PHYSICAL REVIEW A 71, 012109(2005

Nonexponential decay of an unstable quantum system: Smal-value s-wave decay
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We study the decay process of an unstable quantum system, especially the deviation from the exponential
decay law. We show that the exponential period no longer exists in the casesfvithe decay with smal
value, where th&) value is the difference between the energy of the initially prepared state and the minimum
energy of the continuous eigenstates in the system. We also derive the quantitative condition that this kind of
decay process takes place and discuss what kind of system is suitable to observe the decay.
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[. INTRODUCTION emphasize here is as follows: in the case of the SQS decay,
we can observe not only the enhancement of the QZE, but

Since the period of the classic works by Direld and  also no exponential periodThis means that the deviation
Weisskopf and Wignef2], it has been a problem how to from the exponential law can be observed easily if the SQS
describe the decay process of an unstable state following thgecay system is prepared. We also derive the quantitative
principles of quantum mechanics. As is well known, the surcondition that such a decay takes place.
vival probability of the initial staté”(t), which concerns the This paper is organized as follows. In Sec. I, we show an
decay of the quantum state, is frequently described by thexample of the SQS decay by using the one-dimensional
exponential decay law(t)=e™". However, it is also known tunneling system with a box-type potential. The general de-
that the decay process does not obey the exponential lagcription for an unstable system is formulated in Sec. Il
precisely, so it has always been a question of how the deviddsing this formalism, we derive the quantitative condition
tion from the exponential decay law occurs, especially at thehat the SQS decay occurs in Sec. IV. In Sec. V, we summa-
late and early times of a decay procé3% rize our results and discuss what kind of system exhibits

Theorists are always motivated to work on this old prob-such a decay process.
lem when high-resolution experiments, which are accom-
plished by a new technology, are performed to detect the Il. AN EXAMPLE OF SQS DECAY
deviation of the decay law from the exponentid-6]. In IN TUNNELING PHENOMENA
addition, recent several experiments have reported the
measurement-induced suppression in quantum systems at theBefore going into the general discussion, we show the
early stage of decay, which may be a result of the quantureéxample of SQS decay in the tunneling phenomena. In this
Zeno effect(QZE) [7]. section we discuss the one-dimensional tunneling problem

As mentioned above, the deviation from the exponentiabecause only the radial part of the wave function is relevant
law at late and early times is often discus$8¢®]. At very  to thes-wave tunneling even in a three-dimensional system.
late times, the survival probabilit(t) must decrease more  Let us consider the decay process through the one-
slowly than the exponential and exhibits the inverse powefdimensional box-type potential depicted in Fig. 1. Param-
law of time P(t) ~t™¢, wherea is positive and depends on €ters for characterizing the system are also shown in the
the property of the unstable system. At early times, the sur-
vival probability decreases following a Gaussian lgthe Vix)
square of timet?), which appears inevitably in a quantum
procesgand causes the QZEThus the decay of the unstable
state proceeds through three stages in general. The initial
stage is characterized by a Gaussian law, the intermediate
stage by an exponential law, and the final stage by an inverse
power law.

In this paper we focus on a different mechanism of devia-
tion from the exponential law. Such a decay process occurs
in the case of smal-value sswave decay(SQS decay
Here theQ value is defined by the difference between the
energy of the initially prepared statdenoted byE,) and the
minimum energy of the continuous eigenstatdsnoted by
Ey) in the system. The smaf)-value decay has been dis-
cussed in some papef9,10]. The point we would like to FIG. 1. The shape of the potential.
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FIG. 2. Examples of decay. Here we €20, G,=0 [or Q=8.973 6%52ma?)~1], u=10" on the left andG=20, G,=8.957 335[or Q
=6.554 45< 1074(2ma?)™1], u=10"* on the right. Each quantity in the figure is averaged over a short time interval. The example on the right
corresponds to the SQS decay.

figure. Here we assumléd, is not so large that there is no 5 G .
bound state. The goal here is to calculate the survival prob- a(E) = ¢ + GoCoST — ES'”ZV
ability of the prepared state and show that the SQS decay is
realized in this system.

