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Collision Avoidance Method of Humanoid
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Abstract—This paper describes a collision avoidance method
for a biped robot with an upper body. We propose a method
wherein the robot stops in front of an obstacle by generating
arm force. When the robot detects the obstacle by the arm tip, it
should stop short of the obstacle to avoid crash. Hence, we propose
trajectory planning in consideration of the pushing force of the
arm. The arm force is controlled to be generated as a function of
the distance from the robot body to the obstacle. The closer the
robot approaches the obstacle, the larger the arm force becomes.
As a result, the robot can stop by utilizing the arm force. In case the
obstacle is unmovable, the robot can stop by exerting arm force. If
it is movable, the robot can continue walking by pushing it. In this
paper, the linear inverted pendulum mode (LIPM) and the idea
of orbital energy are introduced, and then, we extend LIPM and
orbital energy in consideration of the dynamics of the arm force.
The extended orbital energy is utilized to discriminate whether the
robot can stop or not and to modify the trajectory of the robot to
avoid collision.

Index Terms—Arm force, biped robot, collision avoidance,
humanoid robot, pushing motion, trajectory planning, walking
robot.

I. INTRODUCTION

L EGGED ROBOTS have been developed in recent years.
One of the very important features of legged robots is

that they can step on arbitrary landing points. Therefore, legged
robots have the ability to step over obstacles, such as holes,
steps, and bumps. From this point of view, they are superior
to robots with wheels or crawlers in traveling around a human
environment that has rugged terrain.

Biped robots have already been able to walk just like hu-
man beings. Löffler et al. investigated a sensor system and
the control schemes of their humanoid robot [1]. Tan et al.
studied a method for a humanoid robot to learn multiple tasks
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in an unknown environment [2]. Furthermore, biped robots
have already been able to run [3]–[6]. Much research about
biped robots has focused on walking motion itself. However,
biped robots are expected not only to walk (or to run), but
also to do some work using arms of upper bodies instead of
those of human beings. Although walking motion has been
investigated for about 30 years, cooperative motion between the
upper body and the lower body has been discussed only for the
last decade. In order that humanoid robots become valuable in
human society, research about the cooperative motion should
be further developed.

Harada et al. studied the zero moment point (ZMP) analysis
of a humanoid robot under pushing motion [7]–[9]. The ZMP
is an index that evaluates walking stability. They proposed the
generalized ZMP, which takes into account the dynamics of the
pushing force. They defined the fundamental ZMP trajectory
based on a trajectory with no contact force on the arms. When
the robot pushes an object, the fundamental ZMP trajectory
is modified by a certain amount to walk stably. Hwang et al.
studied the static stability of the motion of pushing a wall and
the motion of twisting a valve while the humanoid robot does
not change the foot position [10]. Yoshida et al. investigated
a humanoid robot that has tasks on the arms [11], [12]. When
external force is small or the arm tip moves in narrow space,
the robot remains in the double support phase. On the other
hand, when large force affects the robot or the arm tip has
to move in wide range, the robot makes a step to recover its
stability.

As mentioned above, most researchers focused on how hu-
manoid robots keep on walking (or standing) stably when the
arms of the upper body do some particular work. An important
aim of these researches is to make the arms do desired work. As
a result, the upper body and the lower body have separate tasks,
e.g., pushing and walking.

Kuniyoshi et al. studied dynamic roll-and-rise motion, taking
into account the dynamics of the upper body of a humanoid
robot [13], [14]. The action of the upper body is considered as
an important element to accomplish the dynamic roll-and-rise
motion. The upper and lower bodies have the same motive, i.e.,
to achieve the desired motion.

In this paper, we also consider the pushing motion of the
arms of a humanoid robot. However, arm force is exerted to
support and to stabilize walking motion. The upper body has
the same motive as the lower body. After contacting an obstacle,
the robot stabilizes walking motion by utilizing arm force, and
then, the robot does some work with the arms, e.g., pushing the
obstacle. One of the aims of this paper is to utilize the arms to
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accomplish the desired walking motion. In addition, the arms
are also used to detect the obstacle and to discriminate whether
the obstacle is movable or not.

