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ABSTRACT 

 

The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is 

investigated in compression and shear regimes. In order to describe the viscosity-induced 

rate-dependent effects, a constitutive model of finite strain viscoelasticity founded on the 

basis of the multiplicative decomposition of the deformation gradient tensor into elastic and 

inelastic parts is proposed. The total stress is decomposed into an equilibrium stress and a 

viscosity-induced overstress by following the concept of the Zener model. To identify the 

constitutive equation for the viscosity from direct experimental observations, an analytical 

scheme that ascertains the fundamental relation between the inelastic strain rate and the 

overstress tensor of the Mandel type by evaluating simple relaxation test results is proposed. 

Evaluation of the experimental results using the proposed analytical scheme confirms the 

necessity of considering both the current overstress and the current deformation as variables 

to describe the evolution of the rate-dependent phenomena. Based on this experimentally-

based motivation, an evolution equation using power laws is proposed to represent the effects 

of internal variables on viscosity phenomena. The proposed evolution equation has been 

incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way. 

Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests 

at different strain rates using the developed model show an encouraging correlation with the 

experiments conducted on HDR and NR in both compression and shear regimes. Finally, an 

approach to extend the proposed evolution equation for rate-dependent cyclic processes is 

proposed. The simulation results are critically compared with the experiments. 

Keywords: A: stress relaxation, B: polymeric material, C: mechanical testing, B: constitutive 

behavior, viscoelasticity 
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1 Introduction  

 

1.1 General 

 

Vulcanized rubbers are one of the most remarkable materials having a wide range of 

engineering applications including tires, engine mounts, shock absorbing bushes, seals, tunnel 

linings and wind shoes (Roeder and Stanton, 1983; Ward, 1985; Mullins, 1987; Castellani et 

al., 1998). Special fillers, for example, carbon black or silica are usually added during 

vulcanization for improving the strength and toughness properties of rubber to suit these 

individual applications (Wischt, 1998). The recent development of high damping rubber 

(HDR) in base isolation devices for protecting buildings and bridges from devastating 

earthquakes is another emerging dimension of engineering applications of rubber (see Fujita 

et al., 1990; Kelly, 1991; Carr et al., 1996; Mori et al., 1996; Dorfmann and Burtscher, 2000). 

Rubber industries follow a special vulcanization procedure to produce HDR. Bridges and 

buildings with HDR base isolation devices have so far been displayed encouraging field level 

performances by sustaining severe shocks during Loma Prieta (1989), Northridge (1994) and 

Kobe (1995) earthquakes (Kelly, 1997). Rubber bearings for base isolation devices are 

usually made of thin horizontal rubber layers bonded with alternately placed horizontal steel 

plates (Roeder and Stanton, 1983). Cubic and cylindrical shapes are the most common 

geometries for rubber bearings. Yet the other variations may include trapezoidal or tapered 

shapes (AASHTO, 1992; Ramberger, 2002; Mattheck and Erb, 1991) and also having V-

shaped steel plates (European Commission, 1999). In base isolation devices, steel plates 

imply large stiffness under vertical loadings, while rubber layers incorporate low horizontal 

stiffness when the structure is subjected to lateral loads (e.g. earthquakes, wind, etc.). 

Usually, the bearings remain under compression due to the gravity loads coming from the 
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superstructures. However, compression and shear deformations act together on these bearings 

when a lateral load like wind or an earthquake strikes. To estimate the performance of the 

bearings and thereby finding their optimum design, the engineers usually deal with test data 

obtained from expensive tests conducted on prototypes or full scale specimens. On the other 

hand, there exists another possibility to develop a reliable numerical procedure like the finite 

element method for predicting the performance. Nevertheless, the core of such a general 

numerical procedure depends largely on the constitutive model that is adequate enough for 

describing the major phenomena of HDR in the relevant deformation range.  

 

Under compression and shear deformations, HDR is expected to exhibit a high stiffness under 

low strains so that motions of the structure due to service loads, traffic and wind become as 

low as possible. However, when the structure is subjected to large cyclic or stochastic loads 

arising from earthquakes, the base isolation system should facilitate the absorption of the 

delivered energy through its hysteresis properties. To achieve all these features in HDR, a 

large amount of fillers (about 31%) including carbon black, silica, oils and some other 

particles is added during the vulcanization process (Kelly, 1997; Yoshida et al., 2004). Thus 

HDR is developed to exhibit a strong nonlinear rate-dependent response under monotonic 

loadings and to show significant hysteresis effects or energy dissipation during cyclic loads. 

Recently, Amin (2001) and Amin et al. (2005) studied the nonlinear rate-independent 

monotonic behavior of the equilibrium stress of HDR under compression and shear. In these 

studies, an improved hyperelasticity relation, a procedure for the identification of its material 

parameters and the implementation of the model in a general purpose finite element code 

have been proposed to simulate rate-independent responses. A study on modeling the quasi-

static cyclic behavior of HDR under shear is recently reported in Yoshida et al. (2004). All 

these studies, however, revealed the existence of significant rate-dependence phenomena in 
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HDR. This emphasizes the need for a thorough experimental characterization and the 

development of modeling techniques for rate-dependent behavior. The current work 

addresses these aspects.  

 

1.2  Rate-dependent Phenomena in Rubbers and Constitutive Modeling 

 

The experimental study of the effect of strain-rate on the response of filled rubber dates back 

to the early sixties when the tensile strength of rubber was found to increase with increasing 

strain rate (Mason, 1960; Dannis, 1962). The appearance of this property possesses an 

inherent relation to the presence of carbon black in the rubber matrix. Yet, the effect of the 

strain-rate on a material is better studied through relaxation tests when the specimen is 

subjected to constant strains and the corresponding stress responses are recorded. In this 

context, Gent (1962a,b) noted that the stress in the specimens subjected to constant strains 

relaxes significantly during the first two seconds. However, his experimental arrangements 

did not allow him to make measurements in time intervals less than six seconds. Owing to 

this reason, the time history of the stress relaxation during the first six seconds of the tests 

remained unknown. However, the advent and use of high-speed digital computers in data 

acquisition systems has helped to a great extent. With the aid of digital data acquisition 

systems, the subsequent studies of Lion (1996), Bergström and Boyce (1998, 2000) report 

more detail information about the relaxation history of rubbers under uniaxial tension and 

compression. Miehe and Keck (2000) studied the relaxation phenomena in uniaxial tension-

compression, while Haupt and Sedlan (2001) investigated the phenomena in uniaxial and 

biaxial tension-torsion deformation modes. Khan and Zhang (2001) investigated the creep, 

relaxation and rate-dependent behavior of polymers under tension. Other recent experimental 

studies on the strain-rate effect and relaxation phenomena of different polymers are also 
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available in Colak (2005), Makradi et al. (2005), Khan and Lopez-Pamies (2002), Krempl 

and Khan (2003). However, experimental information on relaxation phenomena of HDR is 

limited, whereas no report exists on such a behavior in the shear regime. Amin (2001) and 

Amin et al. (2002) reported the experimental investigation of HDR in the compression regime 

and compared the relaxation phenomena with other natural rubber (NR) specimens. When 

compared with NR, rate-dependence and stress relaxation are much more pronounced in 

HDR. Upon review of the results of available experimental studies, there comes out the 

opinion that relaxation processes in rubber usually involve a very fast rate of stress decay 

during the first few seconds. It is followed by a very slow rate in the long-term range. The 

HDR shows such an effect in a prominent way. The vulcanization process usually bears a 

significant influence on the appearance of such relaxation phenomena (Ward, 1985; Mason, 

1960; Meinecke and Taftaf, 1987; Wischt, 1998).  

 

Modeling of rate-dependent phenomena in elastomers is, perhaps, one of the most intricate 

tasks for the rheologists of present day (Bardenhagen et al. 1997). Due to the presence of high 

deformability and strong  nonlinearities, the constitutive model needs to be founded on finite 

strain theories in consistence with the natural laws of thermodynamics. To model viscoelastic 

material behaviour under finite deformations there are, in principle, two different approaches 

which can be motivated from the theory of linear viscoelasticity under small strains. The first 

approach generalises the concept of the Zener model or, more general, the concept of 

Maxwell chains consisting of n elements to three-dimensional finite deformations. In this 

case, the framework of multiplicative inelasticity leads to a set of n multiplicative 

decompositions of the deformation gradient in parallel. The fundamental advantages of this 

concept are that each decomposition is independent from the others and that the material 

model can easily be extended by adding additional Maxwell elements. Naturally, the 
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approach of Maxwell elements is applied to formulate constitutive models where the 

deformation history is the independent and the current stress the dependent variable. The 

second approach corresponds to the generalisation of the Poynting-Thomson model or, more 

general, to the generalisation of Kelvin chains with n elements to finite deformations. In this 

case, one would obtain n intermediate configurations or decompositions of the deformation 

gradient, where each of them depends on all the others. In linear viscoelasticity this approach 

is mainly used to develop material models, where the stress history is the independent and the 

current strain the dependent variable. Further discussions of the Zener and the Poynting-

Thomson models are available in Huber and Tsakmakis (2000a) and Laiarinandrasana et al. 

