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It was recently found that the leaky integrate-and-fire jliifodel with the assumption of tempo-
rally uncorrelated inputs cannot account for the spikingrabteristics of in vivo cortical neurons.
Specifically, the inter-spike interval (ISI) distributi®rof some cortical neurons are known to ex-
hibit relatively large skewness to variation, whereas thierhodel cannot realize such statistics with
any combination of model parameters. In the present pageshew that the Bonhéier-van del Pol
(BvP) model incorporating the same assumption of uncaeeél@mputs can, by contrast, exhibit large
skewness values. In this case, the large values of the skeweoeficient are caused by the mixture
of widely distributed ISIs and short-and-constant ISIsiicet] by a sub-threshold oscillation peculiar
to Class Il neurons, such as the BvP neuron.
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1. Introduction

Cortical neurons receive input spike signals from thousariaéther neurons. The statistical prop-
erties of the input spike signals provide useful informatiegarding the activity of a neuronal en-
semble, because the total input to a neuron reflects thetgativpre-synaptic neurons. However,
it is generally dificult to observe the input signals for a neuron of a behavingan On the other
hand, it is not as diicult to observe output spike sequences. Considering tbisifas important to
investigate the possibility that analysis of the statssti€ an output sequence can reveal features of
the input current, because the output sequence dependg amptlt current. In fact, the céiient
of variation (CV) and the skewness ¢beient (SK) of inter-spike intervals (ISIs) generated by the
leaky integrate-and-fire (LIF) model provide a good meadareletecting temporal correlations of
inputs. This is because the values of CV and SK are limited $mall region in the CV-SK plane,
whatever uncorrelated inputs the LIF neuron recel@3 he existence of statistical cieients lying
outside of this small region suggests temporal correlatiotme inputs. Moreover, the magnitude of
the deviation from this region reflects the correlation tsoale. Some cortical neurons generate spike
sequences whose SK values are several times larger than IG&své&or these neurons, the values
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of (CV,SK) lie outside of the small region, and the magnitadi¢he deviations correspond to input
correlations on a scale of hundreds of milliseconds in ternbdel?

The relationship between input and output statistics gdlyatepends on the spiking mechanism
of the neuron. It is known that the spiking mechanisms of latyspiking neurons can be classified
into two classes, Class | and Class Il, according to theirbétion structures in response to a constant
current injectior?:4) Regularly spiking neurons discharge spikes regularly,catretant interval, for a
suficiently large constant current. The type of bifurcatiorptiged is either a saddle-node bifurcation
or a Hopf bifurcation in most models of regularly spiking nens. Neurons exhibiting the saddle-node
bifurcation are called “Class I” neurons, while those digjohg the Hopf bifurcation are called “Class
II” neurons. One characteristicftirence between the two classes is in the spike frequenc\spike
frequency of a Class | neuron increases continuously frora ae a function of the input current
through the saddle-node bifurcation point. In contrast, gpike frequency of a Class Il neuron jumps
discontinuously from zero to some finite value at the Hopditgiéition point.

Most models of regularly spiking neurons are based on thegkineHuxley equations) The
original Hodgkin-Huxley model consists of four coupled io@ty differential equations describing
the ion-channel properties of squid nerve axdasd belongs to Class II. The Hodgkin-Huxley model
with an A-type K'-channel belongs to Clas$)I The Morris-Lecar model consists of three coupled
differential equations incorporating only two essential ianicrents, the potassium current and the
calcium current) The original Morris-Lecar model belongs to Class II, butécbmes Class | with
an appropriate modificatioh.Other simple models containing a few variables describg spiking
properties without details of ion-channels. The Hindm&Rslse model, which contains three vari-
ables, was proposed to describe a bursting mode as well amilang spiking modé? In the regu-
larly spiking mode, this model belongs to Class I. One of th@monly used models containing two
variables is the BonMter-van der Pol (BvP) modéf, 1Y which is also well known as the FitzHugh-
Nagumo modet2 13 The BvP model belongs to Class Il. The LIF model consists afeadimensional
differential equation with an artificial threshold-and-resethanism. Although the LIF model cannot
be classified according to bifurcation type in the same wafi@sther models because of the artificial
threshold-and-resetting mechanism, we can classify thenhddel as Class | from the point of view
of the behavior of the spike frequency.

