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We study the decay process of an unstable quantum system, especially the deviation from the exponential
decay law. We show that the exponential period no longer exists in the case of thes-wave decay with smallQ
value, where theQ value is the difference between the energy of the initially prepared state and the minimum
energy of the continuous eigenstates in the system. We also derive the quantitative condition that this kind of
decay process takes place and discuss what kind of system is suitable to observe the decay.
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I. INTRODUCTION

Since the period of the classic works by Diracf1g and
Weisskopf and Wignerf2g, it has been a problem how to
describe the decay process of an unstable state following the
principles of quantum mechanics. As is well known, the sur-
vival probability of the initial statePstd, which concerns the
decay of the quantum state, is frequently described by the
exponential decay lawPstd=e−Gt. However, it is also known
that the decay process does not obey the exponential law
precisely, so it has always been a question of how the devia-
tion from the exponential decay law occurs, especially at the
late and early times of a decay processf3g.

Theorists are always motivated to work on this old prob-
lem when high-resolution experiments, which are accom-
plished by a new technology, are performed to detect the
deviation of the decay law from the exponentialf4–6g. In
addition, recent several experiments have reported the
measurement-induced suppression in quantum systems at the
early stage of decay, which may be a result of the quantum
Zeno effectsQZEd f7g.

As mentioned above, the deviation from the exponential
law at late and early times is often discussedf8,9g. At very
late times, the survival probabilityPstd must decrease more
slowly than the exponential and exhibits the inverse power
law of time Pstd, t−a, wherea is positive and depends on
the property of the unstable system. At early times, the sur-
vival probability decreases following a Gaussian lawsthe
square of timet2d, which appears inevitably in a quantum
processsand causes the QZEd. Thus the decay of the unstable
state proceeds through three stages in general. The initial
stage is characterized by a Gaussian law, the intermediate
stage by an exponential law, and the final stage by an inverse
power law.

In this paper we focus on a different mechanism of devia-
tion from the exponential law. Such a decay process occurs
in the case of small-Q-value s-wave decaysSQS decayd.
Here theQ value is defined by the difference between the
energy of the initially prepared statesdenoted byE0d and the
minimum energy of the continuous eigenstatessdenoted by
Ethd in the system. The small-Q-value decay has been dis-
cussed in some papersf9,10g. The point we would like to

emphasize here is as follows: in the case of the SQS decay,
we can observe not only the enhancement of the QZE, but
also no exponential period. This means that the deviation
from the exponential law can be observed easily if the SQS
decay system is prepared. We also derive the quantitative
condition that such a decay takes place.

This paper is organized as follows. In Sec. II, we show an
example of the SQS decay by using the one-dimensional
tunneling system with a box-type potential. The general de-
scription for an unstable system is formulated in Sec. III.
Using this formalism, we derive the quantitative condition
that the SQS decay occurs in Sec. IV. In Sec. V, we summa-
rize our results and discuss what kind of system exhibits
such a decay process.

II. AN EXAMPLE OF SQS DECAY
IN TUNNELING PHENOMENA

Before going into the general discussion, we show the
example of SQS decay in the tunneling phenomena. In this
section we discuss the one-dimensional tunneling problem
because only the radial part of the wave function is relevant
to thes-wave tunneling even in a three-dimensional system.

Let us consider the decay process through the one-
dimensional box-type potential depicted in Fig. 1. Param-
eters for characterizing the system are also shown in the

FIG. 1. The shape of the potential.
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figure. Here we assumeU0 is not so large that there is no
bound state. The goal here is to calculate the survival prob-
ability of the prepared state and show that the SQS decay is
realized in this system.

The survival probabilityPstd is defined by the nondecay
amplitudeastd asPstd= uastdu2. astd is given by

astd ; k0ueiHtu0l, s1d

whereu0l is the initially prepared state andH is the Hamil-
tonian of the system. Please note that we use the units"=1
in this paper. The nondecay amplitude can be expanded over
the energy eigenstatesuEl as

astd =E
0

`

dE rsEde−iEt, rsEd = zkEu0lz2. s2d

The functionrsEd is called the spectral function, in which all
information about the decay process is included. The energy
eigenstateuEl can be obtained analytically in this system as
detailed in Appendix A. Here we take the initial stateu0l as
the ground state in the well for the infinitely height barrier,

cisxd ; kxu0l =Î2

a
sinSpx

a
Dusx + adus− xd. s3d

The energy expectation value of this state isE0
;p2/ s2ma2d−U0 and theQ value is given byQ;E0−Eth