(2003). In order to formulate the constitutive theory as simple as possible, in this paper, we 

take the choice of the generalization of the Zener model to finite strains as illustrated in 

Figure 1.  

 

A large number of models of finite viscoelasticity is based on a phenomenological approach, 

whereas some interesting models based on micromechanics also appeared until very recently. 

When both the approaches have their own possibilities, the limited availability of information 

regarding the microstructure and the composition of HDR motivates the current work to 

consider the phenomenological approach. For micromechanics-based approaches, the readers 

may refer to Ball et al. (1981), Bergström and Boyce (1998, 2000), Drozdov and Dorfmann 

(2003) and the references cited therein.  

 

The constitutive theory of finite linear viscoelasticity (Coleman and Noll, 1960, 1961) is a 

major foundation for modeling rate-dependent material behavior based on the 

phenomenological approach. This general theory is formulated using functionals with fading 

memory properties. Sullivan et al. (1979), Johnson and Stacer (1993), Johnson et al. (1993, 
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1994) and Quigley et al. (1995) proposed simplified versions of the general theory. In these 

theories, the stress is decomposed into an equilibrium stress that corresponds to the stress 

response at an infinite slow rate of deformation and a viscosity-induced overstress. The 

overstress is expressed as an integral over the deformation history and a relaxation function is 

specified as a measure for the material’s memory (Christensen, 1980; Simo, 1987; Drozdov, 

1997; Holzapfel and Simo, 1996; Holzapfel, 1996; Kaliske and Rothert, 1997). The 

thermodynamic consistency requires the relaxation function to be positive with negative 

slope and to possess a positive curvature (Haupt and Lion, 2002). Within this restriction, for 

example, an exponential function can be employed (Leonov 1976). Yet, there exists a 

considerable limitation in representing the long-term relaxation behavior of rubber using a 

single exponential function. In this situation, a certain number of decreasing exponentials can 

be superimposed, referred as a so-called Prony series. This process may invite a large number 

of material parameters in the model that are difficult to estimate. Another innovative 

approach (Haupt and Lion, 2002) uses compact relaxation functions based on power laws, for 

example, the Mittag-Leffler function as also employed in Lion and Kardelky (2004) in 

describing Payne effect, and involves only a very few number of material parameters. This 

may have a benefit from the point of view of parameter estimation, but needs to be examined 

with real test data.  

 

In comparison with this, there exists another possibility of constructing finite strain models of 

viscoelasticity by considering the multiplicative decomposition of the deformation gradient 

into elastic and inelastic parts, originally proposed by Green and Tobolsky (1946) and further 

explored later on by Sidoroff (1975a,b) and Lubliner (1985). The free energy of the system 

splits additively into equilibrium and non-equilibrium parts giving the elastic equilibrium 

stress and the viscosity-induced overstress (Huber and Tsakmakis, 2000a). The current paper 
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follows this approach as with earlier works of Lion (1997), Reese and Govindjee (1998), 

Bonet (2001) and Laiarinandrasana et al. (2003). In this approach, a suitable hyperelasticity 

model (Mooney, 1940; Rivlin, 1948; Boyce and Arruda, 2000; Seibert and Schöche, 2000) is 

employed to reproduce the elastic responses represented by the springs, while the dashpot 

represents the inelastic or the so-called internal strain. Its temporal behavior is determined by 

an evolution equation that is consistent with the second law of thermodynamics (Huber and 

Tsakmakis, 2000a,b). A linear relation between the inelastic strain rate and the overstress is 

assumed as the simplest form of the evolution equation. Yet, such a linear relation does not 

often hold as other constitutive quantities may influence the overstress dependence of the 

inelastic strain rate (Krempl, 1987; Amin et al., 2002). Depending on both the material and 

the experimental results, nonlinear evolution equations are frequently employed to describe 

this relation. The evolution laws belonging to this class are ordinary differential equations 

with variable coefficients that depend on the relevant process or internal variables. The 

structure and thermodynamic consistency of these rate equations based on internal variables 

are addressed in Coleman and Gurtin (1967), Lubliner (1969, 1973). Based on these papers, 

Reese and Govindjee (1998), Holzapfel (1996), Miehe and Keck (2000), Haupt and Sedlan 

(2001) attempted to introduce different forms of nonlinear evolution equations to describe the 

experimentally observed material phenomena. However, in these publications the adoption of 

different internal variables and their functional relations in the rate equation are based upon 

theoretical assumptions putting their physical significance into question. Thus, all these 

models could get a better physical insight into the material if the driving motivations behind 

developing these functions could be evaluated based on experimental observations. The 

parameters identified in this way are supposed to bear a better physical understanding of the 

phenomena.  
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1.3 Objectives and Methodology 

 

The present paper examines the relaxation behavior of HDR under homogeneous states of 

compression and simple shear. To this end, simple and multi-step relaxation tests were 

carried out. Identical tests were also carried out with NR for comparison. This paper follows 

the model of finite strain viscoelasticity presented by Huber and Tsakmakis (2000a,b) in a 

sense. However, we attempt to show the possibilities of generalizing the viscosity law in a 

thermodynamically consistent way for the real materials based on experimental observations. 

To this end, a scheme is proposed to evaluate the relation between the inelastic strain rate and 

the overstress using experimental data and thereby obtaining the physical motivation of 

identifying the internal variables and the resulting form of the evolution equation. The 

equation has been developed by evaluating experimental results under one dimensional states 

of stress and strain and subsequently generalized for the three dimensional case for adoption 

in finite strain models. One single set of parameters that can represent the relaxation behavior 

of the material under both compression and shear is identified. The resulting finite strain 

viscoelasticity model has been used to simulate the material response due to different rate 

dependent input histories including monotonic as well as simple and multi-step relaxation 

tests. In order to discuss the capability of the developed theory, the stress responses simulated 

by the model have been compared with experimental data. Finally, an approach has been 

proposed to extend the evolution equation for modeling the rate-dependent cyclic behavior of 

HDR and NR based on the observation that indicated the presence of a significant rate 

dependence during loading and a weak rate dependence during unloading.  
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2 Experiments  

 

HDR and NR specimens were tested under compression and simple shear which are the most 

relevant deformation modes in the application of base isolation bearings. The specimens of 

NR and HDR have shear moduli (JIS K6301)1 of about 0.98 MPa and 0.78 MPa and were 

manufactured by the Yokohama Rubber Company, Japan. HDR contains a much larger 

amount of fillers/additives than NR. The tests were carried out using a computer-controlled 

servo hydraulic testing machine (Shimadzu Servo Pulser 4800) with a 200 kN load cell. The 

maximum displacement rate of the load cell cross head was 50mm/sec. The displacement was 

applied in the vertical direction of the specimen and the force response was measured by the 

load cell. The specimens used for compression tests were cylindrical in shape, i.e. 41mm in 

height and 49mm in diameter. Since a lubricant and a poly-propylene sheet were used to 

reduce platen-specimen friction, it was possible to obtain a nearly homogeneous uniaxial 

state of compression. The simple shear specimens (25mm x 25mm x 5mm) had a net shear 

area of 25mm x 25mm. Dual lap shear specimens (Charlton et al. 1994) were used. All tests 

were carried out at room temperature. Further details of the test set-ups and procedures are 

described in Amin (2001), Amin et al. (2002, 2003) and Wiraguna (2003). Prior to an actual 

test, each virgin specimen was subjected to a five-cycle preloading process to remove the 

Mullins’ softening effect (Mullins 1969). In recent literatures, there are some promising 

models for representing Mullins’ effect (Govindjee and Simo, 1991, 1992a,b; Johnson and 

Beatty, 1993a,b; Ogden and Roxburgh 1999; Besdo and Ihlemann, 2003a,b), but this paper 

does not consider such a behavior. This approach of removing Mullins’ effect from other 

phenomena of interest is similar to that of Yeoh (1990), Yamashita and Kawabata (1992), 

Lion (1996, 1997), Bergström and Boyce (1998) and Miehe and Keck (2000). In preloading 

                                                 
1 A method recommended by Japanese Standards Association 
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for compression tests, a strain rate of 0.01/s was applied for each cycle with a maximum 

stretch of 0.5. In the shear specimens, the strain rate applied during the cyclic process up to 

2.5 shear strain was 0.05/s. All tests were conducted 20 min after completing the preloading 

to regularize the healing effect (Bueche 1961) that can exist in the specimens. Each test was 

conducted with a new specimen that only contained the history of the preloading procedure.  