The survival probabilityP(t) is defined by the nondecay
amplitudea(t) asP(t)=l|a(t)|%. a(t) is given by

G(r ) ; ’
+ E(;cosr sinh(su) + sinr COSF(SU)> )

for the case that the energy is smaller than the potential bar-
: rier E<U/b, while
a(t) = (0[e"™|0), 1
a(E) = g% + Gcosr — 9sin2r
where|0) is the initially prepared state artd is the Hamil- .
tonian of the system. Please note that we use the fimits G(r . . 2
in this paper. The nondecay amplitude can be expanded over + E(%COS’ sin(Su) + sinr COfSU)) (6)
the energy eigenstatés) as
for the other cas&=U/b. Here we use the dimensionless
o quantities to write down the spectral functioF V2mEag, r
a(t) = f dE p(E)eE,  p(E) = (E|0)[?. (2)  =y2m(E+Upa, s=\2m(U/b-E)a, and3=2m(E-U/b)a.
0 Furthermore, the variables that characterize the potential are
also given by the dimensionless ond&s=2mal, G,
The functionp(E) is called the spectral function, in which all :2ma2p0, andu=b/a. _
information about the decay process is included. The energ%(tFOr investigating the SQS decay, we define the decay rate

eigenstatdE) can be obtained analytically in this system as ) by
detailed in Appendix A. Here we take the initial stdf as d
the ground state in the well for the infinitely height barrier, r'y=- p In P(t). (7)

2 X This quantity is more convenient rather than the survival
i (x) = (x|0) = \/isin<—) O(x+a) (= x). 3) probability itself because this rate is constant while the decay
a \a process is governed by the exponential law. We performed
the integral in Eq(2) numerically using the spectral function
The energy expectation value of this state & Eqg. (4), and calculated the decay rdét). The results are
= 7?/(2ma?)-U, and theQ value is given byQ=Ey,-Ey,  shown in Fig. 2. We studied two cases®, that is,Go=0
=72/ (2m&?) - U, because the spectrum of the continuum en-and 8.957 335, which correspond to the ca@es8.973 65
ergy eigenstate starts from the zero energy. Using this initiaghnd 6.554 45% 107 [the units ofQ are (2ma?) 1], with fixed
wave function, the spectral function of the system is obtaineds andU. As you see, the exponential decay law is observed

analytically after some calculations, and given by in the case that th@ value is not very small. On the other
hand, if theQ value is small enough the exponential period
1 2mq SirPr no longer exists even at the time-5002ma’) when P(t)
E)= , 4 1 This i [
p(E) 2m@aE) (2= 722 (4) decreases to the order @f. This is nothing but an example

of the SQS decay.
In the following sections we investigate the SQS decay by
where a general description and what kind of situation is necessary.
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We also derive the quantitative condition for the SQS decay 4 imz 7
to take place.

IIl. GENERAL DESCRIPTION FOR UNSTABLE STATES

In this section we explain the general formalism of un-
stable state decay. Using this formalism the quantitative con-
dition for the SQS decay is derived in the next section.

For calculating the nondecay amplitude we use an exact
integro-differential equation by using the technique in Refs.
[11,9]. We introduce the projector onto the initial unstable
state,P=10)(0|, and decompose the Hamiltoni&has FIG. 3. The analytic structure of the complexplane and the

H=H.+V contours of the integrals. The contours and the pole shown by the
0 ' broken line are on the second Riemann sheet.
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Ho=PHP+(1-P)H(1-P), V=H-H, (8