In this paper, we consider the BvP model as a minimum modelag«dl neurons and compare it
with the LIF model, representing Class | behavior. We exaniinthe case of the BvP model whether
certain statistical quantities (namely, CV and SK) arerittisted in a small region in the CV-SK plane,
as in the case of the LIF model. If these statistical quastitire distributed in a small region, we can
conclude that the ISI statistics of the BvP model may be depaftetecting temporal correlations of
inputs. If, however, they are distributed over a wider ragiawe will be led to conclude that the ISl
statistics of the BvP model cannot be used for detecting oeahjgorrelation.

It is important to examine éierences between Class | and Il neurons in response to a highly
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fluctuating input, because it is known that a cortical newemeives highly fluctuating inputé: %
Although Class | and Il behaviors have been discussed fonatant input or a specific input pattern
in most work$4 16-19) the behaviors are yet clarified for the highly fluctuatinpits.

Several works have reportedidirences between the responses to stochastic inputs of Eharigv
LIF models?%-21) These works examined only up to the second-order IS| statisfuantities (namely,
the mean ISI and CV). Thesefiirences are important to understand thieedénces between Class |
and Class Il mechanisms. However, although those workggmbut various dierences between the
relationships of ISI statistics and input properties, iésloot provide a proper comparison, because it
is difficult to normalize the space of input parameters in each mbBdethis reason, in this paper, we
examine the third-order ISI statistics, and consider ohé/gtructures in the space of the output ISI
statistics, sweeping input parameters over the entiremdgiorder to avoid the normalization problem
of input parameters. Thus, this study provides new sysierkabwledge of diferences between the
neuron classes for fluctuating inputs, which has not beenlggfied by the conventional studies.

2. Modesand methods
2.1 Uncorrelated inputs

A cortical neuron receives spike signals from thousandsesgnaptic neurons. Each spike signal
causes a slight change in the membrane potential. If eactgelissmall enough relative to the spiking
threshold, then the overall variation of the membrane g@koan be approximated as continuous
fluctuations. Uncorrelated continuous fluctuations arerdesd by Gaussian noise in the fotth

I(t) = pu+ o (V), 1)
whereé(t) is white Gaussian noise with zero mean and unit variancaméetime. Thus the parameters
u and o control mean and fluctuation of inputs, respectively. In shaulations whose results are
reported below these parameters were varied over the eatige in parameter space for which the
mean firing rate takes biologically feasible values.

2.2 Neuron models
221 LIF mode
The leaky integrate-and-fire (LIF) model has two essentiatmanisms: temporal integration of
inputs and a threshold-and-resetting. The dynamics igitbescby the equation
v =-v+ (), 2
{ if v>@0, thenv=yvy andt =t,
whereV represents the temporal derivativevolUsing scale and shift transformationswspace, we
normalized the parameters so thigt= 0 andd = 1, without loss of generality.

2.2.2 BvP model
The Bonhéfer-van der Pol (BvP) model consists of a two-dimensionééntial equation whose
nullclines are cubic and linear functions. Using scale arift §ansformations, we express the BvP
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model as the following equations, without loss of geneyalit

v—V3/3-w+ (), (3)

v
™w = kv-—w. (4)

In this study, we used the same parameter values as FitzH@@§i), which yield qualitatively the
same behavior as that of the original Hodgkin-Huxley equest?) The parameter values correspond
to the case that = 1.25 andr = 1125 in Egs.(3) and (4). We defined spike timings by using an

internal variables, in order to avoid double counting for accidental back steps
{ if s=0andv > 1, then spike and set= 1, )

if s=1andv < 0, thenses=0. (6)
2.3 |9 satistics
As dimensionless statistical diieients of ISI, we introduce the second- and third-ordersitaal
codlicients, CV and SK, defined as

ov - YT o

o - T o
(T-T)?