 

2.1 Cyclic Tests at Different Strain Rates 

 

To study the rate-dependence, HDR and NR specimens were subjected to cyclic processes 

with constant strain rates. The strain rates applied in these tests have been calculated in terms 

of the initial dimension of the specimen measured just before the respective test. Figure 2 

presents the stress-strain responses as obtained from HDR under cyclic compression and 

shear deformations. Five tests were conducted in compression, each with a particular strain 

rate. In shear, four tests were carried out. The monotonic responses as visible from the tests 

are found to be strongly nonlinear at low, moderate and high strain levels. A comparison of 

the stress responses indicates a strongly pronounced rate-dependent behavior during loading, 

whereas a much weaker rate-dependence is observed during unloading. In addition, the 

presence of hysteresis along with permanent set is visible. The corresponding observations on 

NR are presented in Figure 3, where rate-dependence, hysteresis and permanent set are found 

to be much lower than in the case of HDR. The presence of a lower filler content in NR is a 

major factor behind such a display. In this context, we note an earlier report (Bergström and 

Boyce, 1998), where also a weak rate-dependence during unloading has been observed in 

samples containing high filler contents. The hysteresis and permanent set effects are related 

to slip processes between adjacent filler particles in the rubber microstructure (Kilian et al., 

1994), thus breaking the rubber-filler bonds that are healable (Bueche, 1961). The effect will 
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be further discussed in the next section along with the results of simple relaxation tests. In 

general, all responses during loading suggest a diminishing trend in the increase of the stress 

with increasing strain rate. Such a behavior can be related to the approach of the material 

towards the so-called instantaneous stress response as observed earlier in the compression 

regime (see Amin et al., 2002), but confirmed here also in shear regime.  

 

2.2 Relaxation Tests 

 

The stress responses obtained from cyclic strain-controlled tests at different strain rates have 

shown a strong rate dependence during loading and a less rate dependence during unloading. 

In terms of a phenomenological interpretation, the viscosity of the material can be attributed 

to this type of material behavior. To this end, the relaxation behavior induced by the viscosity 

at different strain levels is examined in detail through simple and multi-step relaxation tests 

(Figs. 4a, 5a, 6a, 7a and 8). In the compression tests, a strain rate of 0.5/s was applied during 

the loading path while for the shear tests, the corresponding strain rate was 3.6/s. The stress 

relaxation was recorded for 600 seconds in the compression tests and for 3600 seconds in the 

shear tests.  

 

Figures 4b and 5b show the time histories of stress at different strain levels in compression 

and shear regimes in HDR obtained from simple relaxation tests. All curves reveal the 

existence of a very fast stress relaxation during the first 200 seconds followed by a very slow 

rate of relaxation that continues in an asymptotic sense. This conforms with observations 

reported by Haupt and Sedlan (2001). In the classical approach, equilibrium states are 

reached if the duration of the relaxation periods is infinitely long. Thus, the stresses measured 

at the termination points of the relaxation periods are approximate values of the equilibrium 
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stress. The difference between the current stress and the equilibrium stress is the so-called 

overstress. Figures 6b and 7b present the corresponding results obtained from NR where the 

overstresses are much lower than those observed in HDR at all strain levels. Comparing the 

results obtained at different strain levels, it can be seen that relaxation tests conducted on NR 

and HDR at higher strain levels possess larger overstresses and subsequently show a faster 

stress relaxation than those at lower strain levels with lower overstresses. This observation is 

similar to earlier results obtained from Adiprene-L100 (Khan and Lopez-Pamies, 2002). All 

these observations may have a relation with process-dependent changes in the microstructure 

of the material involving breakage and recovery of weak bonds of both the filler and the 

rubber matrix. A specimen under a large overstress is more likely to lose the crosslink bonds 

of the rubber-filler matrix than that under a small overstress. Such a loss of crosslink bonds 

corresponds to a faster relaxation of overstress in the very beginning of the relaxation 

process. Similar phenomena can also be seen in the case of NR, but in a way weaker than that 

of HDR, perhaps due to the presence of a lower filler content. However, the very slow stress 

decay as observed in the range of the long-term relaxation may arise from the relaxation of 

the rubber matrix itself and might have a little relation with the filler-rubber bonds that are 

already broken. Thus, the long term relaxation behavior of HDR and NR is found to be 

comparable. Such a notion also is conformed by the results of cyclic tests, which have shown 

a weak rate dependence during unloading (Figures 2 and 3, Section 2.1). Such phenomena 

may be involved with the relaxation of rubber networks with broken rubber-filler bonds. 

Nevertheless, the stress relaxation phenomena observed in NR and HDR over the recorded 

time history were found to be continuous one suggesting a gradual change within the 

microstructure. All observations are important in the sense of developing an experimentally-

based constitutive equation for the viscosity that will be introduced in Section 4. 
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The results obtained from simple relaxation tests presented in Figures 4 to 7 have shown the 

asymptotic attainment of equilibrium states at the end of each relaxation process. This idea 

was also explored by Lion (1996, 1997), Bergström and Boyce (1998) and Amin et al. 

(2002). It is followed to estimate the equilibrium response for the specimens in compression 

and shear deformations (see Amin et al., 2005) through multi-step relaxation tests. Figures 8a 

and 8b show different strain histories as applied to compression and shear specimens. The 

time histories of relaxation obtained at each step are illustrated in Figures 9 and 10 for HDR 

and NR specimens. The figures demonstrate the effect of ‘overstress experienced just at the 

very beginning of the stress relaxation history’ of a particular strain step on the relaxation 

phenomenon of that particular step. The results display a very fast relaxation rate just after a 

strain step, where the overstress is large. Thus, the role of ‘overstress experienced just at the 

very beginning of relaxation history’ comes out as a dominant factor in deciding the 

relaxation rate of a particular step. Such a quantity bears a direct relevance with the current 

strain state. Interested readers are referred to Sections 4 and 5 for further evaluation of these 

experimental observations as well as the subsequent discussion.  

 

3 Constitutive Model 

 

The experimental observations presented in Section 2 illustrate rate-dependent phenomena in 

both HDR and NR. The phenomena observed under large strains suggest for a model of finite 

strain viscoelasticity as sketched in Figure 1. This section introduces a model of this type that 

follows from the concept of Huber and Tsakmakis (2000a,b). It is based on the multiplicative 

decomposition of the deformation gradient and the additive split of the free energy as 

introduced by Lubliner (1985). The presentation leads to a discussion about different 

possibilities of incorporating appropriate process variables to arrive at a nonlinear evolution 
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equation for the inelastic strain rate. Finally, an improved hyperelasticity model has been 

introduced for having adequate descriptions of the free energies. 

 

In the finite strain kinematics, the local mapping between the initial and current configuration 

of a deformable body under motion is described by the deformation gradient tensor F: 

∑
=

⊗=
3

1α
αααλ NnF           (1) 

where αααλ LL∆+=1  are the stretches in the three principal directions, αL  are the 

undeformed lengths of material line elements and αL∆  their changes. αN  and αn  are the 

material and spatial vector triads. The left-Cauchy Green tensor B  describes the deformation 

and BI , BII  and BIII  are the invariants of B : 

∑
=

⊗==
3

1

2T

α
αααλ nnFFB              (2) 

BtrI B =  ,     ( ) ( ){ }22
2
1 BB trtrIIB −=  ,     Bdet=BIII      (3) 

The velocity gradient L and the deformation rate tensor D are defined as follows: 

1−= FFL �            (4) 

( )TLLD +=
2
1           (5) 

To represent rate-dependent material behavior, small strain theories are based on an additive 

decomposition of the total strain into elastic and inelastic parts denoted by ee  and ie  in 

Figure 1. The corresponding relation in the theory of finite strains can be attained through the 

multiplicative decomposition of the deformation gradient F into an elastic part eF  and an 

inelastic part iF :  

ieFFF =            (6) 
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This decomposition introduces the so-called inelastic intermediate configuration as sketched 

in Figure 11. It can be obtained, when the stress is removed with an infinitely fast rate to an 

equilibrium state keeping the value of iF  constant during the unloading process. Since rubber 

has a fairly large compression modulus in comparison with its shear modulus, we assume the 

material to be incompressible in the following: 

1detdetdet ie === FFF         (7) 

Experimental observations presented in Amin et al., (2003) also substantiate this fact within 

the practical ranges for HDR and NR material.  

