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SUMMARY A new structure of a low-loss high tempera-
ture superconducting (HTS) filter is proposed by using quarter-
wavelength coplanar waveguide (CPW) resonators. A 4-pole
Chebyshev band-pass filter with the center frequency 5.0GHz
and the 0.01 dB-ripple fractional bandwidth 3.2% is designed
based on the theory of direct-coupled resonator filters using K-
and J-inverters. This filter is fabricated by using a high-Tc super-
conductive YBCO film deposited on a MgO dielectric substrate.
The frequency response of the filter measured at 60K agrees very
well with the theoretical one. The insertion loss is 0.22 dB. The
insertion loss of this filter is the lowest in HTS-CPW filters pre-
sented so far.
key words: superconductor, coplanar waveguide, quarter-

wavelength resonator, band-pass �lter, microwave

1. Introduction

The microwave filters using HTS film have the advan-
tages of low-loss, small-size and steep skirt slope char-
acteristics. They are expected to be useful for applica-
tions to base stations of mobile communication systems.
Many HTS microstrip filters have been developed so far.
Compared to these microstrip filter structures, coplanar
waveguide (CPW) filter structures are expected to of-
fer the advantages of cost-effective chip processing and
easy integration with active devices, because the CPW
structure has a HTS film on only one side of the sub-
strate. A High-Q CPW half-wavelength resonator has
been reported in [1]. Few papers have been published
for HTS filters using CPW half-wavelength resonators
[2]–[4]. For these filters, however, low loss character-
istics have not been realized, because of radiation loss
from the curve sections and excess loss by the conduc-
tor airbridges used to suppress the parasitic even mode
of CPW.

In this paper, a new structure using HTS CPW
quarter-wavelength resonators is proposed to realize
low insertion loss. In this filter structure, we do not
use airbridges which cause the excess conductor loss
and curve sections which cause the radiation loss. The
quarter-wavelength resonators are available to realize
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multi-stage filters because they have half length com-
pared with the half-wavelength resonators. A 4-pole
Chebyshev band-pass filter with the center frequency
5.0GHz and the 0.01 dB-ripple fractional bandwidth
3.2% is designed based on the theory of direct-coupled
resonator filters using K- and J-inverters. The valid-
ity of the design theory will be verified by frequency
characteristics measured for the fabricated filter.

2. Filter Structure

A structure of a 4-pole BPF using CPW quarter-
wavelength resonators is shown in Fig. 1. This fil-
ter is constructed by using a high-Tc superconductive
YBCO film with the thickness 0.5µm deposited on a
MgO dielectric substrate. The MgO substrate has a
dielectric constant εr = 9.68 at 77K and the thickness
h = 0.5mm. This filter is inserted into a Cu conduc-
tor package, where the cross sectional dimensions are
5.4mm×8.0mm to construct a TE10 mode cutoff wave-
guide. The distances between the CPW and the top of
the package, and between the substrate and the bottom
of the package are 4.5mm and 3.0mm, respectively.

The influence of thickness and kinetic inductance
of a YBCO film is neglected in this design. The width of
the center line is 0.218mm and the distance between the
two grand planes is 0.400mm, so that the characteristic
impedance Z0 is 50Ω. Each of the lengths l1 to l4
is approximately one quarter wavelength for the CPW
dominant mode. One end of the resonator is terminated
by an open gap and the other end is terminated by a
short-circuited stub. Couplings between the input port

Fig. 1 Structure of 4-pole BPF using CPW quarter-wavelength
resonators.
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Fig. 2 Equivalent circuits of 4-pole quarter-wavelength
resonator filter.

and the first resonator and between the second and the
third resonator are performed capacitively. Coupling
between the first and the second resonator is performed
inductively.