There is very little research that utilizes the arm force for
stopping motion. Robots in unknown environments contact
many objects, such as walls, doors, and human beings. We
define these objects as “obstacles.” If the arm tip detects the
obstacle, the first thing the robot will do is to stop in front
of it. However, modifying the walking trajectory needs enor-
mous ankle torque if all energy of walking is suppressed only
by the ankle torque. Unless the robot can generate enough
ankle torque, it may crash to the obstacle. Even if the ankle
torque can be generated sufficiently, walking motion may be
destabilized. In either case, the robot cannot remain in a stable
condition.

Therefore, we propose a trajectory planning of a humanoid
robot with arm force. The robot pushes an obstacle using its
arms in order not to crash against the obstacle. Under this
motion, the arm force should be modified based on the distance
from the obstacle. At the moment of contact, stiffness of the
arm should be zero so that the robot has compliance with
the obstacle. Thereafter, the arm force increases gradually to
decelerate the robot body and to detect whether the obstacle is
movable or not. Hence, the arm force is modified corresponding
to the distance from the obstacle. It is appropriate for contact
motion that the closer the robot approaches the obstacle, the
larger the arm force should become. If the robot exerts sudden
large arm force to the obstacle, it may move far away from
the robot or it may be damaged. In this paper, the arm force
is controlled to be in proportion with the distance from the
obstacle.

In order to plan the trajectory, we develop the index of
orbital energy [15] proposed by Kajita et al. In this paper,
linear inverted pendulum mode (LIPM) is applied to generate
a walking trajectory, and then, we extend the index of orbital
energy by adding a term of arm force. Based on the extended
index, the robot can modify the trajectory to avoid collision.
In addition, we are able to predict whether a robot in a certain
condition can stop short of the obstacle. When it is expected
that the robot cannot stop, larger force should be exerted from
the beginning of the contact. Consequently, the robot adapts
to an unknown environment by modifying a walking trajectory
appropriately.

We assume that contact motion between the obstacle and
the arm tip is stable. The robot has no external sensors (visual
sensor, ultrasonic sensor, and so on) to detect an obstacle
beforehand. The robot can detect the obstacle only after the arm
contacts it. The upper body and the lower body are coupled
mechanically. We consider the motion of the robot in the
sagittal plane.

This paper is organized as follows. In Section II, the model of
the humanoid robot that has an upper body with arms is shown.
In Section III, LIPM and its orbital energy are introduced. In
Section IV, extending LIPM and the idea of orbital energy,
we propose a collision avoidance method with pushing motion
of the arms. Simulation results and experimental results are
shown in Sections V and VI, respectively. Finally, this paper
is concluded in Section VII.

Fig. 1. Humanoid robot.

Fig. 2. Leg structure.

II. MODELING

Fig. 1 shows the humanoid robot. The legs of the robot
have a parallel link mechanism. A feature of the parallel link
mechanism is that all actuators of the legs exist at the trunk of
the robot. It is reasonable to apply LIPM since the mass of the
robot is concentrated at the trunk.

The structure of the leg is shown in Fig. 2. Each a is an
active joint, and e is an encoder. Subscript r and i in ari and er

represent right leg and joint i, respectively. The base coordinate
system Σb is defined at the center of the located joint plane.
Hereinafter, we represent only kinematics of the right leg and
the right arm. Those of the left leg and the left arm can also be
expressed in the same way.
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Fig. 3. Left leg model.

Inverse kinematics can be obtained as follows:

θleg = F
(
bpfoot,

bAfoot

)
(1)

where Σb is the base coordinate system and θleg is the active
joint angle vector (= [θ11, θ12, θ13, θ21, θ21, θ33]T ) in Σb, as
shown in Fig. 3. F (·) is the function of kinematic relationship
from the foot position and attitude to joint angles. bpfoot ∈ �3

is the position vector of each foot in Σb, and bAfoot ∈ �3×3

is the direction matrix, which expresses the posture of the
foot in Σb.

The Jacobian matrix for the parallel link mechanism J leg is
defined as follows:

θ̇leg = J leg

[
bpfoot
bωfoot

]
(2)

where J leg is the Jacobian matrix of the leg and bωfoot ∈ �3

is the angular velocity vector of the foot. The Jacobian matrix
for the parallel link mechanism is unlike that of a serial link
mechanism. Kinematics and dynamics of the leg are elaborated
in [16].

The model of the upper body in the sagittal plane is shown
in Fig. 4. In this paper, we simplify the structure of the robot
by assuming that the robot has only one arm. In order to apply
a robot with two arms, the only differentia is that arm force
becomes half.