 

As a consequence of the multiplicative split defined by Eq. 6, the left Cauchy Green tensors 

eB  and iB  associated with elastic and inelastic deformations are defined as follows: 

T
eeFFB =e  ,    T

iii FFB =          (8) 

Calculating the material time rate T
ee

T
eee FFFFB DDD +=  and replacing the rate of the elastic part 

of deformation gradient using ( ) ieeie dtd LFLFFFF ˆ1 −== −D , we obtain 

e
T

e
T
eiee LBLBFDFB ++−= ˆ2D  .        (9) 

The inelastic velocity gradient iL̂  and its symmetric part iD̂  are defined as follows: 

1ˆ −= iii FFL D            (10) 

( )T
iii LLD ˆˆ

2
1ˆ +=           (11) 

Since 1det =F  is valid for incompressible materials, the weighted Cauchy stress ( )TFS det=  

is equal to the Cauchy stress, i.e. TS = . The incompressibility constraint also implies an 

additive constitutively non-determined contribution “ 1p− ” to the stress. As a result, we have 

Ep S1S +−=  ,             (12) 
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where p  is the hydrostatic pressure which needs to be determined from the boundary 

conditions of the problem under consideration. Following the idea of the Zener model, the 

extra stress ES  is the sum of a rate-independent equilibrium stress )(E
ES  and a rate-dependent 

overstress )(OE
ES  (cf. Fig. 12): 

)()( OE
E

E
EE SSS +=           (13) 

To formulate the constitutive relations for the two components of ES  it is common practice 

to evaluate the isothermal form of Clausius Duhem inequality (Coleman and Gurtin 1967): 

0≥⋅+− LSERψρ �           (14) 

Due to 1det =F , or equivalently 0=Ltr , the power of the constraint stress and the geometric 

compatible motions ( ) L1 ⋅− p  is zero and does not occur in Eq. (14). Rρ  is the mass density 

of the material in the reference configuration and ψ  the Helmholtz free energy per unit mass. 

 

For the material under consideration, an additive split of the free energy into the sum of an 

equilibrium part )(Ew  and non-equilibrium part )(OEw  is proposed: 

( ) ( )
ee BB

OE
BB

E
R IIIwIIIw ,, )()( +=ψρ        (15) 

Since the material is assumed to be incompressible and isotropic, the contributions of the free 

energy depend only on the first and second invariants of B  and eB  as defined in Eq. (3). As 

a consequence of the assumption of isotropy the corresponding stresses ( )BfS =)(E
E  and 

( )e
OE

E BgS =)(  are isotropic tensor functions of their arguments B  and eB . This leads to the 

following interchangeability relations: 

BSBS )()( E
E

E
E =  ,    e

OE
E

OE
Ee BSSB )()( =         (16) 



 19

Representation formulae of isotropic tensor functions are derived in Haupt, (2000). For the 

time rate of the free energy the expression 
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E
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∂
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ψρ     (17a) 

is calculated. Considering 

B1 DD ⋅=BI , ( ) BB1 DD ⋅−= BB III , eBe
I B1 DD ⋅= , ( ) eeBB ee

III BB1 DD ⋅−=    (17b) 

for the time rates of the strain invariants and taking the Cayley-Hamilton equation in the form 

of 21 −− +−= BB1B BBB IIIIII  and 21 −− +−= eBeBeBe ee
IIIIII BB1B  into account (see e.g. 

Haupt (2000)), Eq. (17a) can also be written in the following form: 
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            (17c) 

Since the rate of the free energy is proportional to the time rates of the Cauchy Green tensors 

B  and eB  the stress power is reformulated in the following. Considering Eqs. (4) and (6) the 

velocity gradient decomposes into the sum of a pure elastic and a mixed part: 

1111 ˆ −−−− +=+= eieeeiieee FLFLFFFFFFL DD        (18) 

Taking Eq. (13) into account, the stress power splits into the power of the equilibrium stress 

and the power of the overstress with respect to elastic and inelastic deformations: 

( ) T
ie

OE
Eee

OE
E

E
EE LFSFLSLSLS ˆ)(1)()( ⋅+⋅+⋅=⋅ −       (19) 

Since the isotropic tensor function ( )e
OE

E BgS =)(  depends only on integer powers of eB , the 

stress tensor ( )ee
OE

Ee CgFSF =− )(1  is also symmetric. This becomes clear when calculating 

( ) ( )nee
n

ee CFBF =−1 , where n  is an arbitrary integer number and e
T
ee FFC =  is the right 
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Cauchy Green tensor. Thus, the inelastic velocity gradient in Eq. (19) can be replaced by its 

symmetric part: 

( ) ie
OE

Eee
OE

E
E

EE DFSFLSLSLS ˆ)(1)()( ⋅+⋅+⋅=⋅ −       (20) 

Calculating the time rates ( ) TTdtd BLLBFFB +==D  and ( ) T
eeee

T
eee dtd LBBLFFB +==D  

the total and elastic velocity gradients can be expressed as 

11 −− −= BBLBBL TD   and  11 −− −= e
T
eeeee BLBBBL D  .     (21) 

Considering that ( )BfS =)(E
E  is an isotropic function of B , i.e. )()(1 E

E
E

E SBSB =− , the first 

term on the right-hand side of Eq. (20) can be reformulated as 
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leading finally to 
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2
1 E

E
E

E  .         (22) 

A similar argumentation leads to the expression 

( ) e
OE

Eee
OE

E BSBLS D⋅=⋅ − )(1)(
2
1          (23) 

for the elastic power of the overstress. Inserting Eqs. (22) and (23) into Eq. (20) we obtain  
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i.e. the stress power contains two terms which are proportional to the time rates of the total 

and the elastic left Cauchy Green tensors. Inserting Eqs. (19) and (24) into the Clausius 

Duhem inequality, Eq. (14), and rearranging terms leads to 
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which has to be satisfied for arbitrary processes. Since B  and eB  are the independent 

variables of the free energy their rates can be varied, in principle, arbitrarily. In order to 

satisfy Eq. (25) the corresponding factors of proportionality have to vanish which leads to the 

following stress strain relations:  

( )1
)()(

)( 22 −−
∂

∂+
∂

∂= B1BS B
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E
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E
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E II
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w

ee
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Since the hydrostatic pressure in Eq. (12), Ep S1S +−= , is constitutively undetermined, the 

terms which are proportional to the unit tensor in Eqs. (26) and (27) can be omitted:  

1
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To represent the behavior of rubber, the strain energies )(Ew  and )(OEw  have to be adequate 

to represent both the equilibrium and instantaneous responses of the material. 

 

To specify the constitutive equation describing the temporal evolution of the inelastic strains 

the so-called residual inequality following from Eqs. (25)-(27) is considered: 

( ) 0ˆ)(1 ≥⋅−
ie

OE
Ee DFSF            (30) 

It expresses that the power between the overstress and the inelastic strain rate has to be non-

negative. The most simple flow rule satisfying Eq. (30) for arbitrary processes reads as 

e
OE

Eei FSFD )(11ˆ −=
η

 ,    0(...) >η ,        (31) 
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where the viscosity η  can be, in principle, an arbitrary positive functional of the process 

history. For example, a stress-dependent viscosity function would correspond to nonlinear 

rate-dependent material responses. Since the material under discussion is incompressible, we 

have 0ˆˆ == ii trtr DL  and thus a deviatoric tensor iD̂ . Taking ( ) ( )nee
n

ee CFBF =−1  where n  

is an arbitrary integer number into account and considering 
ee BC II =  and 

ee BC IIII = , Eq. 

(29) leads to the stress tensor 

1
)()(

)(1 22 −−
∂

∂−
∂

∂= e
C

OE
e

C

OE
e

OE
Ee

ee
II

w
I

w CCFSF  .       (32) 

With the definition of the overstress tensor 

1)(1)(ˆ −−= T
e

OE
Ee

OE
E FSFτ          (33) 

operating on the inelastic intermediate configuration, the relation 

)()()(1 ˆˆ OE
E

OE
Eee

OE
Ee PτCFSF ==−          (34) 

is obtained, where )(ˆ OE
EP  is the so-called Mandel stress tensor (cf. Huber and Tsakmakis 

(2000a,b) or Lubliner (1986)). Since iD̂  is a deviator, Eq. (31) can be written as follows: 

( )DE
EEi

)(ˆˆ
(...)
1ˆ PPD −=

η
         (35) 

In order to represent rate-dependent behavior for particular materials, it is necessary to 

express the viscosity as a function of process variables like deformation or overstress or as a 

function of internal variables (cf. Haupt, 2000). A dependence of the viscosity on an internal 

variable with its own time scale leads to thixotropic material behavior. Nevertheless, the 

choice of the internal variables and the formulation of an evolution equation in the three 

dimensional form should ideally depend on the evaluation of test data obtained from 

experiments with real materials. 