=p2/ s2ma2d−U0 because the spectrum of the continuum en-
ergy eigenstate starts from the zero energy. Using this initial
wave function, the spectral function of the system is obtained
analytically after some calculations, and given by

rsEd =
1

2ma2asEd
2pq sin2 r

sr2 − p2d2 , s4d

where

asEd = q2 + G0cos2r −
G

u
sin2r

+
G

u
S r

s
cosr sinhssud + sinr coshssudD2

, s5d

for the case that the energy is smaller than the potential bar-
rier EøU /b, while

asEd = q2 + G0cos2r −
G

u
sin2r

+
G

u
S r

s̃
cosr sinss̃ud + sinr cosss̃udD2

s6d

for the other caseEùU /b. Here we use the dimensionless
quantities to write down the spectral functionq=Î2mEa, r
=Î2msE+U0da, s=Î2msU /b−Eda, and s̃=Î2msE−U /bda.
Furthermore, the variables that characterize the potential are
also given by the dimensionless onesG=2maU, G0
=2ma2U0, andu=b/a.

For investigating the SQS decay, we define the decay rate
Gstd by

Gstd = −
d

dt
ln Pstd. s7d

This quantity is more convenient rather than the survival
probability itself because this rate is constant while the decay
process is governed by the exponential law. We performed
the integral in Eq.s2d numerically using the spectral function
Eq. s4d, and calculated the decay rateGstd. The results are
shown in Fig. 2. We studied two cases ofG0, that is,G0=0
and 8.957 335, which correspond to the casesQ=8.973 65
and 6.554 45310−4 fthe units ofQ ares2ma2d−1g, with fixed
G andU. As you see, the exponential decay law is observed
in the case that theQ value is not very small. On the other
hand, if theQ value is small enough the exponential period
no longer exists even at the timet,500s2ma2d when Pstd
decreases to the order ofe−1. This is nothing but an example
of the SQS decay.

In the following sections we investigate the SQS decay by
a general description and what kind of situation is necessary.

FIG. 2. Examples of decay. Here we setG=20, G0=0 for Q=8.973 65s2ma2d−1g, u=10−4 on the left andG=20, G0=8.957 335for Q
=6.554 45310−4s2ma2d−1g, u=10−4 on the right. Each quantity in the figure is averaged over a short time interval. The example on the right
corresponds to the SQS decay.
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We also derive the quantitative condition for the SQS decay
to take place.

III. GENERAL DESCRIPTION FOR UNSTABLE STATES

In this section we explain the general formalism of un-
stable state decay. Using this formalism the quantitative con-
dition for the SQS decay is derived in the next section.

For calculating the nondecay amplitude we use an exact
integro-differential equation by using the technique in Refs.
f11,9g. We introduce the projector onto the initial unstable
state,P;u0lk0u, and decompose the HamiltonianH as

H = H0 + V,

H0 ; PHP + s1 −PdHs1 −Pd, V ; H − H0. s8d

Define the energy eigenstatesual of H0; H0ual=Eaual. It is
then easy to confirm that the decay interactionV operates
only between the initial stateu0l and its orthogonal comple-
ment unl; V0n=Vn0

* Þ0, Vmn=V00=0. Here we use the inter-
mediate roman letters such asm,n to denote eigenstates pro-
jected by 1−P. The interactionV depends on the initially
prepared state. Although this formalism looks odd, we can
execute an exact analysis like a time development of the
unstable state using this tool.

We work in the interaction picture and expand the state at
a finite time t, using the basis of the eigenstate ofH0; uclI
=eiH0tucl=oacastdual. We thus write the time evolution equa-
tion for the coefficientcastd:

iċ0 = o
n

V0ne
−isEn−E0dtcn, iċm = Vm0e

isEm−E0dtc0. s9d

Here E0 is the energy of the initial unstable state;E0
=k0uHu0l. The nondecay amplitude is related to this coeffi-
cient by k0ue−iHtu0l=e−iE0tc0std. From the above equations, a
closed form of the equation for the nondecay amplitude
c0std;astd then follows:

ȧstd = −E
0

t

dt8 bst − t8dast8d, s10d

bst − t8d = k0uVIstdVIst8du0l =E
Eth

`

dE ssEde−isE−E0dst−t8d,

s11d

ssEd = o
m

dsE − EmduV0mu2. s12d

HereVIstd=eiH0tVe−iH0t is the decay interaction written in the
interaction picture and the functionssEd characterizes the
interaction between the unstable stateu0l and the other states
uml. The initial conditioncms0d=0 is used to derive the equa-
tion for astd, andEth is the threshold for the stateuml.