The arm tip position in Σb is represented as follows:

bxtip =
[

l1 cos θ1 + l2 cos(θ1 + θ2) + bxsh

−l1 sin θ1 − l2 sin(θ1 + θ2) + bzsh

]
(3)

where
bxtip arm tip position vector (= [bxtip, bztip]T ) in Σb;
bxsh shoulder joint position vector (= [bxsh, bzsh]T ) in

Σb;
θarm arm joint angle vector (= [θ1, θ2]T );
li length of arm link i.

Fig. 4. Kinematic relationship.

Differentiating (3), we can obtain a Jacobian matrix of the arm
Jarm(θarm), i.e.,

bẋtip

= Jarm(θarm)θ̇arm (4)

Jarm(θarm)

=
[ −l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
−l1 cos θ1 − l2 cos(θ1 + θ2) −l2 cos(θ1 + θ2)

]
.

The relationship between joint torque and manipulating force
at the tip of the arm is represented as follows:

τ push =Jarm(θarm)T fpush (5)[
τ1

τ2

]
=
[−l1 sin θ1 − l2 sin(θ1 + θ2)

−l2 sin(θ1 + θ2)

]
fpush,x (6)

=
[

bztip − bzsh

−l2 sin(θ1 + θ2)

]
fpush,x (7)

where τ push = [τ1, τ2]T is a joint torque vector of the arm,
and fpush = [fpush,x, 0]T is arm force vector exerted at the
arm tip to the obstacle. In this paper, the robot is controlled
to generate the arm force only in the horizontal direction, i.e.,
the robot pushes the obstacle horizontally. This is appropriate
when LIPM is introduced since the center of gravity (COG) of
the robot can be controlled to move horizontally.

Since the robot’s legs have a smaller mass than that of the
arms, as shown in Table I, the dynamics of the swing leg and
the arms can be negligible, and the COG position of the robot
scarcely varies. It is more appropriate to apply LIPM to parallel
link robots than to serial link robots, since the robots with
parallel link mechanism are more suitable to be approximated
to an inverted pendulum.
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TABLE I
PARAMETERS OF THE ROBOT

The relationship between (7) and the torque limit of each
arm joint determines the maximum arm force in the horizontal
direction fmax, i.e.,

fmax = min
[∣∣∣∣ τ1,max

bztip − bzsh

∣∣∣∣ ,
∣∣∣∣ τ2,max

−l2 sin(θ1 + θ2)

∣∣∣∣
]

(8)

where fmax is the maximum arm force in horizontal di-
rection and τmax is the arm joint torque limit vector (=
[τ1,max, τ2,max]T ). Hereinafter, we express each position in the
supporting point coordinate system Σs, as shown in Fig. 4. The
origin of Σs is defined at the ankle joint of the supporting leg.
We define the point as the “supporting point.” Variables in the
Σs have no superscript on their left side. Each variable in Fig. 4
is represented as follows:

Σs supporting point coordinate system;
xb COG position vector (= [xb, zb]T ) in Σs;
xtip arm tip position vector (= [xtip, ztip]T ) in Σs;
lcog length from supporting point to COG;
ltip length from supporting point to arm tip;
θ angle from vertical to COG around Σs;
φ angle from vertical to arm tip around Σs;

where

ltip =
√

x2
tip + z2

tip (9)

zb = lcog cos θ (10)

ztip = ltip cos φ. (11)

III. LIPM AND ORBITAL ENERGY

In this section, LIPM and the idea of orbital energy [15]
proposed by Kajita et al. are introduced. In LIPM, a robot is
modeled as an inverted pendulum, which has point mass (i.e.,
the COG of the robot). It is assumed that mass of the leg
is negligible, and that the leg length can be variable. Conse-
quently, the dynamics of the pendulum becomes very simple.
We can control legged robots easily based on the simple model
of LIPM.

When the COG height of the robot zb is controlled to be
constant, the acceleration of the mass of the pendulum is
represented as follows:

ẍb(t) =
g

zb
· xb(t) (12)

Fig. 5. Phase plane of LIPM.

where g is the gravity acceleration and t is time. The robot
ideally needs no ankle torque as long as the robot tracks the
trajectory of LIPM if the whole system of the robot can be
assumed as a point mass system. An analytical solution of (12)
can be derived as follows:

xb(t) =xb0 cosh(ωt) +
ẋb0

ω
sinh(ωt) (13)

ẋb(t) =
{

xb0 sinh(ωt) +
ẋb0

ω
cosh(ωt)

}
ω (14)

ω =
√

g

zb

where xb0 = xb(0) and ẋb0 = ẋb(0) are the boundary
conditions.