 



 23

Furthermore, the model of finite strain viscoelasticity as presented here consists of nonlinear 

springs in two parallel branches to describe the equilibrium and instantaneous responses that 

correspond to infinitely slow and fast rates of deformation. These are rate-independent elastic 

responses that bound a domain where viscosity effects come into play (Huber and Tsakmakis 

2000a). An adequate description of their corresponding free energy functions ),()(
BB

E IIIw  or 

),()(
ee BB

OE IIIw  is conventionally attained through hyperelasticity models to represent these 

boundary states. Such a description is essential for a physically meaningful representation of 

viscosity phenomena that occur within the so-called viscosity domain. However, due to the 

strong dependence of the stress on the state of strain, experiments are required to identify an 

adequate form of ),()(
BB

E IIIw  or ),()(
ee BB

OE IIIw . Ideally, such a function should have the 

capability to represent the stress responses at all possible deformation modes. In this context, 

the hyperelasticity model formulated on the basis of experimental observations on HDR and 

NR under compression and shear (see Amin et al. 2002, 2005) is adopted in the current work 

to describe the elastic responses. Equations (36) and (37) show the hyperelasticity relation for 

both the equilibrium and the overstress response, respectively:  
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)(
5

EC , )(
3

EC , )(
4

EC , )(
2

EC , M  and N are the material constants of the equilibrium relation 

while )(
5

OEC , )(
3

OEC , )(
4

OEC , )(
2

OEC are those of the overstress. The incorporation of Eqs. (36) 

and (37) into Eqs. (28), (29), (31) and (35) leads to a thermodynamically consistent finite 

strain viscoelasticity model. 
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4 Experimental Identification of the Evolution of Viscosity  

 

In the preceding section, a general constitutive theory based on recent publications by Huber 

and Tsakmakis (2000a,b) has been introduced. In this formulation, the constitutive relation 

expressing the temporal evolution of the inelastic strain rate iD̂ , the overstress tensor of the 

Mandel type )(ˆ OE
EP  is the driving force. The viscosity η  serves as a factor of proportionality 

and may be assumed to be constant in the formulation of the simplest type. However, from 

experience of the authors, we believe that rate-dependent models with constant viscosities 

cannot represent the experimentally observed rate-dependent phenomena of rubber (Amin et 

al., 2002). Since the second law of thermodynamics only requires 0(...) >η  (Section 3), there 

is the possibility to generalize the flow rule and to introduce a dependence of the viscosity, 

for example, on stress, deformation or internal variables. To this end, the earlier concepts 

available in Reese and Govindjee (1998), Holzapfel (1996), Miehe and Keck (2000), Haupt 

and Sedlan (2001) can be referred to, where different expressions were assumed to describe 

the nonlinear evolution of viscosity. In contrast to these efforts, the contribution of the current 

work is to present a scheme to resolve viscosity phenomena by analyzing the experimental 

data and thereby achieving an adequate description of the evolution equation (Eq. (35)). The 

quest for having a physical understanding of the phenomena and their description through the 

evolution equation played as a major motivation for undertaking such an effort. Thus, the 

experimentally observed stress and strain histories belonging to relaxation tests under 

compression and shear have been used to calculate the fundamental iD̂  vs. )(ˆ OE
EP  relation 

for one dimensional cases. On this basis, the dependence of different internal variables on this 

relation have been assessed to arrive at the constitutive equation for the viscosity that holds 

for both NR and HDR within the considered deformation ranges.  
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4.1 Scheme for Analyzing Stress Relaxation Data 

 

A scheme is proposed to analyze the relaxation histories obtained from the experiments 

shown in Section 2 with the aim to calculate fundamental quantities of the Zener model, e.g. 

the rate of inelastic strain and the overstress associated with the Maxwell element connected 

in parallel with a spring (Fig. 1). The analysis is founded on the multiplicative decomposition 

of the deformation gradient F  (Eq. (6), Figure 11) into elastic eF  and inelastic iF  parts. 

Since the material is assumed to be isotropic and incompressible (Eq. (7)) the procedure 

presented here conforms with the constitutive model presented in Section 3. Yet, to utilize the 

experimental results the finite strain model needs to be degenerated into the corresponding 

one-dimensional form in accordance with the deformations applied in the experiments, e.g. 

uniaxial compression and simple shear. 

 

If a specimen is subjected to uniaxial homogeneous compression (Section 2), the principal 

stretch λ1 in the loading direction becomes compressed (Figure 13a) and those in the two 

other directions λ2 and λ3 are under tension. Thus, the deformation gradient F  reads as: 
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Considering isotropy and incompressibility we have 1
1

2
3

2
2

−λ=λ=λ , while Eq. (3) leads 

the strain invariants to be: 

2
1

1

2 λ
λ

+=I  ,  12
1

21 λ
λ

+=II  ,  1=III        (39) 

Since the lateral boundaries of the specimen are stress-free the weighted Cauchy stress tensor 

S  is given by: 
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Following the multiplicative decomposition of F  and utilizing Eq. (11) we further have: 
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where the subscripts i and e  stand for inelastic and elastic parts of deformation. Furthermore, 

the extra part of the weighted Cauchy overstress )(
11

OE
E

S  and the Mandel overstress, )(
11

OE
E

P  

become equal (Eq. (34)): 
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Using Eqs. (29) and (37), the extra part of the overstress is obtained as 
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where 

( ))(
1111

)(
11 3

2 EOE SSS
E

−=  .        (45) 

In order to establish a relation between theory and experiment, we note the equivalence of the 

experimentally recorded stresses as presented in Figs. 4 and 5 with the weighted Cauchy 

stress 11S  (Eq. (45)), where material incompressibility is assumed (Eq. (7)). Furthermore, the 

values of the stress recorded at the termination points of the relaxation process are regarded 

as equilibrium stresses, )(
11

ES . Based on this concept, it is possible to solve Eq. (44) along 

with (45) to calculate the elastic stretch e1λ  for a particular value of )(
11

OE
E

S . Due to the 

nonlinear form of Eq. (44), a numerical method may be applied to solve it. In the case of a 
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simpler form of the hyperelasticity relation, for example a Neo-Hookean model, the solution 

procedure is simpler. Thus, the experimentally recorded relaxation history can be analyzed to 

obtain the time history of e1λ . The attainment of the time history of iD11  by taking the time 

derivatives over the experimental data points follows naturally from Eqs. (41)-(42). 

 

The scheme presented by Eqs. (38)-(45) is applied for analyzing uniaxial compression data 

but it can also be formulated for simple shear. In this case , the direction of the applied 

displacement does not coincide with the directions of the principal stretches; rather it 

involves a rotation of axes (Fig. 13b). Due to the applied shear strain γ , the deformation 

gradient F, its inelastic part iF  and the strain invariants are described as: 
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The equations corresponding to Eqs. (40)-(45) can also be written for simple shear as: 
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Calculating 1−= ie FFF , the inelastic shear strain and its rate can be expressed as 

ei γγγ −= ,          (49) 

iiD γ�=
12

.           (50) 

The extra part of the stresses are written as 
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where, 
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4.2 Evaluation of Experimental Results and Proposal for an Evolution Equation 

 