The standard technique to solve this type of integro-
differential equations10d is the one that utilizes the Laplace
transform, and we finally obtain the nondecay amplitude in
the form

astd =E
−`

` dE

2pi
FsE + i0+de−isE−E0dt, s13d

Fszd ;
1

− z+ E0 − Gszd
, Gszd =E

Eth

`

dE
ssEd
E − z

. s14d

The initial conditionas0d=1 is imposed in this derivation.
The analytic property of the functionFszd is evident; this

function is analytic except on the branch cut which runs from
the threshold valueEth to positive infinity on the real axis
sFig. 3d. As is well known, if the Riemann surface is consid-
ered by analytic continuation through the branch cutsand
regarding the original complexz plane as the first Riemann
sheetd, there is a pole on thesecondRiemann sheet near and
below the real axis if the decay interaction is weak enough.
The pole locationzp is determined by

zp − E0 + GIIszpd = zp − E0 +E
Eth

`

dE
ssEd
E − zp

+ 2pisszpd = 0,

s15d

where the analytic functionGszd, and henceFszd, is extended
into the second sheet byGIIsE− i0+d=GIsE+ i0+d through the
branch cut. The real functionssEd, which was originally
defined for realE.Eth, is also extended to the functionsszd
defined on the complex plane by analytic continuation. In
addition to this pole there may be some singularities on the
second Riemann sheet, but we ignore the effects of such
singularities in the following discussion. This approximation
is valid as discussed in Ref.f9g because these singularities do
not affect the decay phenomena except for the early stage.

Using the discontinuity of the analytic functionFszd
across the branch cut on the first Riemann sheet,

FsE + i0+d − FsE − i0+d = 2pissEduFsE + i0+du2, s16d

which is called the “elastic” unitarity relation, we can deform
the contour of integration on the real axis in Eq.s13d into the
sum of two contours, one around the pole as shown byCp
and the other alongCth in Fig. 3,

astd = SE
Cp

+E
Cth

D dz

2pi
Fszde−isz−E0dt. s17d

FIG. 3. The analytic structure of the complexz plane and the
contours of the integrals. The contours and the pole shown by the
broken line are on the second Riemann sheet.
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We consider the case that the unstable state initially pre-
pared is a metastable state, which means the decay interac-
tion is weak in comparison with the typical energy of the
system,Esys, induced from the oscillation in the well:s
!Esys,E0. Then the pole location on the second Riemann
sheet can be obtained approximately as

zp . E0 − PsE0d − ipssE0d, PsEd = PE
Eth

`

dE8
ssE8d
E8 − E

,

s18d

where P means the principal value of the integration. TheCp
integration in Eq.s17d can be performed without difficulty
by the residue theorem, and with the aid of the approxima-
tion above, this becomes

E
Cp

dz

2pi
Fszde−isz−E0dt . eiPsE0dte−pssE0dt. s19d

This integration gives anOs1d contribution to the nondecay
amplitudeastd. On the other hand, the integration alongCth

is of Oss /E0d, which gives only a small contribution. This is
because the integration can be approximated by

E
Cth

dz

2pi
Fszde−isz−E0dt

= − ieisE0−EthdtE
0

`

dy ssEth − iyduFsEth − iydu2e−yt,

. − ieisE0−EthdtuFsEthdu2E
0

`

dy ssEth − iyde−yt s20d

for sufficiently larget, and the factoruFsEthdu2 usually takes
the valuesE0−Ethd−2.

The dominance of theCp integration in Eq.s17d leads to
the exponential decay law

Pstd = uastdu2 . exps− Gptd, Gp = 2pssE0d, s21d

and this coincides with the familiar golden rule of perturba-
tion theory. From this investigation, we know that the pertur-
bative calculation gives satisfactory results in many cases.
We would, however, like to elucidate the time evolution in
finer detail, and study the conditions for breaking the expo-
nential decay law, especially the SQS decay, in the next sec-
tion.