Furthermore, orbital energy on LIPM is denoted as follows:

E =
ẋb(t)2

2
− ω2xb(t)2

2
= const. (15)

where E is the orbital energy. We can understand that orbital
energy is the virtual energy of walking. The first term on the
right-hand side represents kinetic energy of the COG. The
second term on the right-hand side represents potential energy
based on a virtual gravitational field.

When E > 0, the body swings from the minus side to the
plus side in x-axis. E = 0 represents the equilibrium state.
When E < 0, the body never goes over the supporting point.
From this point of view, orbital energy is an index that discrim-
inates whether the robot stops or not.

In addition, orbital energy can be obtained by the boundary
conditions [xb0 = xb(0) and ẋb0 = ẋb(0)], as shown by the
following equation:

E =
ẋ2

b0

2
− ω2x2

b0

2
. (16)

Therefore, we can discriminate at the beginning of each step.
The phase plane of xb(x) is shown in Fig. 5. The origin of the
phase plane is the equilibrium point.
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Fig. 6. Pushing motion of LIPM.

IV. PROPOSED METHOD

In this section, we propose a collision avoidance method with
arm force. This method shows that the robot can stop in front of
the obstacle by exerting the arm force. We will extend LIPM
by adding the arm force and will extend the orbital energy
[15] in consideration of arm force to discriminate whether the
robot can stop short of the obstacle. Based on the extended
orbital energy, we propose modifying the pushing force and the
trajectory of the robot.

A. Extended LIPM

When the arm tip pushes the obstacle as shown in Fig. 6,
fpush acts on the arm tip. For simplicity, we assume that the
pushing force is generated only in the horizontal direction, i.e.,
fpush,x. This is appropriate when LIPM is introduced to keep
the COG height constant.

We will consider the trajectory of the robot based on the COG
motion. Therefore, fpush(= fpush,x) should be transformed to
fcog, which is the apparent force on the COG of the robot,
as shown in Fig. 4. Since LIPM is introduced, the following
equilibrium of moment around the supporting point is derived:

fcog cos θ · lcog = fpush cos φ · ltip. (17)

Substituting (10) and (11) in (17) yields

∴ fcog =
ztip

zb
· fpush (18)

where fcog is the apparent force on COG. Considering the
pushing force, we extend LIPM as follows:

ẍb(t) =
g

zb
· xb(t) − fcog

m
(19)

where m is the total mass of the robot. Note that the COG height
remains constant and that no ankle torque is needed when the
robot tracks the trajectory of (19). The ZMP of the robot is

always on the supporting point if no ankle torque is generated.
As a result, the walking motion is stable.

In unknown environments, a robot should not push an obsta-
cle at the moment of contact, but should be compliant to the
obstacle. Then, the robot increases the arm force gradually to
stop and to discriminate whether the obstacle is movable or
not. If the obstacle is unmovable like a wall, the robot must
stop before the obstacle by utilizing the arm force. On the other
hand, if the obstacle is movable like a door or other objects, the
robot can push it and can walk forward.

From this point of view, in this paper, fpush is modified from
zero to a certain value linearly in proportion to the distance from
the obstacle. Hence, we introduce the following function of the
pushing force:

fpush = karm (xb(t) − xc)

karm =
fmax

xw − xc − lr
(20)

where
xw position of obstacle’s surface;
xc COG position at the moment of contact, as shown in

Fig. 6;
lr distance from COG to robot’s front surface;
karm spring coefficient of arm force;
fmax maximum arm force.

lr is determined by the mechanical structure of the robot. fmax

is determined by (8).
From (18) and (20), fcog can be expressed as

fcog = kcog (xb(t) − xc)

kcog =
ztip

zb
· karm. (21)

Substituting (21) into (19) yields the generalized solution of
(19), i.e.,

xb(t) =

(
xc+

af

ω2
f

)
cosh(ωf t)+

ẋc

ωf
sinh(ωf t)− af

ω2
f

(22)

ẋb(t) =

{(
xc+

af

ω2
f

)
sinh(ωf t)+

ẋc

ωf
cosh(ωf t)

}
ωf (23)

ωf =
√

g

zb
− kcog

m

af =
kcogxc

m
.

