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SUMMARY The finite-difference time-domain (FDTD) method
incorporating Berenger’s PML absorbing boundary condition is devel-
oped to model three-dimensional dielectric resonators. The fast Fou-
rier transform (FFT) coupled with the Pade interpolation technique is
employed to obtain frequency domain results with satisfactory resolu-
tion and accuracy, and to reduce the computation time significantly
compared with that needed when the conventional FFT algorithm is
used. Computed resonant frequencies of two types of cylindrical di-
electric resonators are compared with theoretical and measured results.
A good agreement is observed.
key words:  dielectric resonator, FDTD method, Pade approxima-
tion, interpolation method

1. Introduction

Accurate analysis of dielectric resonators is of great impor-
tance because dielectric resonators are widely used in vari-
ous microwave circuits, like filters and oscillators. The mode-
matching method has been extensively used for the charac-
terization of dielectric resonators because it is accurate and
computationally efficient [1], [2]. However, for arbitrarily
shaped three-dimensional dielectric resonators, this method
can be hardly applied. In recent years, the finite-difference
time-domain (FDTD) method has been increasingly used to
analyze various types of microwave circuits, including the
dielectric resonators [3]–[7]. To obtain the resonant frequen-
cies of dielectric resonators by the FDTD method, we need
to transform the temporal response of the FDTD simulation
to frequency domain results by using, generally speaking,
the fast Fourier transform (FFT). The resolution of the fre-
quency response by the FFT is reciprocal to the product of
the number of FDTD iterations and the time step size. There-
fore, in order to achieve a reasonably good frequency resolu-
tion, it is necessary to conduct the FDTD simulation for a
sufficiently long time.

To reduce the computation time of resonant structures
by the FDTD method, a number of signal processing tech-
niques have been introduced. These include the Prony’s
method [4] and the matrix pencil (MP) method [8], [9].
Roughly speaking, these methods are based on fitting the early
time-domain response to a model. This allows the extrapola-
tion of the future temporal response from the past result of

LETTER Special Issue on Techniques for Constructing Microwave Simulators

FDTD computation. As an alternative, the Pade interpolation
method was employed in [10] for analyzing rectangular con-
ductor cavities.

In this paper, we develop a three dimensional FDTD
algorithm for accurate characterization of dielectric resona-
tors. For open structured dielectric resonators, Berenger’s
perfectly matched layer (PML) absorbing boundary condi-
tion is employed to reduce the computation space. The fast
Fourier transform coupled with the Pade interpolation tech-
nique [10], [11] is employed to obtain frequency domain re-
sults with significantly improved resolution and much reduced
computation time compared with those by the conventional
FFT algorithm. Computed resonant frequencies of two types
of cylindrical dielectric resonators are compared with theo-
retical and measured results, and a good agreement is found.

2. Theory

To start the FDTD simulation of a dielectric resonator, we
excite one electric field component at one cell inside the di-
electric resonator by using a Gaussian pulse with a desired
spectrum width. Next we update alternatively the electric and
magnetic field components at all of the cells in the computa-
tion space by using Yee’s algorithm. The iteration process is
continued for a certain number of time steps. The electric
field component recorded each time step at one selected ob-
serving cell inside the resonator is used as the desired time
domain response. This temporal response is then transformed
to frequency response by using the FFT. The frequencies cor-
responding to the local maximums of the frequency response
are the resonant frequencies of the dielectric resonator. In
order to get the resonant frequencies accurately, a high reso-
lution of the frequency response is necessary. This in turn
requires a large number of iterations because the resolution
of the frequency response ∆ f is determined by ∆ f = 1 / (N

max

× ∆ t), here N
max

 is the maximum number of iterations, ∆ t the
time step.

In order to improve the resolution of the frequency re-
sponse obtained by the FFT, we employ the Pade interpola-
tion technique [10], [11]. Assume that the complex FFT out-
put obtained from the time domain response is P(ω). Then
according to Pade approximation, P(ω) can be expressed by
a rational function as
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where Q
N
(ω) and D

M
(ω) are polynomials of angular frequency

ω expressed by
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To solve the unknown complex coefficients α
i
 and β

i 
in

the above expressions, we substitute the FFT output P(ω
j
)

into (1) and have
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here N
s 
is the number of sampled data from the FFT output.

In the Pade approximation, β
0 
is usually set to equal unity,

then (4) is rewritten as
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It is seen from (5) that the M+N +1 unknown coeffi-
cients of the Pade approximation can be solved from a sys-
tem of linear inhomogeneous complex equations. In this pa-
per, M is chosen equal to N, therefore, N

s
=2N +1 data samples

are required for solving the unknown coefficients.
The matrix coefficients of the linear equations in (5) con-

tain some power of the frequency, ω
j
i. For large values of M’s

and N’s, the value of ω
j
i will become too large to be kept

within the allowed ranges of computer variables. To avoid
this problem, we rewrite (2), (3) and (5) as follows:
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where ′ = ×α α ωi i
i
0 , ′ = ×β β ωi i

i
0, and ω

0
 is the central angu-

lar frequency between the maximum and minimum angular
frequencies of the samples used. After the unknown coeffi-
cients ′α i  and ′βi  are solved from (8), we can then calculate
the frequency response with desired resolution by using (6)
and (7), and substituting them into (1).

3. Numerical Results

Figure 1 shows a dielectric rod resonator sandwiched between
two parallel perfect conductor plates. The structural param-
eters are R=5.25 mm, h=4.6 mm, and ε

r
=38. The PML ab-

sorbing boundaries are placed on the four sides surrounding
the cylindrical surface of the dielectric resonator to define

the computation domain. Rectangular Yee cells are used to
discretize the computation space with grid increments dx=0.25
mm, dy=0.23 mm, and dz=0.25 mm. The number of cells are
120 × 20 × 120.