The evaluation scheme proposed in Section 4.1 has been used in this section to calculate the 

histories of 
i

D11 , 
i

D12 , )(
11

OE
E

P and )(
12

OE
E

P  from the experimental data using Eqs. (42)-(45) 

and (49)-(53). In order to solve these relations, it is necessary to describe the overstress 

response adequately by Eqs. (44) and (52) through a set of material parameters that hold for 

both compression and shear. To this end, the set of material parameters for the equilibrium 

and instantaneous stress responses for HDR and NR obtained earlier (Amin et al. 2005) has 

been applied. The identification procedure has simultaneously minimized the least-square 

residuals of uniaxial compression and simple shear data. Table 1 presents the set of estimated 

parameters for HDR and NR. In this procedure, the multi-step relaxation data (Figs. 8-10) 

was used to trace the equilibrium curve. The instantaneous response was approximated from 

the asymptotic convergence (see Amin et al. 2002) of the loading phase response of the cyclic 

tests (Figs. 2 and 3) conducted at high strain rates. The parameters obtained for the 

equilibrium stress were subtracted from those of the spontaneous stress to calculate the 

parameters of the overstress, i.e. )(
5

OEC , )(
3

OEC , )(
4

OEC , )(
2

OEC  (see Eqs. (44) and (52)). To 

calculate the histories of inelastic strain rate and overstress, special treatment of experimental 

data is required for taking the time derivatives over experimental data points, which usually 

contain scattering due to digital noise. Such noises are likely to yield unphysical spikes in the 

results. In order to reduce scattering of experimental data, either a moving averaging 

technique or fitting a polynomial function prior to making the derivative operation can be 

adopted. The present work chooses the former one to smoothen the noises and thereby 

assessing the real material phenomena. All calculations were done using Mathematica© 
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(Wolfram 1999). Figure 14 presents the time histories of 
e1λ and eγ  obtained from solving 

Eqs. (44) and (52), respectively for the relaxation data obtained from HDR. They show an 

increase in 
e1λ and decrease in eγ  with time, owing to progressive stress relaxation. Since, the 

stress relaxation under simple shear was recorded up to 3600 sec, the asymptotic convergence 

of the eγ  history towards the equilibrium state can be well-noted in Fig. 14b. The successful 

application of the moving averaging technique in obtaining the history of 12iD  by taking the 

time derivative of iγ  has been illustrated in Fig. 15. Figure 16 presents different segments of 

the histories of 11iD  and 12iD  (Eqs. (42) and (50)) to manifest the decrease in the inelastic 

strain rates with the progress of the relaxation process in HDR. Similar results were obtained 

for NR, but the presentation is being skipped here for space limitation. 

 

Figures 17 and 18 present the fundamental relation between the Mandel overstress )(ˆ OE
EP  

and the inelastic strain rate iD̂  for uniaxial compression ( )(
11

OE
EP - 11iD ) and simple shear 

( )(
12

OE
E

P - 12iD ). These results were obtained from the relaxation data at different strains (Figs. 

4-7) using the proposed identification scheme. The existence of a nonlinear relation can be 

observed at all cases in HDR and NR. This suggests the necessity of considering the 

nonlinear dependence of the viscosity in the evolution law (Eq. (35)). The nonlinearity is 

more prominent when iD̂  is slower. Furthermore, the relations are found to depend directly 

on the strain levels of the relaxation experiments.  

 

To formulate an evolution law in a closed form, the stresses )(
11

OE
EP  and )(

12
OE

E
P  have been 

plotted in a form normalized with the overstress values that existed just at the very beginning 

of the relaxation processes. These normalization stresses depend on the deformation and are 
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denoted as (
max

)(ˆ OE
EP ). A physical motivation of this procedure is given by the discussion in 

Section 2, but we note the existence of a very unique relation for each HDR and NR, in both 

compression and shear. Figures 19 and 20 visualize the relations between the normalized 

overstress 
max

)()( ˆ/)(ˆ OE
E

OE
E PtP  and )(ˆ tiD  for compression, i.e. 

max
)(

11
)(

11 / OE
E

OE
E PP  vs. 

11iD , and for simple shear, i.e. 
max

)(
12

)(
12 / OEOE

EE
PP  vs. 12iD . The plots show good agreement 

between the data points and the power law functions for all cases except for the case of NR 

under compression (Fig. 20a). Availability of a bit limited number of test data may be one of 

the reasons for producing such a scatter (Fig. 20a). The other possibility of improving the 

representation is discussed in Section 5.1 together with the simulation results. Yet, all results 

motivate a power law for describing such relations. In addition, a double logarithmic relation 

may be assumed between the normalization stresses 
max

)(ˆ OE
EP  recorded at the beginnings of 

the relaxation histories and the applied strains (see Fig. 21). On the basis of these facts (Figs. 

19-21), we propose a constitutive equation for the viscosity of the power law type in general 

three dimensional form: 
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where δ , ϕ  and 0η  are material parameters to be determined and ΩΩΩ ⋅=  is the 

magnitude of a tensor. The constant π  (=1 MPa) is introduced for dimensional reasons. From 

Eq. (54) we recover the constitutive equation for the nonlinear viscosity in closed form: 
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We note that the dependence of the viscosity function η  on the left Cauchy Green tensor B  

in Eq. (55) is similar to the suggestion provided in Haupt and Sedlan (2001). However, in 

comparison with the earlier work where an inverse dependence of η  on the total strain rate 

D  was chosen, the current work introduces the overstress )(ˆ OE
EP as variable in the evolution 

equation. The relation proposed here can be incorporated in the constitutive model (Section 

3) to derive a rate-dependent model with a nonlinear viscosity function. To estimate the 

material parameters of the viscosity specified by Eqs. (54) and (55) a least-square method can 

be applied using the data of 
max

)()( ˆ/ˆ OE
E

OE
E PP  and iD̂  (Figs. 19 and 20). Table 2 presents the 

identified values of the parameters for HDR and NR. The parameters describe both the stress 

and the strain dependence of the positive viscosity, hence consistent with thermodynamic 

requirements. These parameters along with the elasticity parameters will be used in Section 5 

to study the performance of the model in simulating stress responses to strain processes. 

 

4.3 Extension of the Evolution Equation for Incorporating Weak-rate Dependency during 

Unloading 

 

The test data shown in Figures 2 and 3 are considered again with regard to the unloading 

behavior of HDR and NR. There, although strong rate dependence was observed during the 

loading phase, weaker rate dependence was found during unloading. All cyclic tests under 

both compression and shear show this fact. To describe this within the developed model, a 

smaller viscosity is needed during unloading than during loading. This section describes a 

possibility of modeling the response of HDR under cyclic compression and shear. The 

approach is based on the assumption that there exists a general constitutive equation for the 

viscosity which is valid in both loading and unloading. The total stress power DS ⋅  is applied 

to decide between loading and unloading and a tangent hyperbolic function can be employed 
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to assure a very low rate dependence during unloading. The modified constitutive equation 

for the viscosity is therefore expressed as: 
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To represent the difference in rate dependence between loading and unloading we take the 

choice of 10 ηη >> . ξ  is another material parameter that determines the influence of the 

stress power DS ⋅ . For 0>>⋅ DSξ  we have ( ) 1tanh ≈⋅ DSξ  and for 0<<⋅ DSξ  we have 

( ) 1tanh −≈⋅ DSξ . The other parameters are those as defined for the simulation of monotonic 

processes. This is a further generalization of the earlier concept (Section 4.2) where only the 

loading cases were represented. Some qualitative numerical calculations in the compression 

and shear regimes are presented in the next section.  

 

5 Numerical Simulation 

 

The experiments presented in Section 2 revealed viscosity-induced rate-dependent effects in 

HDR and NR under compression and shear. A model of finite viscoelasticity was formulated 

in Section 3 along with proposals to generalize it with an improved hyperelasticity relation 

and a nonlinear equation for the viscosity in a thermodynamically consistent way. A new 

method to examine and identify the dependence of the viscosity on the process variables by 

using one dimensional relaxation data has been presented in Section 4. The application of this 

method has motivated a physically nonlinear constitutive equation for the viscosity in a three 

dimensional form. In this section, this relation is inserted into the finite strain model (Section 

3) to investigate the properties of the whole constitutive theory and the identified parameters 

(Tables 1 and 2) in simulating relaxation tests at different strains. The simulations of multi-
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step relaxation, monotonic and cyclic tests and as well as their comparison with experiments 

follow next. 

 

5.1 Relaxation Tests 

 

Figures 22 and 23 present the simulated stress responses of simple relaxation experiments in 

compression and simple shear regimes on HDR and NR. The results (Fig. 22a, 22b, 23b) are 

compared very closely with the experiments in representing the instantaneous responses and 

equilibrium states that the specimens encounter at the beginning and the end of the relaxation 

processes. However, as we see in Fig. 23a, the agreement between experiment and simulation 

in the short time range is not so well. This agrees with the findings of Fig. 20a. To improve 

the representation in this range, we plan to carry out the parameter identification by using the 

time derivative of the stress in a future project. Another possibility is to introduce weighting 

factors in the error norm which is used in the identification procedure. Furthermore, the stress 

relaxation over the whole experimentally recorded time range, 600 sec for compression and 

3600 sec for shear, is described in a very promising way. Thus, the enhanced capability of the 

proposed nonlinear viscosity model and the parameters in comparison with the earlier linear 

model (Amin et al., 2002) is clearly demonstrated. With the linear model, it was possible to 

describe the relaxation to a maximum of only up to 50 sec for HDR and 10 sec for NR. The 

simulations of the evolution of the viscosity η  with changes in )(
Eˆ OEP  (Eq. 55) in simple 

relaxation tests at different strains (Figs. 4 to 7) are shown in Figures 24 and 25, respectively 

for HDR and NR. The strong nonlinearity in the evolution of η  with increasing )(
Eˆ OEP  

and B can be noted for HDR under shear in Figure 24b whereas Figure 25a reveals a contrast 

phenomenon for NR under compression with a much weaker nonlinearity. In general, the 
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nonlinearity in the evolution of the viscosity as revealed from the simulations (Figs. 24 and 

25) is found to be much stronger under shear than that under compression.  