When the robot contacts the obstacle, the trajectory of the
conventional LIPM [(13) and (14)] should be switched to the
trajectory with arm force [(22) and (23)]. On this trajectory
planning, the COG locomotion is continuous in the velocity
dimension.

After the contact occurs, the robot should stop in front of
the obstacle. In order to discriminate whether it can stop before
colliding to the obstacle, we introduce the index of orbital
energy in Section IV-B.
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Fig. 7. Phase plane of LIPM with arm force (k = 150).

B. Extended Orbital Energy

We extend orbital energy in consideration of arm force. The
extended orbital energy depending on (19) is derived as follows:

Ef =
ẋb(t)2

2
− ω2

fxb(t)2

2
− afxb(t)

= const. (24)

Then, we will derive an equilibrium point of (24). Setting
ẋb(t) = 0 in (24) yields

Ef = −ω2
f

2

(
xb(t) +

af

ω2
f

)2

+
a2

f

2ω2
f

when ẋb(t) = 0. (25)

The robot is in the equilibrium state when the orbital energy
in (25) is the maximum, i.e., xb(t) = −af/ω2

f . On this con-
dition, the extended orbital energy on the equilibrium point is
derived as

Ef,equi =
a2

f

2ω2
f

(26)

where Ef,equi is the Ef on equilibrium point. When Ef >
Ef,equi, the body swings from the minus side to the plus side
in x-axis, i.e., the robot crashes to the obstacle. When Ef <
Ef,equi, the body stops in front of the obstacle. When the robot
is in the state that satisfies Ef < Ef,equi, the robot can stop in
front of the obstacle by exerting the arm force. Aspects of the
phase plane are shown in Fig. 7. Ef = Ef,equi represents the
equilibrium state. Note that the equilibrium point is shifted to
the right, compared with Fig. 5. For example, if the robot has the
same boundary conditions ẋb0 = 0.6 and xb0 = −0.1, the robot
in Fig. 5 (without arm force) goes over the supporting point.
On the other hand, the robot in Fig. 7 (with arm force) goes
backward. Considering the index of Ef , we can discriminate
whether the robot stops in front of the obstacle.

C. Modification of Step Length

In this section, we derive the desired next step position of the
swing leg.

Fig. 8. Motion of next step.

In Section IV-D, we described that the extended orbital
energy can be modified by exerting the arm force. By modifying
the extended orbital energy, we can control the robot to avoid
collision with the obstacle. Therefore, it is also important where
the robot steps next, since orbital energy can be changed easily
by modifying the next step length. In order to stop in front of the
obstacle, the robot should make the next step at proper position.

The moment of contact is defined as tc. After the con-
tact occurs, the trajectory of the robot is switched from the
conventional LIPM [(13) and (14)] to LIPM with arm force
[(22) and (23)]. Then, we will modify a trajectory of the
swing leg to accomplish a desired landing point. When the
robot keeps a constant walking cycle T , boundary conditions
(the COG position and velocity) of the next step are uniquely
determined as xb(Trest) and ẋb(Trest) in (22) and (23), respec-
tively. Here, Trest = T − tc. We define each parameter in Fig. 8
as follows:

tc time at contact;
Trest duration from contact to the next step;
lrest distance from COG position at t = tc to at t = T ;
lstop distance from COG position at t = T to next support-

ing point of foot;
Σ̂s supporting point coordinate system of next step.

Here, lstop determines the position of the next step. lrest =
xb(T ) − xb(tc). We will evolve the following discussion on the
assumption that lrest > 0. In case that lrest ≤ 0, arm force is
too large, and the robot should stop when the COG velocity
becomes zero. If pushing force is too large, the strategy in
Section IV-D should be applied.

Hereinafter, we consider the coordinate system of the next
step Σ̂s, as shown in Fig. 8. Here, “ˆ” denotes the coordinate
system of the next step. For instance, the COG position during
the next step is represented as x̂b(t). The boundary conditions
are determined as follows:

x̂b0 = − lstop

˙̂xb0 = ẋb(Trest).
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Apparent force on the COG is obtained as

f̂ = kcog (x̂b(t) + lstop + lrest) (27)

where −lstop ≤ x̂b(t). The generalized solution can be derived
on these boundary conditions, i.e.,

x̂b(t) =

(
x̂b0+

âf

ω2
f

)
cosh(ωf t)+

˙̂xb0

ωf
sinh(ωf t)− âf

ω2
f

(28)

˙̂xb(t) =

{(
x̂b0+

âf

ω2
f

)
sinh(ωf t)+

˙̂xb0

ωf
cosh(ωf t)

}
ωf (29)

âf = − kcog(lstop+lrest)
m

.