Figure 2 shows the temporal response of an electric field
component inside the dielectric resonator. Figure 3 provides
the corresponding frequency response calculated by the con-
ventional FFT for 212=4096 time steps, and by the FFT-Pade
interpolation technique with 13 input samples. For compari-
son, the two curves are normalized independently. It is seen
that while the resonant frequencies, especially resonant fre-
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Fig. 1 A dielectric rod resonator sandwiched between two parallel
conductor plates. R=5.25 mm, h=4.6 mm, and ε

r
=38.

Fig. 2 Temporal response of an electric field component inside the
parallel plate dielectric resonator.

Fig. 3 Frequency response calculated by the conventional FFT for
212=4096 time steps, and by the FFT-Pade interpolation method with
13 input samples.
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quencies close to each other, can be hardly resolved from the
FFT output, they can be read accurately from the peak points
in the curve calculated by the FFT-Pade method. The obtained
resonant frequencies are listed in Table 1, where results by
the FFT for 215=32768 iterations, as well as the theoretical
results of [5], are also given. A comparison of the results re-
veals that the resonant frequencies by the FFT-Pade method
for 212=4096 iterations have the same order of accuracy as
that of the results computed by the FFT for 215=32768 itera-
tions.

In the above computation, the transition part of the time-
domain response is used in the FFT. If the transition part is
not included in the FFT, our computation results show that
the resonant frequency of HE

111
 mode by the FFT-Pade

method has little variation. However, the resonant frequen-
cies of higher HE modes can not be obtained accurately even
by using the FFT-Pade method.

Figure 4 depicts the variation of resonant frequencies of
HE

111
 and HE

211
 modes with the number of data samples used

in the Pade approximation for 212=4096 iterations. When the
number of data samples is equal to 9 or larger integers, the
resonant frequencies of both the HE

111
 and HE

211
 mode show

nearly no variation.
Figure 5 shows variation of the resonant frequency of

the HE
111

 mode with the number of FDTD iterations. The
resonant frequency is calculated by both the regular FFT and
the FFT-Pade approximation approach with 13 data samples.
It is evident that with a small number of FDTD iterations,
e.g., 211=2046 time steps, the FFT-Pade approach can yield

results even more accurate than that by the conventional FFT
with a much larger number of iterations, e.g., 215=32768 it-
erations.

The second structure examined in this paper is a cylin-
drical dielectric resonator placed inside a perfect conductor
cavity, as shown in Fig. 6. The structural parameters are a=1′′ ,
b=1′′ , r=0, h=0.275′′ , L=0.92′′ , and ε

r
=38. Two dielectric reso-

nators with different geometrical dimensions are calculated
by the FFT-Pade method with 13 data samples for 213=8192
iterations. The frist resonator has a diameter 2R=0.689′′  and
a thickness t=0.23′′ . The grid increments of FDTD cells are
dx=dz=2R/70=0.009843′′  and dy=t/23=0.01′′ . The second
resonator has a diameter 2R=0.767′′  and a thickness t=0.253′′ .
The grid increments are dx=dz=2R/78=0.009705′′  and dy=t/
23=0.011′′ . The resonant frequencies of the HE

111
 modes of

the resonators are given in Table 2, and are compared with
those calculated by the mode-matching method, as well as
the measured data [2]. A very good agreement is also ob-
served. The minor discrepancies are mainly caused by two
reasons. First, as the orthogonal uniform Yee cells are used to
discretize the computation space, the geometrical dimensions

Table 1 Comparison of the resonant frequencies of the parallel plate
dielectric resonator calculated by different methods.

Fig. 4 Variation of the resonant frequencies of HE
111

 and HE
211

 modes
with the number of data samples used in the Pade approximation for
212=4096 time iterations.

Fig. 5 Variation of the resonant frequency of the HE
111

 mode with the
number of FDTD iterations. The resonant frequency is calculated by
both the conventional FFT algorithm and the FFT-Pade approximation
approach with 13 data samples.
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Fig. 6 Cylindrical dielectric resonator placed inside a conductor cav-
ity. a=1′′ , b=1′′ , r=0, h=0.275′′ , L=0.92′′ , and ε

r
=38.

Mode Theoretical
FFT-Pade

(2
12

 time steps)
Error (%)

FFT

(2
15

 time steps)
Error (%)

HE111 6.214 6.223 0.14 6.195 -0.31

HE211 7.514 7.506 -0.11 7.527 0.17

HE311 9.003 9.046 0.48 9.058 0.61

HE131 9.499 9.471 -0.29 9.525 0.27

Resonant Frequency (GHz)
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of the simulated object are not exactly the same as those as-
signed above. Second, the curvilinear surface of the cylindri-
cal dielectric resonator is approximated by staircases.

4. Conclusions

A three-dimensional FDTD method combined with the FFT
and the Pade interpolation technique was developed for ac-
curate characterization of dielectric resonators. Compared
with the conventional FFT, the coupled FFT-Pade interpola-
tion method can yield frequency response with significantly
improved resolution. The number of the FDTD iterations and
thereby the computation time are considerably reduced with-
out sacrificing the accuracy of the obtained resonant frequen-
cies. The method was verified by numerical examples. The
computed resonant frequencies of two types of cylindrical
dielectric resonators agreed well with previously published
theoretical and measured results.
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