS films on only
one side of their substrates. In [1], a CPW half-wavelength
resonator having a high Q-factor was reported, and in [2]—
[5], HTS filters using CPW half-wavelength and quarter-
wavelength resonators were reported. However, these filters
suffered from large insertion losses due to radiation from the
bending parts of the filter structures and excess losses caused
by the conductor airbridges used to suppress the parasitic
CPW modes. In [6], a low-loss 4-pole HTS CPW bandpass
filter (BPF) was developed without using airbridges. How-
ever, as this filter consists of cascaded quarter-wavelength
resonators in a straight line, its size (length) will become
very large when a higher degree of filter is wanted. Other
CPW filters using quarter-wavelength stepped-impedance
resonators were reported in [7] and [8], including Cheby-
shev and quasi-elliptic BPFs. In [9], the coupling properties
of two quarter-wavelength resonators in opposite directions
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were discussed, but no detailed design of filters was made.

In this paper, a novel HTS CPW interdigital bandpass
filter is proposed. First, the variations of the unloaded Q-
factor of a CPW quarter-wavelength resonator with its di-
mensions are investigated, and the results allow us to choose
a resonator with a small size and a high Q-factor. Next, the
CPW quarter-wavelength resonators are arranged in paral-
lel, but in opposite directions alternately [10]. As a con-
sequence, the interdigital structure of the filter becomes
very compact compared with conventional CPW filters men-
tioned above. No bond-wire airbridges are used in the filter,
so losses associated with conductor bridges are avoided, and
the low-loss feature of an HTS filter can be fully exploited.
A 5-pole Chebyshev BPF is designed based on the theory of
direct-coupled resonator filters [11], using an electromag-
netic simulator Sonnet em [12]. The filter is fabricated by
using a YBCO film deposited on an MgO substrate. The
measured frequency response agrees well with the theoreti-
cal prediction.

2. Filter Design

The filter to be design is a 5-pole Chebyshev BPF with
a midband frequency of 5.0 GHz, a passband ripple of
0.01dB, and an equal-ripple fractional passband width of
3.2% (160 MHz). The configuration of the 5-pole filter
is shown in Fig. 1(a), where CPW quarter-wavelength res-
onators are arranged in parallel, but their orientations are
changed alternatively. The width of the CPW center strip of
the input/output lines is 0.22 mm, and the distance between
the two side grounds is 0.40 mm, so that the characteristic
impedance Zj is 50€Q. The length L of the resonators is
approximately one quarter-wavelength of the CPW domi-
nant mode. The equivalent circuit of the filter is given in
Fig. 1(b), where the external Q-factors and the coupling co-
efficients k;;.1 (i=1, 2, 3, 4) are calculated by using the
well-known formulas in [11], together with the specifica-
tions of the filter. We have Q.1 = Q. = 23.92, k1 = k45 =
3.17 x 10_2, and ky3 = k34 = 2.18 X 1072

The filter is shielded by a copper box with cross
sectional dimensions 11.0mm X 8.0mm, as is shown in
Fig.2(a). The distance between the CPW YBCO film and
the top of the package is 4.5 mm, and is 3.0 mm between
the MgO substrate and the bottom of the package. The di-
mensions of the shielding box are chosen to avoid package
resonance in the frequency range of our interest. The MgO
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Fig.1 (a) Configuration of a 5-pole interdigital BPF using CPW quater-
wavelength resonators, and (b) its equivalent circuit.
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Fig.2  (a) Configuration of a shielded CPW quater-wavelength resonator,
and (b) variation of Q, with the strip width w and slot width s of the res-
onator.

substrate has a dielectric constant of £,=9.68 at 70K and a
thickness of 0.5 mm. The thickness of the YBCO is 0.5 um,
but is ignored in the filter design.

In order to get a high-Q resonator and then realize a
filter with better performance, we investigated first the vari-
ations of the unloaded Q-factor, Q,, of the CPW quarter-
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Fig.3 (a) Coupled CPW quarter-wavelength resonators, and (b) varia-
tion of coupling coefficient k versus distance d.

wavelength resonator with the strip width w and slot width s
of the resonator, as shown in Fig. 2(a). We use Sonnet em to
compute Qy due to the dielectric loss of the MgO substrate,
Qp due to the surface resistance R; of the top and bottom
copper plates of the shielding box, and Q, due to the surface
resistance Rypco of the CPW YBCO films, separately, and
get finally the unloaded Q-factor, Q,, of the resonator. In
the computation, the resonator has a length of L = 6.45 mm
and resonates at 5 GHz, the loss tangent of the MgO sub-
strate is 2.3 X 1077, R, = 7.6 m Q, and R,yzco = 0.04 mQ.
These values are estimated at 70 K and 5 GHz based on our
measurements of the MgO substrates, YBCO films, as well
as copper plates. The influence of the side copper walls of
the shielding box are ignored because first they are far away
from the resonator strip, and second they are defined as un-
changeable perfect conductors by the simulator.