* dE ,
Define the energy eigenstat® of Hy, Hola)=E,|a). It is a(t) :J ﬁF(EJf i0%)e BB, (13
then easy to confirm that the decay interact\droperates w
only between the initial stat®) and its orthogonal comple-
ment|n); v0n=v;oaeo, Vin=Voo=0. Here we use the inter-
mediate roman letters such aen to denote eigenstates pro-
jected by 1-P. The interactionV depends on the initially
prepared state. Although this formalism looks odd, we carThe initial conditiona(0)=1 is imposed in this derivation.
execute an exact analysis like a time development of the The analytic property of the functio(z) is evident; this
unstable state using this tool. function is analytic except on the branch cut which runs from
We work in the interaction picture and expand the state athe threshold valud,, to positive infinity on the real axis

a finite timet, using the basis of the eigenstatetd; |#),  (Fig. 3). As is well known, if the Riemann surface is consid-
=eHd|y) =3 c,(t)|a). We thus write the time evolution equa- ered by analytic continuation through the branch rnd
tion for the coefficientc,(t): regarding the original complez plane as the first Riemann

. _ . . sheel, there is a pole on theecondRiemann sheet near and

iCo= 2, Vone ' EnBle,,  iCy, = Vi E By, (9)  pelow the real axis if the decay interaction is weak enough.

n The pole locatiorg, is determined by

Here E, is the energy of the initial unstable statgj w0
:_<0|H|O>. The nondecay amplitude is related to this_ coeffi- 2,- Eg+Gy(z,) =2,- Eo+f dE o(E)
cient by(0|e '"t|0)=€e"Eo'cy(t). From the above equations, a En -
closed form of the equation for the nondecay amplitude (15)
co(t) =a(t) then follows:

G(2) = ocdE@. (14)

Fo)=————,
@ -z+Ey-G(2 g, E~Z

+2mio(z,) =0,

where the analytic functio®(z), and hencé(z), is extended
into the second sheet 1§y, (E-i0*)=G,(E+i0*) through the
branch cut. The real function(E), which was originally
defined for reaE> Ey,, is also extended to the functiar(z)
o defined on the complex plane by analytic continuation. In
Bt—1")=(0V,(t)V,(t)|0)= | dE o(E)e  EEt) addition to this pole there may be some singularities on the
Eth second Riemann sheet, but we ignore the effects of such
(11) singularities in the following discussion. This approximation
is valid as discussed in R¢B] because these singularities do
not affect the decay phenomena except for the early stage.
o(B) =2 SE- Ern)[Vom*. (12) Using the discc))/nﬁnuity of the anglytic functiolz'r/(z) ’
" across the branch cut on the first Riemann sheet,
HereV,(t)=eHotveHot s the decay interaction written in the
interaction picture and the functiom(E) characterizes the F(E+i0") -~ F(E-i0") = 2@ o(E)|F(E+i0")[?, (16)
interaction between the unstable st@{eand the other states

m). The initial conditionc,(0)=0 is used to derive the equa- the contour of integration on the real axis in Ef3) into the

tion for a(t), andEy, is the threshold for the staten). sum of two contours, one around the pole as showiChy
The standard technique to solve this type of integro-,,4 the other alon@y, in Fig. 3

differential equatior(10) is the one that utilizes the Laplace
transform, and we finally obtain the nondecay amplitude in dz _
at) = f + f —F(z)e @5,
Cp Cth 27T|

t
él(t):—j dt’ gt —t")a(t’), (10
0

which is called the “elastic” unitarity relation, we can deform

the form (17)
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We consider the case that the unstable state initially prethe condition mentioned above into three cases. In the fol-
pared is a metastable state, which means the decay interdowing we describe them in detail.
tion is weak in comparison with the typical energy of the The first one concerns the short time behavior and is

system, Egy, induced from the oscillation in the wellr  known as the QZE. At early timg$< E;yls), the approxima-
<Egys~ Ep. Then the pole location on the second Riemanntion used in Eq.(20) is no longer valid and the high-
sheet can be obtained approximately as frequency component af(E) becomes important. From the
o E) definition of the survival probability, we naively expect that
z,= Eq~II(Ep) —imo(Ep), II(E)= pJ dErU_, the short time behavior exhibits a deviation from the expo-
. E E nential law, which is in the form of
(18) 0le™™|0)|? = 1 - ?((0]H?0) - (O[H[0)).  (22)

where P means the principal value of the integration. The  Thus quantum mechanics appears to predict a quadratic form
integration in Eq.(17) can be performed without difficulty of deviation in thet— 0 limit.

