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SUMMARY At frequencies currently used by mobile communications,
many of the microstrip half-wavelength resonators are too large to realize
miniaturized filters. For this reason, very small-sized microstrip spiral res-
onators and filters, using high-temperature superconductors (HTS), have
been studied recently. In this paper, the resonant and coupling characteris-
tics of microstrip G-type and S-type spiral resonators are investigated first
by using an electromagnetic simulator. Then small-sized 4-pole, 8-pole,
and 16-pole Chebyshev bandpass filters using S-type spirals are designed,
respectively, with a midband frequency fy = 1.93 GHz. The frequency re-
sponses of the filters satisfy well the desired specifications, and the mea-
sured frequency response of the 8-pole HTS filter agrees well with the the-
oretical prediction.
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1. Introduction

Recent years have seen rapid applications of various mo-
bile communication systems. As a consequence, full and
effective use of frequency resources is strongly demanded
than ever been. One prospective approach to address this
challenge is to employ low-loss and high-selective filters de-
veloped by using high-temperature superconductors (HTS).
Although numerous small-sized HTS microstrip filters have
been reported [1], [2], recent studies [3]-[6] shown that the
size of filters can be further reduced significantly by us-
ing microstrip spiral resonators, particularly at the lower
R F/microwave frequencies currently used by mobile com-
munications. A three-pole bandpass filter (BPF) was devel-
oped in [3] using microstrip dual-spiral resonators, which
are of the same shape as the S-type spirals of this paper. The
spirals were transposed and interlaced to obtain mutual cou-
plings. However, the resonant and coupling properties of
spiral resonators were not investigated systematically, and
the authors of [3] failed to provide a systematical design
method for filters using spiral resonators. In [4] and [6],
a very narrowband 4-pole Chebyshev BPF was developed,
and a design method based on the direct-coupled cavity the-
ory [7] was successfully established.

In this paper, miniaturized bandpass filters are devel-
oped by using microstrip S-type spiral resonators. In Sec-
tion 2, a brief comparison of two types of microstrip half-
wavelength spiral resonators, namely G-type and S-type
spiral resonators, is made in view of their size and cou-
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pling characteristics. In Section 3, 4-pole, 8-pole, and 16-
pole Chebyshev BPFs are designed, respectively, using mi-
crostrip S-type spiral resonators. The 8-pole filter is fabri-
cated using HTS YBCO films on a LaAlOj substrate. The
measured frequency response agrees satisfactorily with the
theoretical prediction.

2. Comparison of G-Type and S-Type Spiral Res-
onators

Microstrip half-wavelength resonators are widely used in
developing microwave filters. However, filters using con-
ventional half-wavelength resonators, like the straight-line
resonators and hairpin-line resonators, are usually too large
for many applications. On the other hand, it has been shown
that we can get very small-sized spiral resonators and filters
by winding the microstrip lines into small spirals [3]-[6].

Fig. 1 shows two types of microstrip half-wavelength
spiral resonators, one is named as G-type, and the other S-
type spiral resonator for convenience. A LaAlOj; substrate
is used which has a given dielectric constant of &,=23.40 at
77K and a thickness of 0.5 mm. The HTS YBCO film used
has a thickness of 0.5 um. However, its thickness and ki-
netic inductance are ignored in the design of the filter. The
width of the microstrip is chosen as 0.17 mm so that it owns
a characteristic impedance Zy = 50Q. Using the dimen-
sions given in Fig. 1, the resonant responses of the G- and
S-type spirals are computed by using Sonnet em [8], a com-
mercial electromagnetic simulator, and the curves are given
in Fig. 2. The results indicate that the dominant resonance of
the G- and S-type spirals appear at about 1.93 and 2.65 GHz,
respectively. This means that a single G-type spiral can be
made smaller than the S-type spiral when they resonate at
the same frequency.