IV. THE CONDITION FOR THE SQS DECAY LAW

We now derive the quantitative condition of SQS decay.
We also discuss the situations in general that exhibit devia-
tions from the exponential decay law.

The Cp integration around the polezp in Eq. s17d always
yields exponential time dependence, so nonexponential de-
cay is realized when theCth integration contributes to the
nondecay amplitudeastd by the same order as theCp inte-
gration.

From the evaluation of the contour integrations in Eq.
s17d, we can classify the nonexponential decays that satisfy

the condition mentioned above into three cases. In the fol-
lowing we describe them in detail.

The first one concerns the short time behavior and is
known as the QZE. At early timesstøEsys

−1d, the approxima-
tion used in Eq.s20d is no longer valid and the high-
frequency component ofssEd becomes important. From the
definition of the survival probability, we naively expect that
the short time behavior exhibits a deviation from the expo-
nential law, which is in the form of

zk0ue−iHtu0lz2 . 1 − t2sk0uH2u0l − k0uHu0l2d. s22d

Thus quantum mechanics appears to predict a quadratic form
of deviation in thet→0 limit.

The second one relates to the long time behavior. At late
times t@1/Gp the Cp integration is exponentially sup-
pressed, while theCth integration is not strongly suppressed
because the behavior ofssEd near the threshold is expressed
by ssEd=csE−Ethda, which leads to power law behavior of
the Cth integration,

E
Cth

dz

2pi
Fszde−isz−E0dt . − ieisE0−EthdtuFsEthdu2

3
cGsa + 1de−ipa/2

ta+1 . s23d

Here Gszd is Euler’s gamma function. Therefore the contri-
bution from theCth integration exceeds the one from theCp
integration at late times, and the decay law changes from
exponential to an inverse power law.

The smallQs=E0−Ethd value case is the last one on which
we shall mainly focus in this paper, that is, the SQS decay.
This case can be understood by investigation of the prefactor
uFsEthdu2 in Eq. s20d in detail:

uFsEthdu2 = fQ − PsEthdg−2. s24d

Since the functionPsEthd is of Ossd, this factor givesQ−2

when theQ value is not very small. However, if theQ value
is of the same order ass, the factoruFsEthdu2 becomes large
and the contribution from theCth integration becomes com-
parable with the one from theCp integration. In this case
decay that does not include the exponential period at all can
be realized, and this situation never occurs in other cases
described above.

We now derive the quantitative condition that the SQS
decay takes place. By virtue of the analytic property ofFszd,
we can express the amplitudeastd in the convenient form

astd =E
Eth

`

dE rsEde−isE−E0dt,

s25d

rsEd =
ssEd

fE − E0 + PsEdg2 + fpssEdg2 .

The functionrsEd is the spectral function as mentioned in
Sec. II. The schematic shape ofrsEd is shown in Fig. 4. This
function takes a real positive value whenE is larger than the
thresholdEth. rsEd drops quickly in the limitE→` because
this function must satisfy the normalization condition
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eEth

` dE rsEd=1, which is equivalent to the initial condition
as0d=1. In addition,rsEd has a peak aroundE,E0. fMore
precisely, the exact location and the width of the peak are
determined by the real and the imaginary parts ofzp in Eq.
s15d.g Therefore the dominance of theCp integration is
equivalent to the Breit-Wigner form ofrsEd or the limit
Eth→−`, as you can find from the shape ofrsEd.

The absence of the exponential decay law due to the small
Q value then occurs whenQ is smaller than the width of the
peak because the Breit-Wigner shape ofrsEd does not hold
in this situation. Thus the condition for the SQS decay is
given by

uImzpu
Q

ù 1, Q = Rezp − Eth. s26d

This is the final result of this section, the quantitative condi-
tion for the SQS decay to take place. In Ref.f9g, the authors
derived the opposite condition to Eq.s26d from the view-
point that nearly exponential decay takes place. The condi-
tion here is a necessary and sufficient condition, so our con-
dition is consistent with theirs.