 

At this stage, the capability of the constitutive model to represent process dependent viscosity 

effects will be examined by simulating multi-step stress relaxations. Figures 26 and 27 

compare the experimental relaxation curves with the simulated ones for HDR and NR. The 

long-term relaxation behavior is well described by the theory but in the short-term range there 

are differences. Since the instantaneous response of the overstress is underestimated, it can be 

assumed that there are thixotropic recovery effects in the material which correspond to a 

process-dependent viscosity with its own time scale. In the developed theory, the viscosity 

depends only on the current deformation and overstress, but a process-dependent viscosity 

would depend on additional internal variables. If the viscosity function would have its own 

recovery behavior, it becomes larger during the relaxation periods and thus leads to larger 

overstresses in the short term range of the next relaxation event. A further argumentation can 

be founded on the introduction of an additional Maxwell element in the constitutive model 

with a much smaller relaxation time. Concerning the discrepancies between simulation and 

test more experimental data is needed to understand the process dependence of relaxation 

behavior and to develop corresponding models.  

 

5.2 Monotonic Tests 

 

The capability of the theory to simulate the rate-dependent monotonic response of HDR and 

NR is examined in Figures 28 and 29 by comparing the numerical results with experimental 

data. The comparison shows an excellent correlation between simulation and experiments for 

slow and fast strain rates in both compression and shear deformation ranges. In general, the 
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accuracy in predicting the experimental response was found to be better under compression 

than under shear; and also in NR than in HDR. This observation correlates with the results 

presented in Figures 24 and 25 where the strongest nonlinearity of the viscosity function was 

found to exist in HDR under simple shear (Fig. 24b). The nonlinearity of the viscosity was 

found to be the weakest in NR under compression (Fig. 25a). Yet, all simulated responses are 

found to well describe the rate-dependent monotonic response at low, moderate and large 

strains along with the representation of high initial stiffness values at low strains, observed 

especially in HDR. Furthermore, the asymptotic convergence property of the model towards 

the instantaneous state with increasing strain rate is clearly visible in Figure 28a for HDR 

under compression. A similar behavior is observed in the other cases, but the presentation of 

those results is omitted for space limitation. In comparison with the model with a constant 

viscosity (Amin et al., 2002), a significant improvement in the stress representation for very 

slow strain rates can be noted. This demonstrates the improvement achievable in monotonic 

response prediction by considering nonlinear viscosity phenomena in the constitutive model. 

In addition, we note the reasonable adequacy of the respective set of viscosity parameters for 

HDR and NR identified from independent simple relaxation tests in predicting rate-dependent 

monotonic responses as well. Not to mention, the relaxation and monotonic tests on each 

material were conducted in two different experimental set-ups e.g. uniaxial compression and 

simple shear (Section 2). Thus the developed constitutive theory with its nonlinear viscosity 

function demonstrates its physical and general sense. Nevertheless, due to power law-based 

compact nature of the evolution equation, the number of viscosity parameters is quite low, 

thus offering a notable simplicity in parameter estimation efforts.  
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5.3 Cyclic Tests 

 

One approach to generalize the constitutive equation of the nonlinear viscosity function (Eq. 

55) to represent the experimentally observed cyclic stress responses is presented in Section 

4.3 (Eq. 56). The capability of this approach is investigated in this section for HDR. In Fig. 

30 two experimental loading and unloading tests under compression with different strain rates 

are compared with the simulations. The main effect of interest is the pronounced difference in 

rate sensitivity during loading and unloading which occurs in many polymers (see also 

Bergström and Boyce, 1998; Khan and Zhang, 2001). The proposed theory has successfully 

modeled this behavior. Since the hysteresis of the equilibrium response is not considered in 

the model, permanent set is underestimated. Hence, it can be expected that an additional 

Maxwell element with a constant viscosity would improve the quality of representation. In 

Fig. 31 two symmetrical shear tests with different rates are shown and compared with the 

corresponding simulations. The investigated elastomer shows a pronounced rate sensitivity 

during loading in shear and a less one during unloading which is described by the model. The 

amount of hysteresis is underestimated which is similar to the case under compression. Thus, 

it can be summarized that many effects of HDR are well understood and can be described by 

the model but there are also many others, where the proposed constitutive approach has to be 

improved. The approach of rate-independent elastoplasticity (e.g. Yoshida et al., 2004) can 

represent stress-strain curves with constant rate, but neither relaxation nor creep or rate-

dependence phenomena can be described. From our point of view, the approach of modeling 

rubber with plasticity models as applied by Yoshida et al., (2004) describes stress strain 

curves under constant rates but the physical basis with respect to the thermodynamic 

consistency is missing.  
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6  Conclusions 

 

Under both cyclic compression and shear, HDR and NR exhibit significant rate-dependent 

phenomena in the loading phase whereas during unloading the rate-dependence is very weak. 

Furthermore, the characterization of viscosity-induced rate-dependent phenomena through 

simple relaxation experiments shows a very fast stress decay at the very beginning of the 

relaxation process followed by a very slow decay in the long-term range. These observations 

provide a motivation to consider the nonlinear dependence of the viscosity in modeling the 

rate-dependent behavior of HDR and NR. To this end, a finite strain viscoelasticity theory 

based on a multiplicative splitting of the deformation gradient F  into elastic eF  and inelastic 

iF  parts is developed. The relation between the inelastic strain rate iD̂  and the overstress 

)(ˆ OE
EP  describes the viscosity phenomena. Since the second law of thermodynamics only 

requires the viscosity η  to be a positive quantity, there is a possibility to express the flow rule 

in a general but thermodynamically consistent form by considering a nonlinear dependence of 

η  on other process quantities or internal variables. Yet, to maintain the physical meaning of 

the flow rule, it is preferable to make such a generalization based on clear experimental 

evidences. In this context, it is possible to employ an analytical scheme founded on the basis 

of the multiplicative split of deformation gradient F  to analyze the data obtained from stress 

relaxation experiments and thereby evaluating the fundamental iD̂  vs. )(ˆ OE
EP  relation for one 

dimensional cases. To reduce the scattering of the numerically differentiated experimental 

data in this process, the moving averaging technique was applied. Since this technique does 

not eliminate all these oscillations, it should be better to smooth the overall signals by fitting 

an appropriate function on it, for example, an exponential function or a power law. The 

evaluation conducted in this paper suggests the dominance of the ‘overstress values that 
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existed just at the very beginning of the relaxation process’ 
max

)(ˆ OE
EP  in the stress relaxation 

process for both HDR and NR under compression and shear. Furthermore, the existence of a 

relation between 
max

)(ˆ OE
EP and the magnitude of deformation B  is also evident. Thus, it is 

possible to identify a nonlinear constitutive relation for the viscosity which is based on two 

power laws for the investigated rubbery materials. The finite strain viscoelasticity model with 

a nonlinear equation for the viscosity maintains a compact and simple form. It is conceptually 

similar to the standard three parameter solid or the Zener model (Fig. 1) involving only three 

material constants. Numerical simulation of monotonic deformation processes with different 

strain rates, simple relaxation and multi-step relaxation tests have illustrated the adequacy of 

the model and the identified parameters in physical and general senses. Although the analytic 

approach to evaluate the stress relaxation data to identify the evolution law for the viscosity 

has been utilized in this literature only for HDR and NR, we believe that this technique is 

conceptually applicable for other solids under finite and small strains as well. Furthermore, 

the stress power DS ⋅  can be utilized as a continuous measure for the degree of loading-

unloading while the tangent hyperbolic function can be used to represent a strong rate 

dependence during loading and a weak rate-dependency during the unloading phase of a 

cyclic process. 
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Figure 1: Zener model. 

Figure 2: Cyclic responses obtained from HDR at different strain rates: (a) 

Compression, (b) Simple shear. Stress and strain measures are further 

illustrated in Figure 13. 