by the residue theorem, and with the aid of the approxima- The second one relates to the long time behavior. At late

tion above, this becomes times t>1/I', the C, integration is exponentially sup-
dz pressed, while th€,, integration is not strongly suppressed
J ——F(z)g @Bt =~ ll(EtgmalEolt (19) because the behavior of E) near the threshold is expressed

c, ™ by o(E)=c(E-Ey)?, which leads to power law behavior of

This integration gives a®(1) contribution to the nondecay the Cm integration,
amplitudea(t). On the other hand, the integration alo@ ) _
p ( ) g g f d_Z_F(Z)e_l(Z_Eo)t _ _ ieI(EO—Elh)t|F(Eth)|2
Cy

1
h i

is of O(a/Egp), which gives only a small contribution. This is
because the integration can be approximated by .
» CF(a + 1)e—|71'a/2

j d_Z_F(Z)e—i(z—EO)t L (23
& <™ . HereI'(2) is Euler's gamma function. Therefore the contri-
] R R bl i bt
. exponential to an inverse power Iavy. _
= e 20 e o e 9% ooy

o This case can be understood by investigation of the prefactor
for sufficiently larget, and the factofF(Ey)|* usually takes  |F(E,)|2 in Eq. (20) in detail:

the value(Ey—Ey,) 2 5 I
The dominance of th€,, integration in Eq(17) leads to [F(Ew)|*=[Q - TI(Ew]™. (24)
the exponential decay law Since the functiolI(Ey,) is of O(o), this factor givesQ™2
P(t) = [a(t)|2 = exp(- I, Tp=2m0(E), (21) yvhen theQ value is not very small. However, if tH@ value
is of the same order as, the factor|F(E;,)|? becomes large
and this coincides with the familiar golden rule of perturba-and the contribution from th€,, integration becomes com-
tion theory. From this investigation, we know that the pel’tur-parable with the one from thep integration. In this case
bative calculation gives satisfactory results in many casesjecay that does not include the exponential period at all can
We would, however, like to elucidate the time evolution in pe realized, and this situation never occurs in other cases
finer detail, and study the conditions for breaking the expodescribed above.
nential decay law, especially the SQS decay, in the next sec- We now derive the quantitative condition that the SQS
tion. decay takes place. By virtue of the analytic property@&f),
we can express the amplitudét) in the convenient form

IV. THE CONDITION FOR THE SQS DECAY LAW * .
at)=| dEp(E)e” 5N,

We now derive the quantitative condition of SQS decay. En
We also discuss the situations in general that exhibit devia- (25)
tions from the exponential decay law. E o(E)

_ The C, integration around the polg, in Eq. (17) always p(E) = [E-E,+ IE) 2+ [mo (B T

yields exponential time dependence, so nonexponential de-
cay is realized when th€&,, integration contributes to the The functionp(E) is the spectral function as mentioned in
nondecay amplituda(t) by the same order as th@, inte-  Sec. Il. The schematic shape ) is shown in Fig. 4. This
gration. function takes a real positive value whEris larger than the

From the evaluation of the contour integrations in Eq.thresholdE,. p(E) drops quickly in the limitE— < because
(17), we can classify the nonexponential decays that satisfyhis function must satisfy the normalization condition
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FIG. 5. The value of E((26) is depicted as a contour map in the
FIG. 4. The typical shape of the spectral functjgit). The SQS (G, Q) plane.

decay is realized when th@ value is smaller than the width of the

peak. we must pay attention to for discussing the condition Eg.