The equivalent circuit is shown in Fig. 2(a), which
indicates only a half because of the symmetrical struc-
ture. Each of the resonators in the equivalent circuit
is represented by a uniform transmission line of elec-
trical length θi = π/2 (i = 1, 2, 3, 4). The open gaps
are represented by the equivalent Π-type circuits of the
capacitances. Following the design method of direct-
coupled resonator filters [5], we can realize J-inverters
by adding the uniform transmission lines of electrical
length φi to both sides of the Π-type circuits. The
short-circuited stubs are represented by equivalent T -
type circuits of inductances. K-inverters are realized in
a similar way to the J-inverters. The equivalent circuit
is transformed as shown in Fig. 2(b) by using J01, J23,
J45 inverters and K12, K34 inverters.

3. Design of 4-Pole Filter

When a center frequency f0, a ripple width RW, and
a fractional ripple pass-band width ∆f/f0 are given as
this 4-pole filter specification, the design procedure is
given as follows:

(A) Design of open gap

An open gap structure for J23 is shown in Fig. 3(a).
Reference planes T1 and T2 shown in the figure corre-
spond to the input and the output port of the equivalent
Π-type circuit, respectively. The scattering parameters
with different gap width g2 are computed at T1 and
T2, by using 2.5 dimensional electromagnetic simulator
SONNET em [7]. From the computed scattering pa-
rameters, we obtain element values Ba and Bb of the
equivalent Π-type circuit from

jBa =
(1− S11)(1 + S22) + S12S21 − 2S12

∆
(1)

Fig. 3 (a) Structure of open gap. (b) J/Y0 and φ vs. gap width
g2.

jBb =
2S21

∆
, (2)

where

∆ = (1 + S11)(1 + S22)− S12S21 (3)

From these values, values of φ and J/Y0 in the J-
inverter are calculated from [5]
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where Y0 = 1/Z0. These values calculated as a func-
tion of the gap width g2 are shown in Fig. 3(b). The
solid and open dots in the figure indicate the calculated
points.

(B) Design of interdigital gaps

We require coupling values for J01 and J45 about 10
times greater, compared with one for J23, as mentioned
below. Then, interdigital gaps with fixed finger spacing
0.025mm and 0.018mm were used as shown in Fig. 4(a)
to realize the greater coupling values for J01 and J45. In
the interdigital gaps, right and left shunt capacitances
of the equivalent Π-type circuit are not equal, because
of the asymmetrical structure of left and right hand
sides. We first put the reference plane T2 at the loca-
tion indicated in Fig. 4(a). Then, to obtain the sym-
metrical equivalent Π-type circuit, the reference plane
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Fig. 4 (a) Structure of interdigital gap. (b) J/Y0 and φ vs.
gap width g1.

T1 is determined from

T1 = T2 −
� (S11)− � (S22)

8π
λe� , (6)

where λe� is an effective wavelength in the CPW at
f0. Values of φ and J/Y0 are calculated from (1)–(5).
These values calculated as a function of the gap width
g1 are shown in Fig. 4(b).

(C) Design of short-circuited stubs

Short-circuited stub for K12 and K34 are shown in
Fig. 5(a). The stub has a fixed slot with its width
0.100mm and depth 0.090mm to obtain a greaterK/Z0

value. Reference planes T1 and T2 shown in the figure
correspond to the input and the output port of the
equivalent T -type circuit. The scattering parameters
with different stub width s are computed at T1 and T2.
From the computed scattering parameters, we obtain
element values Xa and Xb of the equivalent T -type cir-
cuit from

jXa =
(1 + S11)(1− S22) + S12S21 − 2S12

∆
(7)

jXb =
2S21

∆
, (8)

where

∆ = (1− S11)(1− S22)− S12S21 (9)

From these values, values of φ and K/Z0 in the K-
inverter are calculated from [5]

Fig. 5 (a) Structure of short-circuited stub. (b) K/Z0 and φ
vs. stub width s.
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These values calculated as a function of the stub width
s are shown in Fig. 5(b).