Figure 3: Cyclic responses obtained from NR at different strain rates: (a) Compression, 

(b) Simple shear. Stress and strain measures are further illustrated in Figure 

13. 

Figure 4: Simple relaxation tests conducted on HDR at different stretch levels in 

compression regime: (a) Applied stretch history, (b) Stress history. For the 

purpose of understandable illustration, the stretch and stress histories have 

been separated from each other by 20 sec. Stress and strain measures are 

further illustrated in Figure 13. 

Figure 5: Simple relaxation tests conducted on NR at different stretch levels in 

compression regime: (a) Applied stretch history, (b) Stress history. For the 

purpose of understandable illustration, the stretch and stress histories have 

been separated from each other by 20 sec. Stress and strain measures are 

further illustrated in Figure 13. 

Figure 6: Simple relaxation tests conducted on HDR at different stretch levels in shear 

regime: (a) Applied stretch history, (b) Stress history. For the purpose of 

understandable illustration, the stretch and stress histories have been separated 

from each other by 100 sec. Stress and strain measures are further illustrated in 

Figure 13. 

Figure 7: Simple relaxation tests conducted on NR at different stretch levels in shear 

regime: (a) Applied stretch history, (b) Stress history. For the purpose of 

understandable illustration, the stretch and stress histories have been separated 
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from each other by 100 sec. Stress and strain measures are further illustrated in 

Figure 13. 

Figure 8: Applied strain (stretch) histories in multi-step relaxation tests (a) 

Compression, (b) Simple shear. Stress and strain measures are further 

illustrated in Figure 13. 

Figure 9: Stress history recorded in multi-step relaxation tests on HDR (a) Compression 

(b) Simple shear. Stress and strain measures are further illustrated in Figure 

13. 

Figure 10: Stress history recorded in multi-step relaxation tests on NR (a) Compression 

(b) Simple shear. Stress and strain measures are further illustrated in Figure 

13. 

Figure 11.  Multiplicative decomposition of deformation gradient tensor, F  into an elastic 

part eF  and an inelastic part iF . 

Figure 12. Decomposition of stress in Zener model. 

Figure 13.  Fundamental description of deformation: (a) Homogeneous uniaxial 

compression, (b) Simple shear. 

Figure 14. Elastic strain histories as calculated from the simple relaxation test data of 

HDR: (a) e1λ history obtained from simple relaxation test at a stretch level of 

0.5, (b) eγ history obtained from simple relaxation test at a shear strain level of 

2.5. 

Figure 15. Inelastic strain history iγ  as calculated from the simple relaxation test data of 

HDR at 2.5 shear strain level and application of moving averaging method for 

estimating the time-derivative of inelastic strain 
.

iγ . 

Figure 16: History of inelastic strain rate as calculated from the simple relaxation test 

data of HDR: (a) 11iD  history obtained from simple relaxation test at a stretch 
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level of 0.5, (b) 12iD history obtained from simple relaxation test at a shear 

strain level of 2.5. 

Figure 17: iD̂  vs. )(ˆ OE
EP relations in one dimension as calculated from simple relaxation 

test data of HDR: (a) Compression, (b) Simple shear. 

Figure 18: iD̂  vs. )(ˆ OE
EP relations in one dimension as calculated from simple relaxation 

test data of NR: (a) Compression, (b) Simple shear. 

Figure 19: iD̂  vs. )(ˆ OE
EP /

max

)(ˆ OE
EP relations in one dimension as calculated from simple 

relaxation test data of HDR: (a) Compression, (b) Simple shear. The solid line 

is the path of a best-fit curve defined by a power law, nAxy =  . 

Figure 20: iD̂  vs. )(ˆ OE
EP /

max

)(ˆ OE
EP relations in one dimensions as calculated from simple 

relaxation test data of NR: (a) Compression, (b) Simple shear. The solid line is 

the path of a best-fit curve defined by a power law, nAxy =  . 

Figure 21: B  vs. max
)(ˆ OE

EP relations as calculated from simple relaxation test data of in 

compression and simple shear. (a) HDR, (b) NR. 

Figure 22:  Numerical simulation of simple relaxation test of HDR. The figures show the 

simulated stress histories: (a) At 0.7 stretch, (b) At 1.00 shear strain: (-) 

numerical simulation, (• ) experiment. 

Figure 23:  Numerical simulation of simple relaxation test of NR. The figures show the 

simulated stress histories: (a) At 0.65 stretch, (b) At 2.18 shear strain: (-) 

numerical simulation, (• ) experiment. 

Figure 24:  Nonlinear dependence of viscosity function,η  with norm of overstress, 
)(

^
OE

EP  as obtained from the simulation results of simple relaxation tests at 

different strain levels on HDR:  (a) Compression, (b) Simple shear.  
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Figure 25:  Nonlinear dependence of viscosity function,η  with norm of overstress, 
)(

^
OE

EP  as obtained from the simulation results of simple relaxation tests at 

different strain levels on NR:  (a) Compression, (b) Simple shear. 

Figure 26:  Numerical simulation of multi-step relaxation test of HDR. The figures show 

the stress history: (a) Compression, (b) Simple shear: (-) numerical simulation, 

(• ) experiment. 

Figure 27:  Numerical simulation of multi-step relaxation test of NR. The figures show the 

stress history: (a) Compression, (b) Simple shear: (-) numerical simulation, (• ) 

experiment. 

Figure 28:  Numerical simulation of monotonic compression tests of HDR at different 

strain rates. The figures show the stress-strain responses: (a) Compression, (b) 

Simple shear: (-) numerical simulation, (• ) experiment. 

Figure 29:  Numerical simulation of monotonic compression tests of NR at different strain 

rates. The figures show the stress-strain responses: (a) Compression, (b) 

Simple shear: (-) numerical simulation, (• ) experiment. 

Figure 30:  Numerical simulation of cyclic compression tests of HDR at different strain 

rates. The simulations are conducted with 01 005.0 ηη = and 3000=ξ , 

see Eqn. 56: (a) Applied stretch history, (b) Stress-stretch response: (-) 

numerical simulation, (• ) experiment. 

Figure 31:  Numerical simulation of cyclic shear tests of HDR at different strain rates. The 

simulations are conducted with 01 001.0 ηη = and 100=ξ , see Eqn. 56: 

(a) Applied stretch history, (b) Stress-stretch response: (-) numerical 

simulation, (• ) experiment. 
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Table 1 

Elasticity Parameters for HDR and NR 

Specimens Responses C2 

MPa 

C3 

MPa 

C4 

MPa 

C5 

MPa 

M N 

Equilibrium 0.145 1.182 -5.297 4.262 

Instantaneous 0.166 2.477 -11.689 9.707 HDR 

Overstress 0.021 1.295 -6.392 5.445 

0.06 0.27 

Equilibrium 0.095 0.019 -0.515 0.754 

Instantaneous 0.176 0.043 -0.861 1.056 NR 

Overstress 0.081 0.024 -0.346 0.302 

0.15 1.29 

 

 
Table 2 
 
Viscosity Parameters 
 
Specimens η0 

MPa-s 

δ φ 

HDR 1.63 1.46 2.29 

NR 2.46 0.78 2.16 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 

(a) 

(b)

-2

-1.5

-1

-0.5

0

-1000 0 1000 2000 3000 4000 5000 6000 7000

C
au

ch
y 

st
re

ss
 (M

P
a)

Time (sec)

0

0.5

1

1.5

2

-500 0 500 1000 1500 2000

S
he

ar
 s

tre
ss

 (M
P

a)

Time (sec)



Figure 11 

Fi Fe

F



)(
E

ES

)(
E

OES
ES

Figure 12 





t (sec)�
�

λ
e

(a)

� �

(b) Figure 14

γ e

0 100 200 300 400 500 600

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500
� �

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)

1

63





�
�

(a)

� �

(b) Figure 16

2.5 5 7.5 10 12. 5 15 17. 5

t (sec) �

-0.3

-0.2

-0.1

0

D
i1

1

10 20 30 40 50 60
�

0

0.05

0.1

0.15

0.2

t (sec)

D
i1

2

65

(/s
ec

)
(/s

ec
)



 
 
 
 

(a) 

Figure 17 

(a) 

(b)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

stretch: 0.5
stretch: 0.7
stretch: 0.8

P
11

E(O
E

)  (M
P

a)

D
i11

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1

strain: 2.50
strain: 1.71
strain: 1.00

P
12

E(O
E

)  (M
P

a)

D
i12



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 
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Figure 24 
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Figure 25 
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(b) Figure 30
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(b) Figure 31
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