. o ) o - (26) is the Q dependence of Irg,, the imaginary part of the
Je,dEp(E)=1, which is equivalent to the initial condition pole |ocation. TheQ dependence is determined by the func-
a(0)=1. In addition,p(E) has a peak arountl~E,. [More  tion o(E,) as shown in Eq(18). When theQ value is small
precisely, the exact location and the width of the peak arenough, the dependence is determined by the threshold be-
determined by the real and the imaginary partgpin Eq.  havior of o(E,), which originates from the spectral function
(15).] Therefore the dominance of th€, integration is  p(E,) as shown in Eq(25). Therefore the threshold behavior
equivalent to the Breit-Wigner form of(E) or the limit  of the spectral function, taken to bp(Eq)=c(Ey—Eq)®
Ein— —, as you can find from the shape offE). =cQ?, is the key quantity in this problem. Here the coeffi-

The absence of the exponential decay law due to the smadient ¢ is a constant dependent on the system. The SQS de-
Q value then occurs whe@ is smaller than the width of the cay is expected when the powerﬂﬁEO) near the threshold,
peak because the Breit-Wigner shapep() does not hold a, is smaller than 1.
in this situation. Thus the condition for the SQS decay is As is well known, the threshold behavior of the spectral
given by function is determined by the quantum number of the orbital
angular momentum in a scattering procéssy., a particle
=1, Q=Rez,-Ey. (26) decay or a radioactive proceswhich we denoté [12]. The
threshold behavior is given by(Eo) =c(Ey—Ey,)'*Y2 There-
This is the final result of this section, the quantitative condi-fore swave(1=0) decay is necessary for the SQS decay in
tion for the SQS decay to take place_ In Rﬁg_lw the authors these processes, and the SQS decay never occurs via higher'
derived the opposite condition to E(6) from the view- | (I=1) processes.
point that nearly exponential decay takes place. The condi- Let us move on to the decay process through tunneling.
tion here is a necessary and sufficient condition, so our corf=or the one-dimensional model discussed in Sec. I, the
dition is consistent with theirs. threshold behavior is given by
To investigate the condition E@26) for a given system,
this inequality is not very useful because the calculation for
the exact location of, from Eq.(15) is a tedious one. This p(Eg) = m’ Q=Eo—Ep,
situation is somewhat improved if we use the approximation
Eq. (18); then the condition turns to

|Imz,)

112
(28

which is the same as in the case of th&ave decay. This is
r the very reason that the system exhibits the SQS decay when
—p—E “E. 2. (27)  the Q value is small enough. You might think that such a
0 = threshold behavior is due to a peculiarity of the potential.
This is more convenient for practical use. This is, however, not correct. To check this, let us consider a

As an example, we show the contour plot of 2g4Q for ~ system with the modified potential shown in Fig. 6. The
the model discussed in Sec. Il, which is depicted in Fig. 5spectral function of this system can also be obtained analyti-
The contour plot is drawn on thg, Q) plane with fixedu. cally using Bessel functions. The threshold behavior again
The crosses in the figure correspond to the values used ipincides with the case of treewave decay. The form of the
Fig. 2, and in the shaded region the parameters satisfy thgpectral function and the threshold behavior are given in Ap-
condition that the SQS decay takes place. pendix B.

This result is naturally understood if we consider the
model with spherical symmetry in three dimensions. Since
the angular momentum is a conserved quantity in this case,

We now come to the stage of discussing what kind ofthe s-wave decay process can always be reduced to a prob-
system is necessary for the SQS decay. The important poitém in a one-dimensional system. Therefore the threshold

V. DISCUSSION AND SUMMARY
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Vix) 4 eigenstatéE) is necessary in this computation and it can be
obtained analytically:

¢e(x) = (X|E)
Asinr(x/a+ 1) for (Fas=x<0),
=1 Bsinhsxa) + Ccosh{isx¥a) for (0<x<b),
D sin(gxa) + Ecogqgxa) for (b= x),

(AL)
for E<U/b and
¢e(x) =(X[E)
Asinr(x/a+ 1) for (—asx<0),

=1Bsin(Sx/a) + Ccogsx/a) for (0<x<h),
D sin(gxa) + E coggx/a) for (b<Xx),

(A2)

FIG. 6. The modified potential.