(D) Determination of resonator length

Actual lengths of the CPW resonators are determined
from [5]

θi =
π

2
+
1
2
(φi + φi+1), li =

λe�
2π

θi (12)

where the electrical length φi is obtained from
Figs. 3(b), 4(b) and 5(b), using the J/Y0 and K/Z0

values calculated from the filter specifications.

4. Design of 4-Pole Filter Pattern at 5 GHz

A 4-pole Chebyshev bandpass filter is designed with
f0 = 5.0GHz, RW = 0.01 dB and ∆f/f0 = 3.2%.
Using element values gi of the prototype Chebyshev
lowpass filter [5], we determined the J- and K-inverter
values in this filter to be J01/Y0 = J45/Y0 = 0.187764,
K12/Z0 = K34/Z0 = 0.0271679 and J23/Y0 = 0.019956
[5], [6]. Based on the calculated results mentioned
above, we obtain g1 = 0.885mm, g2 = 0.070mm, s =
0.045mm, l1 = l4 = 4.985mm, and l2 = l3 = 6.290mm.
Dimensions of the filter pattern are shown in Fig. 6.

Frequency responses of the designed filter are
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Fig. 6 Dimensions of filter pattern designed.

Fig. 7 Simulated frequency responses. (a) Filter response of
4-pole Chebyshev bandpass filter with f0 = 5.0GHz, RW =
0.01 dB and ∆f/f0 = 3.2%. (b) Spurious response.

shown in Fig. 7(a). The solid curve indicates the
frequency response simulated from the filter pattern
shown in Fig. 6 by using SONNET em [7] and the bro-
ken curve indicates one calculated from the equivalent
circuit shown in Fig. 2(b). The simulated frequency re-
sponse agrees very well with one calculated from the
equivalent circuit. The spurious frequency responses
calculated from SONNET em and the equivalent cir-
cuit are shown in Fig. 7(b). The second passband ap-
pears about 3f0, which corresponds to the resonant fre-
quency of the three-fourth-wavelength resonance. No

Fig. 8 Photograph of filter pattern fabricated.

Fig. 9 Measured frequency response.

extra waveguide mode is observed because of the TE10

mode cutoff waveguide constructed by the conductor
package.

5. Filter Fabrication and Measured Result

Photo lithography and dry etching processes are used
to make the filter pattern. A photograph of the filter is
shown in Fig. 8. A pair of air coplanar probes is used
in the measurement. The frequency response of the fil-
ter measured at 60K is shown in Fig. 9. The measured
frequency response agrees very well with the simulated
one. The measured results are f0 = 5.02GHz and the
insertion loss (IL) 0.22 dB at 60K and f0 = 5.00GHz
and IL = 0.32 dB at 77K. The equivalent unloaded-Q
(Qu) of the resonators calculated from IL = 0.22 dB is
4,300, which is much lower, compared withQu = 80,000
reported for 2GHz microstrip bandpass filter [8]. The
following two points are considered as cause of the Q
degradation: 1) Surface resistance (Rs) of the supercon-
ductor at 5GHz increases to about 6 times compared
with one at 2GHz because of f2 characteristic of Rs.
Thus, Qu decrease to one-sixth. 2) Excess loss occur at
the edges of the grand planes in the CPW structure.

6. Conclusion

A new structure of a low-loss HTS filter was proposed
by using quarter-wavelength CPW resonators. A 5GHz
Chebyshev band-pass filter was designed based on the
theory of direct-coupled resonator filters using K- and
J-inverters. This filter is fabricated by using a high-Tc

superconductive YBCO film deposited on a MgO di-
electric substrate. The measured frequency response
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agrees very well with the theoretical one, and the va-
lidity of the design theory was verified. The insertion
loss of this filter was the lowest in HTS-CPW filters
presented so far. Finally, the 5GHz bandpass filter of
this structure can be constructed up to a 10-pole filter
on a 3-in-diamter YBCO film.
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