Extended orbital energy on the next step Êf can be de-
rived as

Êf =
˙̂xb(t)2

2
− ω2

f x̂b(t)2

2
− âf x̂b(t). (30)

Setting ˙̂xb(t) = ˙̂xb0 and x̂b(t) = −lstop in (30) derives Êf .
The COG of the robot stops just above the supporting point

when Êf is equal to 0. In this case, lstop is derived as

lstop =

√(
kcoglrest

m

)2

+ ˙̂x
2

b0

(
kcog
m + g

zb

)
− kcoglrest

m

kcog
m + g

zb

. (31)

By setting lstop as (31), the robot can stop just above the
supporting point. After the COG of the robot reaches above the
supporting point, spring coefficient kcog should be modified to
zero. Otherwise, the robot would be pushed back.

The COG of the robot stops with generating arm force when
Êf = Êf,equi. In this case, lstop is derived as follows:

lstop =
zb

g

(
˙̂xb0

√
g

zb
− kcog

m
− kcoglrest

m

)
. (32)

By setting lstop as (32), the COG goes over the supporting
point, and then, it stops. The arm keeps on pushing the obstacle
after the robot stops.

This strategy of determining the next supporting point is
applicable in the case where the robot makes two steps or more
during pushing motion.

The walking motion of the robot is always stable on the
proposed trajectory since the ZMP of the robot ideally remains
to be at the supporting point of the LIPM.

D. Modification of Pushing Force

If kcog is too large, the COG may not go over the supporting
point, i.e., the robot will go backward. It is undesirable in many
situations. Therefore, in this case, the spring coefficient of the
arm should be modified to be smaller.

Applying the following spring coefficient, the robot will stop
just above the supporting point:

kcog = m

(
ẋ2

c

x2
c

− g

zb

)
. (33)

This spring coefficient is derived by setting Ef = 0 in (30).
kcog can be calculated when the boundary conditions are given
as xc and ẋc. After the COG of the robot reaches above the
supporting point, spring coefficient should be modified to zero.
Otherwise, the robot would be pushed back.

In order that the robot stops with generating arm force,
kcog should be modified to satisfy Ef = Ef,equi. The boundary
conditions are given as xc, xb, and ẋb. kcog can be calculated as

kcog =
m
[

2gxb0(xb0−xc)
zb

+ ẋ2
b0

{√
1 + 4gxc(xb0−xc)

zbẋ2
b0

− 1
}]

2(xb0 − xc)2
.

(34)

In this case, the robot goes over the supporting point, and then,
the robot stops in front of the obstacle.

If the obstacle moves, the trajectory of (22) and (23) will be
switched to the following trajectory, which is based on constant
force fv . Constant force is exerted in case that the viscous
friction between the obstacle and the ground is dominant, i.e.,

x̄b(t)=
(
x̄b0− fv

mω2

)
cosh(ωt)+

˙̄xb0

ω
sinh(ωt)+

fv
mω2

(35)

˙̄xb(t)=
{(

x̄b0− fv

mω2

)
sinh(ωt)+

˙̄xb0

ω
cosh(ωt)

}
ω. (36)

x̄b0 and ˙̄xb0 are boundary conditions of x̄b(t) and ˙̄xb(t) at the
moment when the trajectory switches to (35) and (36). Here,
“−” denotes the coordinate system that is switched after the
pushing force becomes constant. With the trajectory of (35) and
(36), the stable region of the ZMP has a margin that deals with
a quantity of force variation.

V. SIMULATION

In simulations, each parameter was set as follows: fmax =
30 N, lr = 0.10 m, length of stride was 0.1 m, and walking
cycle was 1.0 s. An obstacle was assumed as a spring-damper-
modeled wall. The trajectory of the swing leg was given by the
polynomial that achieved the continuity of acceleration.

Results of the simulations are shown in Figs. 9 and 10. In
Fig. 9, the obstacle was set at 0.64 m from the COG of the robot.
On the other hand, the obstacle was set at 0.60 m in Fig. 10.