To investigate the condition Eq.s26d for a given system,
this inequality is not very useful because the calculation for
the exact location ofzp from Eq. s15d is a tedious one. This
situation is somewhat improved if we use the approximation
Eq. s18d; then the condition turns to

Gp

E0 − Eth
ù 2. s27d

This is more convenient for practical use.
As an example, we show the contour plot of Imzp/Q for

the model discussed in Sec. II, which is depicted in Fig. 5.
The contour plot is drawn on thesG,Qd plane with fixedu.
The crosses in the figure correspond to the values used in
Fig. 2, and in the shaded region the parameters satisfy the
condition that the SQS decay takes place.

V. DISCUSSION AND SUMMARY

We now come to the stage of discussing what kind of
system is necessary for the SQS decay. The important point

we must pay attention to for discussing the condition Eq.
s26d is theQ dependence of Imzp, the imaginary part of the
pole location. TheQ dependence is determined by the func-
tion ssE0d as shown in Eq.s18d. When theQ value is small
enough, the dependence is determined by the threshold be-
havior of ssE0d, which originates from the spectral function
rsE0d as shown in Eq.s25d. Therefore the threshold behavior
of the spectral function, taken to bersE0d=csE0−Ethda

=cQa, is the key quantity in this problem. Here the coeffi-
cient c is a constant dependent on the system. The SQS de-
cay is expected when the power ofrsE0d near the threshold,
a, is smaller than 1.

As is well known, the threshold behavior of the spectral
function is determined by the quantum number of the orbital
angular momentum in a scattering processse.g., a particle
decay or a radioactive processd, which we denotel f12g. The
threshold behavior is given byrsE0d=csE0−Ethdl+1/2. There-
fore s-wavesl =0d decay is necessary for the SQS decay in
these processes, and the SQS decay never occurs via higher-
l sl ù1d processes.

Let us move on to the decay process through tunneling.
For the one-dimensional model discussed in Sec. II, the
threshold behavior is given by

rsE0d =
Q1/2

4pma2as0d
, Q = E0 − Eth, s28d

which is the same as in the case of thes-wave decay. This is
the very reason that the system exhibits the SQS decay when
the Q value is small enough. You might think that such a
threshold behavior is due to a peculiarity of the potential.
This is, however, not correct. To check this, let us consider a
system with the modified potential shown in Fig. 6. The
spectral function of this system can also be obtained analyti-
cally using Bessel functions. The threshold behavior again
coincides with the case of thes-wave decay. The form of the
spectral function and the threshold behavior are given in Ap-
pendix B.

This result is naturally understood if we consider the
model with spherical symmetry in three dimensions. Since
the angular momentum is a conserved quantity in this case,
the s-wave decay process can always be reduced to a prob-
lem in a one-dimensional system. Therefore the threshold

FIG. 4. The typical shape of the spectral functionrsEd. The SQS
decay is realized when theQ value is smaller than the width of the
peak.

FIG. 5. The value of Eq.s26d is depicted as a contour map in the
sG,Qd plane.
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behaviors of all models in one dimension with nonsingular
potential are the same as the one ofs-wave decay.

We summarize the results of this paper. The decay of the
unstable state with smallQ value in thes-waveprocesssSQS
decayd exhibits the interesting feature that there isno expo-
nential period. If we can make practical use of this mecha-
nism, we will easily observe the deviation from the exponen-
tial law. As mentioned above, the SQS decay takes place in a
system described by ans-wave process or a one-dimensional
system. However, it is difficult to prepare a setup of smallQ
value in experiments on particle decay or radioactive pro-
cesses, because theQ values in such cases are fixed by na-
ture and we cannot control them. On the other hand, the
tunneling phenomenon may be hopeful to observe the SQS
process because we may achieve sufficiently smallQ more
easily. Unfortunately, experiments to look for the SQS decay
have not been carried out until now. It is important to discuss
an actual physical system which realizes the SQS decay, but
this issue is beyond the scope of this paper and remains as a
future problem. We believe that this kind of experiment is
interesting to observe the nonexponential decay of an un-
stable quantum system.
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APPENDIX A