Figs. 3(a) and (b) illustrate two coupled microstrip G-
type and S-type spiral resonators, respectively. Their cou-
pling coefficients are computed by using Sonnet em. In
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Fig.1  Microstrip, (a) G-type and (b) S-type, spiral resonators.
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Fig.2  Resonant curves of microstrip G-type and S-type spiral res-
onators.
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Fig.3  Coupled microstrip, (a) G-type and (b) S-type, spiral resonators.
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Fig.4  Variation of the coupling coefficient k versus the distance d be-
tween two coupled resonators.

Fig. 4, the variation of coupling coefficient k versus the dis-
tance d between two resonators is drawn by solid and dashed
lines for G- and S-type spiral resonators, respectively. It
is seen that S-type spiral resonators own smaller k than G-
type resonators do. This can be explained by the following
fact: Both the G-type and S-type spiral resonators have elec-
tric and magnetic couplings, but the magnetic couplings are
dominant. The G-type spiral resonator is winded in one di-
rection, while the S-type spiral resonator is winded into two
opposite directions. As a result, magnetic fields in space
around the G-type spiral resonator are stronger than fields of
the S-type spiral resonator. Therefore, a stronger coupling
occurs between two neighboring G-type spiral resonators.
This conclusion means that although a single S-type
spiral is larger than a G-type spiral, two neighboring S-type
spirals can be arranged closer than G-type spirals in a fil-
ter configuration. Therefore, both the size and the coupling
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property of a resonator, as well as the specifications of a
filter, need to be considered in the choice of the spirals.
Roughly speaking, if a wideband filter is designed, the G-
type spiral resonators are preferred; if a narrowband filter is
required, we may choose the S-type spiral resonators.

3. Bandpass Filter Using S-Type Spirals

By using microstrip G-type spiral resonators, we had de-
signed and fabricated a very narrowband 4-pole Chebyshev
BPF with a midband frequency f;=1.93 GHz, a passband
ripple of 0.01dB, and an equal-ripple fractional passband
width of 0.212% (4.1 MHz). The measured frequency re-
sponse of the filter agreed favourably with the theoretical
simulation [6].

In this paper, 4-pole, 8-pole, and 16-pole Cheby-
shev BPFs are designed, respectively, using microstrip
S-type spiral resonators. The filter has a midband fre-
quency fy=1.93 GHz, a passband ripple of 0.1 dB, and an
equal-ripple fractional passband width of 1.04% (20 MHz).
Fig.5(a) shows the configuration of the 4-pole filter, and
Fig. 5(b) its equivalent circuit. The external Q-factors and
the coupling coefficients in Fig. 5(b) are calculated by using
the well-known formulas in [7], together with the specifica-
tions of the filter. We get Q., = Q. = 107, kjp = kaa =
8.61 x 1073, and ko3 = 6.81 x 1073,

To reduce the size of the spiral resonators, the strip
width of all the spirals is reduced from 0.17 mm to 0.1 mm,
but the width of the input and output feed lines is remained
as 0.17 mm to keep a characteristic impedance Zy=50 Q.

The external coupling between the resonator and the
input/output feed line is controlled by changing the length
of the coupling strip, as is shown in Fig. 6. The variation
of external Q. and resonant frequency f, versus At is de-
picted in Fig. 6. Because of the coupling with external cir-
cuits, the resonant frequencies of the 1st and 4th resonators
in Fig. 5(a) decreased to about 1.909 GHz, as indicated by
Fig. 6. To compensate for this frequency reduction, the strip
lengths of the 1st and 4th spirals are reduced a little from
their inner sides of the spirals. The final dimensions of the
filter are shown in Fig.5(a). In Fig.7, the solid line rep-
resents the simulated frequency response of the filter using
Sonnet em, and the dashed line is the ideal Chebyshev re-
sponse calculated from the equivalent circuit. The agree-
ment is quite well.