for E=U/b. All parameters such as, b, q, r, s, ands are
behaviors of all models in one dimension with nonsingulardefined in Sec. Il. The coefficients B, C, D, andE can be

potential are the same as the onesafave decay. determined by the junction condition at-a, 0, b and the
We summarize the results of this paper. The decay of theormalization condition of the eigenstate&:|E’')=4&(E
unstable state with sma@) value in thes-waveprocesSSQS  -E’). For example, the coefficier is given by
decay exhibits the interesting feature that therenis expo-
nential period If we can make practical use of this mecha- q
. . . .. 2
nism, we will easily observe the deviation from the exponen- A*= ' (A3)
2mama(E)

tial law. As mentioned above, the SQS decay takes place in a
system described by awave process or a one-dimensional and others can be obtained similarly. The functie(E) is

system. However, itis difficult.to prepare a setup of grﬁ;all defined in Egs(5) and(6). The spectral function is defined
value in experiments on pa'rtlcle decay or radlpactlve proby the overlap of the energy eigensté& and the initially
cesses, because tlevalues in such cases are fixed by na- epared stati0) given in Eq.(3). Using the eigenstate ob-

r
ture a_nd we cannot control them. On the other hand, thEained above, the spectral function is computed as
tunneling phenomenon may be hopeful to observe the SQ

process because we may achieve sufficiently sQathore 2

easily. Unfortunately, experiments to look for the SQS decay p(E) = (E|0)|? = U dx ()" ¢ (x)

have not been carried out until now. It is important to discuss

an actual physical system which realizes the SQS decay, but 1 27 Sirér

this issue is beyond the scope of this paper and remains as a = 2mZa(E) (12— )2 (A4)

future problem. We believe that this kind of experiment is
interesting to observe the nonexponential decay of an un-
stable quantum system. APPENDIX B
In this appendix, we write down the explicit form of the
ACKNOWLEDGMENTS spectral function of the model whose potential is depicted in
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(B1)

APPENDIX A _— _ [
wherek; =vV2mE, k,=+2m(h,-E), andks=+2m(E-h,). All

In this appendix, we calculate the spectral functig&)  parameters characterizing the potential suctaas.,d and
=|(E|0)|? of the one-dimensional model with a box-type po- h,, h, are defined in Fig. 6. The variablesande, are given
tential that is used in Sec. II. The explicit form of the energyby
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€ 5 N L 1 5 and its derivative at the origin, which are given &
. =F (ka) Tr(zg) T (z) PhF (= ikp) T (2,) T (22) 5 =sin(k,a), 8,=k,acogk,a). Finally, the matrixPh is given
b
B2
L andR appearing as the subscripts of the mairisepresent Ph= ( et ertele ) (B5)
the slopes of the barrier at the left and the right sides, k,ad2c™®  kagecD) /-

=2ma’h,/(b-a), R=2ma’(h,—h,)/(d-c). The matrices

F(k) andT(2) are defined by In the rest of the appendix we show that the threshold

behavior of this system is the same as that of $heave
F E( 1 ) T E( Bis(2  B.15(2 ) decay. We expand the spectral function with respectfo
ika —ika/' ' 1B 5(2) t°Bl4(2) ) -h,) in the vicinity of the threshold. The components of the
(B3)  matrices in Eq(B2), Tr(zy, TRH(zo), Ph, FY(=iky), T (2),
and T, %(z,), and the variable$,,8, become constant at the
The arguments of the matriz,, ...,z are the rescaled posi- |eading order, and only the matrix(ks) hasE dependence
tions of a,..,d, which are defined byz,=-LY3b  gych that
—a)E/(ahy), z,=L"3(b-a)(h,~E)/(ahy), z=R"}(d-c)(h

-B)/[a(hy—hy)], z=R"¥d-c)(h,-E)/[a(h;-hy)]. The , 1(1 +ikg?
function B,,5(2) is defined by the Bessel functiahy/; as F(kg) = o\ ikt ) (B6)
3
N4 2 2
B.13(2) = TJﬂ,s 5(— 2%2], (B4) Thereforee; and e, are proportional td(gl. As a result, the

threshold behavior of the spectral functip(E) of Eq. (B1)
andB’(z) means the derivative with respectzos; ands, at  is of the formp(E) «k;=(E~h,)2, which is the same as the
the right side in Eq(B2) are the values of the wave function result ofs-wave decay.
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