In this appendix, we calculate the spectral functionrsEd
= zkEu0lz2 of the one-dimensional model with a box-type po-
tential that is used in Sec. II. The explicit form of the energy

eigenstateuEl is necessary in this computation and it can be
obtained analytically:

fEsxd = kxuEl

= 5A sinrsx/a + 1d for s− a ø x ø 0d,

B sinhssx/ad + C coshssx/ad for s0 , x , bd,

D sinsqx/ad + E cossqx/ad for sb ø xd,

sA1d

for E,U /b and

fEsxd = kxuEl

= 5A sinrsx/a + 1d for s− a ø x ø 0d,

B sinss̃x/ad + C cosss̃x/ad for s0 , x , bd,

D sinsqx/ad + E cossqx/ad for sb ø xd,

sA2d

for EùU /b. All parameters such asa, b, q, r, s, and s̃ are
defined in Sec. II. The coefficientsA, B, C, D, andE can be
determined by the junction condition atx=−a, 0, b and the
normalization condition of the eigenstates,kEuE8l=dsE
−E8d. For example, the coefficientA is given by

uAu2 =
q

2ma3pasEd
, sA3d

and others can be obtained similarly. The functionasEd is
defined in Eqs.s5d and s6d. The spectral function is defined
by the overlap of the energy eigenstateuEl and the initially
prepared stateu0l given in Eq.s3d. Using the eigenstate ob-
tained above, the spectral function is computed as

rsEd = zkEu0lz2 = UE dx fEsxd*cisxdU2

=
1

2ma2asEd
2pq sin2r

sr2 − p2d2 . sA4d

APPENDIX B

In this appendix, we write down the explicit form of the
spectral function of the model whose potential is depicted in
Fig. 6 and which is used in the discussion of Sec. V. The
spectral function of this system can also be obtained analyti-
cally using Bessel functions, and the computation of the
spectral function can be performed in the same way as in
Appendix A. After some calculations we obtain

rsEd =
1

2ma3k3sue1u2 + ue2u2d
p sin2sk1ad
sk1

2a2 − p2d2 , sB1d

wherek1=Î2mE, k2=Î2msh1−Ed, andk3=Î2msE−h2d. All
parameters characterizing the potential such asa,… ,d and
h1, h2 are defined in Fig. 6. The variablese1 ande2 are given
by

FIG. 6. The modified potential.
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Se1

e2
D = F−1sk3dTRszddTR

−1szcdPhF−1s− ik2dTLszbdTL
−1szadSd1

d2
D .

sB2d

L andR appearing as the subscripts of the matrixT represent
the slopes of the barrier at the left and the right sides,L
=2ma3h1/ sb−ad, R=2ma3sh1−h2d / sd−cd. The matrices
Fskd andTtszd are defined by

Fskd ; S 1 1

ika − ika
D, Ttszd ; S B1/3szd B−1/3szd

t1/3B1/38 szd t1/3B−1/38 szd
D .

sB3d

The arguments of the matrix,za,… ,zd are the rescaled posi-
tions of a,… ,d, which are defined by za=−L1/3sb
−adE/ sah1d, zb=L1/3sb−adsh1−Ed / sah1d, zc=R1/3sd−cdsh1

−Ed / fash1−h2dg, zd=R1/3sd−cdsh2−Ed / fash1−h2dg. The
function B±1/3szd is defined by the Bessel functionJ±1/3 as

B±1/3szd ;
Î− pz

3
J±1/3S2

3
s− zd3/2D , sB4d

andB8szd means the derivative with respect toz. d1 andd2 at
the right side in Eq.sB2d are the values of the wave function

and its derivative at the origin, which are given byd1
=sinsk1ad, d2=k1a cossk1ad. Finally, the matrixPh is given
by

Ph; S ek2sc−bd e−k2sc−bd

k2aek2sc−bd k2ae−k2sc−bd D . sB5d

In the rest of the appendix we show that the threshold
behavior of this system is the same as that of thes-wave
decay. We expand the spectral function with respect tosE
−h2d in the vicinity of the threshold. The components of the
matrices in Eq.sB2d, TRszdd, TR

−1szcd, Ph, F−1s−ik2d, TLszbd,
and TL

−1szad, and the variablesd1,d2 become constant at the
leading order, and only the matrixF−1sk3d hasE dependence
such that

F−1sk3d .
1

2
S1 + ik3

−1

1 − ik3
−1D . sB6d

Thereforee1 and e2 are proportional tok3
−1. As a result, the

threshold behavior of the spectral functionrsEd of Eq. sB1d
is of the formrsEd~k3=sE−h2d1/2, which is the same as the
result ofs-wave decay.
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