In order to get filters with higher frequency selectiv-
ity, 8-pole and 16-pole filters using S-type spiral resonators
are designed, respectively, in a similar way described above.
After the first-round of design, the frequency responses of
the 8-pole and 16-pole filters do not agree well with the
desired specifications. Then, diagnosis and adjustment of
the filters are made, using a circuit-based optimization al-
gorithm [9]. The final axial lengths of the 8-pole and 16-
pole filters are only about 19 mm and 39 mm, respectively.
The frequency responses of the 8-pole and 16-pole filters are
shown in Figs. 8(a) and (b), respectively. The solid lines are
simulated by Sonnet em, and they agree well with the ideal
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Fig.5 (a) Configuration of a 4-pole BPF using microstrip S-type spiral
resonators, and (b) its equivalent circuit.
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Fig.6  Variation of the external Q, and resonant frequency fy versus the
coupling strip length.

Chebyshev responses depicted by the dashed lines.

If the filters above are designed using G-type spiral
resonators of the same size, 1.94 x 1.94 mm?, it is found
that because of the stronger mutual couplings, the interval
distance between two neighboring resonators will increase
from about 0.45 mm in the case of S-type spirals to about
0.95 mm in the case of G-type spirals. As a result, in the
case of a 4-pole filter, the axial length of the filter will in-
crease from about 9 mm when using S-type spirals, to about
10.5 mm when using G-type spirals, a nearly 17% increase
in length. In the case of an 8-pole filter, the length of the
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Fig.7  Simulated narrowband frequency response of the 4-pole BPF us-
ing microstrip S-type spiral resonators.
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Fig.8 Simulated frequency response of, (a) an 8-pole, and (b) a 16-pole
BPF, using microstrip S-type spiral resonators.

filter will increase from about 19 mm when using S-type
spirals, to about 22.5 mm when using G-type spirals, an in-
crease in length larger than 18%. For filters with narrower
bandwidth, the size reduction will be more significant when
using S-type spirals than G-type spirals.

The 8-pole filter designed above using S-type spiral
resonators is fabricated by using HTS YBCO films on a
LaAlOj; substrate with a photolithography and dry etching
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Fig.9 Photograph of the 8-pole spiral resonator filter in a test fixture.
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Fig.10  Comparison of the simulated and measured frequency response

of the 8-pole BPF using microstrip S-type spiral resonators. (a) Narrow-
band response. (b) Wideband response.

process. The photograph of the filter in a test fixture is
shown in Fig. 9.

The measurement of the filter is made by using a vector
network analyzer. A simple calibration of the measurement
is taken at the room-temperature (25°C) by using standard
coaxial calibration kits. The frequency response of the filter
is measured without any tuning of the filter. The measured
narrowband response at 70K is shown in Fig. 10(a), and we
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find a midband frequency of 1.92 GHz, passband ripple of
0.4dB, and a passband width of 19 MHz. The minimum
insertion loss is 0.07 dB, which indicates that the unloaded
Q, of the spiral resonator reaches a value of about 80,000.
The maximum reflection loss in the passband is about 10 dB.
This value is satisfactory, because the reflections occurred
between the SMA connector and the microstrip feed lines of
the filter are not removed in the simplified calibration pro-
cess mentioned above. The measured midband frequency of
the filter is about 1.92 GHz, 10 MHz lower than the designed
value. The reason is that the actual dielectric constant of the
LaAlOj; substrate is a little bit larger than the given nominal
value, & =23.4 at 77K. From the measured midband fre-
quency of the filter, we estimated that the dielectric constant
of the filter substrate is approximately 23.6, only about 0.9%
larger than its nominal value. Therefore, prior to the design
and fabrication of the filter, accurate measurements of the
substrate (its thickness and dielectric constant) are very im-
portant.

The wideband response of the filter at 70K is measured
over 1 to 6 GHz. As can be seen from Fig. 10(b), the first
spurious resonance appeared at about 3 GHz, which agreed
with the simulated one.

4. Conclusions

After careful investigations of the resonant and coupling
characteristics of microstrip G-type and S-type spiral res-
onators, very small-sized HTS bandpass filters were de-
signed using S-type spiral resonators. With diagnosis and
adjustment of the filters using a circuit-based optimization
algorithm, the frequency responses of the designed filters
satisfied well the desired specifications. The 8-pole spiral
filter was fabricated and its frequency response was mea-
sured without any post-tuning. Favourable agreement was
found between the measured result and the theoretical pre-
diction.
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