Figure 2(b) shows the computed Q, with the strip width
w and slot width s of the resonator. While w is varied from
0.1 to 0.8 mm, s is varied from 0.05 to 0.5 mm. It is seen
that by choosing larger values of w and s, we can get larger
values of Q,. A compromise between small size and high-Q
of the resonator is determined, and we select w=0.4 mm and
s=0.4 mm for the resonator which, as seen from Fig. 2(b),
owns a Q,, of about 60,000.

Figure 3(a) illustrates two coupled CPW interdigital
quarter-wavelength resonators. The coupling coefficient k
is computed and its variation versus the distance d be-
tween two resonators is shown in Fig.3(b). We get dj, =
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Fig.4 (a) Feeding structure of the filter using short-circuited stubs, and
(b) variation of Q, and fy versus the length b of the short-circuited stubs.

dy5=0.82 mm and d»3 = d34=1.06 mm to obtain the required
k values of the filter.

The external coupling between the resonator and the
input/output feed line is controlled by changing the length b
of the short-circuit stubs shown in Fig.4(a). The variation
of external O, and resonant frequency f; of the resonator
versus b is depicted in Fig. 4(b). We get b=2.09 mm to re-
alize the required Q, value. Because of the coupling with
external circuits, the resonant frequencies of the 1st and 5th
resonators in Fig. 1(a) decreased to about 4.28 GHz, as indi-
cated by Fig. 4(b). To compensate for this frequency reduc-
tion, the lengths of the 1st and Sth resonators are reduced.

Figure 5(a) shows frequency responses of the designed
filter. The solid curves are simulated from Fig. 1(a) using
Sonnet em, and the broken lines are calculated from the
equivalent circuit shown in Fig. 1(b). From the solid lines,
it is seen that the design specifications of the filter are satis-
fied. The transmission zero at the upper side of the passband
is caused by cross-couplings among the resonators.

The wideband frequency response of the filter com-
puted by Sonnet em is shown in Fig.5(b). It is seen that
the first spurious resonance appears at about 9.4 GHz. Cur-
rent distributions around the resonators indicate that this
spurious resonance may be considered as caused by the
half-wavelength resonance of the short-circuited stubs be-
tween two CPW quarter-wavelength resonators in Fig. 1(a).
Another reasonable explanation of this spurious resonance
is that, if the filter resonators are considered as half-
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Fig.5 (a) Simulated narrowband frequency response of the 5-pole BPF
using CPW quarter-wavelength resonators, and (b) the simulated wideband
response.

wavelength slot-mode resonators that are folded into U-
shapes, the first spurious resonance of the filter is then
the one-wavelength resonance of the slot-mode resonators.
Actually, other spurious resonances are also observed at
about 10.3 GHz, 12.7 GHz, and frequencies around 15 GHz.
These spurious resonances may be caused the slot-modes,
the above-mentioned short-circuited stubs, and even reso-
nances of the shielding box. Discrimination of these spu-
rious resonances is not an easy task, but needs careful in-
vestigations, including computation and analysis of the EM
fields and current distributions around the resonators at dif-
ferent frequencies of the spurious resonances. Some related
discussions can be found in [13] and [14].

3. Filter Measurement

The filter designed above is fabricated by using a pho-
tolithography and dry etching process. Without any pre-
and post-tuning, the filter is measured by using a pair of
coplanar microprobes and a network analyzer. The fre-
quency responses of the filter measured at 60 K are shown
in Fig. 6 by solid lines, and they agree well with the EM
simulated results depicted in broken lines. The measured
results show a midband frequency of 5.01 GHz, and a pass-
band width of 154 MHz. The minimum passband insertion
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Fig.6  Comparison of the measured and simulated frequency responses
of the filter. The measurement is made at 60 K.

loss is about 0.08 dB, and this indicates that the unloaded
Q, of the CPW quarter-wavelength resonators reaches a
value larger than 10,000. The maximum reflection loss in
the passband is lower than 20 dB. The measured midband
frequency (5.01 GHz) is about 10 MHz higher than the de-
signed 5.0 GHz. The reason is probably that the actual di-
electric constant of the MgO substrate is a little bit smaller
than the given nominal value, £,=9.68 at 70 K.

4. Conclusion

A novel compact HTS interdigital bandpass filter with no
airbridges is proposed by using CPW quarter-wavelength
resonators. The 5-pole Chebyshev bandpass filter is de-
signed, fabricated, and measured. The measured frequency
response agrees reasonably with our theoretical prediction,
and shows a low insertion loss in its passband.
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