A dash line denotes the moment of contact with the obstacle
in each figure. Arm force in Figs. 9(b) and 10(b) was repre-
sented only in the left arm. The right arm generated the same
amount of force. From Figs. 9(b) and 10(b), pushing motion of
spring characteristic was achieved substantially although there
is a steady error. The ZMP of the robot is shown in Figs. 9(c)
and 10(c). The ZMP existed in the stable region of the plantar
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Fig. 9. Simulation results (obstacle was at 0.64 m). (a) COG position in x-axis
direction. (b) Arm force. (c) ZMP trajectory.

surface. The fact shows that the robot could remain on walking
stably.

As shown in Fig. 9, the robot modified the trajectory
smoothly to stop after the robot had contact with the obstacle
at around 2.9 s. The length of stride was modified from 0.1

Fig. 10. Simulation results (obstacle was at 0.60 m). (a) COG position in
x-axis direction. (b) Arm force. (c) ZMP trajectory.

to 0.083 m. The robot could stop around 0.3 m short of
the obstacle at 4.1 s. At the moment of the next step after
the contact, orbital energy Ef was modified from 0.0064 to
0.0006 m2/s2. The COG of the robot stopped at 0.03 m forward
from the supporting point. The robot could remain standing
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with constant pushing force of about 4.2 N. Due to contact of
the swing leg, the ZMP moved at 4 s.

As shown in Fig. 10, the robot modified the trajectory
smoothly to stop after the robot had contact with the obstacle at
around 2.2 s. In this simulation, the robot did not make the next
step after the contact. The robot could stop around 0.4 m short
of the obstacle at 3 s. Orbital energy Ef was modified from
0.0064 to 0.0002 m2/s2 at the moment of contact. The COG of
the robot stopped at 0.002 m forward from the supporting point.
The robot could remain standing with constant pushing force of
about 1.3 N.

From the simulation results, it is verified that the robot can
stop short of the obstacle with the proposed method.

VI. EXPERIMENT

In the experiment, each parameter was set as follows: fmax =
15 N, lr = 0.20 m, length of stride was 0.1 m, and walking
cycle was 1.0 s. Compared with simulations, fmax and lr were
set to have a margin of safety. The aluminum board was placed
in front of the robot as an obstacle.

The results of the experiment are shown in Fig. 11. The robot
started to walk at 2 s. The robot had contact with the obstacle
at around 3.6 s. Then, the robot switched to the proposed
trajectory. The length of stride was modified into 0.077 m. The
robot could stop around 0.1 m short of the obstacle at 4.8 s.
Orbital energy Ef was modified from 0.0064 to 0.0015 m2/s2,
and kcog was set to be equal to 102 N/m at the moment of
contact.

As shown in Fig. 11(a), the robot modified the trajectory
smoothly to stop. External force was estimated by the reaction
force observer [17]. From Fig. 11(b), pushing motion of spring
characteristic was achieved substantially although there was an
offset on estimated force (about −2 N). The robot could remain
standing with constant pushing force of about 7 N. The pushing
force decreased once at 4.0 s. We consider its reason as follows:
The robot had contact with the obstacle at 3.6 s, and then, the
aluminum board was bent mechanically. Therefore, the arm
force was decreased at around 4.0 s. The ZMP of the robot is
shown in Fig. 11(c). The ZMP existed in the stable region of
the plantar surface.

From the experimental results, it is verified that the robot can
stop short of the obstacle with the proposed method.

VII. CONCLUSION

This paper has described the pushing motion of the humanoid
robot. The robot utilizes the arms to generate the desired walk-
ing motion. We extended orbital energy for pushing motion.
Extended orbital energy detects whether the robot can stop or
not. Appropriate landing points can be determined from the
orbital energy.

The proposed method is given as follows: At first, the robot
contacts the obstacle with compliance, then increases the arm
force. The robot can stop short of the obstacle if the obstacle
is unmovable like a wall, then the robot avoids collision with
the obstacle. With the proposed method, the robot utilized
arm force to stop or to keep on walking with compliance to

Fig. 11. Experimental results. (a) COG position in x-axis direction. (b) Arm
force. (c) ZMP trajectory.

the obstacle without losing walking stability. If the obstacle
is movable like a door, the robot pushes it and can continue
walking.

In this paper, the upper body and the lower body are consid-
ered as a whole system to achieve the desired motion. We also
expect that humanoid robots will do a lot of work as a unified
system.
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