T o= midT. ©

whereT,; is thei-th ISI, determined by the series of spike timings ,t;,ti.1,---} asTi = ti;1 — t.
The codficient CV is a dimensionless measure of the interval vanatmnd the coficient SK is a
dimensionless measure of the asymmetry in the intervailaligion. Spike event series generated by
a Poisson process always gives (&K) = (1, 2), regardless of the firing rate.

In the following, we directly compare the diieients CV and SK for the LIF and BvP models.
This can be done because these are dimensionless quamifiesntrast, we cannot compare the
mean ISI ofT directly between the models beca(&és not dimensionless. However, the ratioTof
to the temporal scale of the dynamics can be compared difeetiveen the dierent models. In the
LIF model, the time constant corresponding to the decayediked point,r, is equal to the temporal
scale of the dynamics. The time constant for the BvP modelyastingly, depends on the state in the
state space because of the nonlinearity of this model. Hervexth the parameter values used in this
paper, the time constant of , is an upper limit on the slower time scale. Therefore, wargg as
the time scale of the BvP model. Hence, we compare the vafU€/5K) between the models using
a fixedT /7.

Shinomoto et al.(1999) obtained analytical solutions fbf7(CV, SK) of the LIF model with
uncorrelated inputs based on established metkoé8.For the BvP model, however, it is not easy
to obtain analytical solutions, and therefore we estimglet, CV, SK) from a finite I1SI sequence
consisting of 10,000 ISIs obtained by numerical simulation
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3. Structurein ISl statistics space

We calculated the statistical quantitids/¢, CV, SK) as functions of the input parametegs ).
These input parameters were swept, and the correspondiofysgues T /7, CV, SK) were obtained.
These values are plotted in the CV-SK plane as contour pfots/oin Fig.1. Figures 1(a) and 1(b)
display the structure of the ISI statistics in the CV-SK @arfor the LIF model and the the BvP
model, respectively. The limiting forms of the contour Brfer the LIF model are described by simple
arithmetical functions:

T/r=0
SK = 3QV, (20)
T/T =00
2 (Cv<1l),
SK = (112)

3cv+icvE (cv 1)
For comparison, these contour lines for the LIF model arétgdioin the background as thin dotted
lines.

For most spiking data of cortical neurons, the condiffon 7 is satisfied. Decay time constants
of cortical neurons have been estimated to be less than 2& fRsnd mean firing rates are no more
than approximately 50 Hz. The region in which the (CV,SK)ueal are confined fof > t is small
for the LIF model in response to uncorrelated inputs (the gegions in Fig.1(a)). It is also known
that temporal correlation enlarges the region to cover fipenared) If the (CV,SK) values obtained
from biological spiking data fall in the upper area of thigiaa, then it is suggested that the recording
neuron receives temporally correlated inputs if the newam be faithfully described by the LIF
model.

In the BvP model, the corresponding (CV,SK) region is lartiem that in the LIF model and
spreads over most of the upper region (the grey region irLf}. Even the contour line for which
T/ > 1lies in the large SK region. If the decay time constant islemthanz, the corresponding re-
gion will spread still mor&® Therefore, we can conclude that the pair (CV,SK) is not a gnedsure
to detect temporal correlation in inputs, on the assumghanthe neuron can be faithfully described
by the BvP model.

We can see in Fig.1(b) that the lower boundaFy{ — o) is almost identical to that in the LIF
model (the dotted line in Fig.1(b) determined by Eq.(11))slimplied that the lower boundary is
determined by some common mechanisms for both the LIF anchizydels.

4. Origin of thedifferencein ISl statistics

We now attempt to identify the origin of theftkrence between the LIF model and the BvP model
with regard to ISI statistics. The input paramete@ndo were swept for both models, with all other
parameters fixed. Thus, in both cases we searched two-dionehparameter spaces. However, the

5/16



J. Phys. Soc. Jpn. FuLL Paper

LIF model and the BvP model filér in following points: (i) the constraint on the reset pdiain (i)
the existence of refractoriness, and (iii) the existencdashped oscillation after the emission of a
spike. The dierence in ISI statistics between the two models may origifraitm some of these three
differences. In following three subsections, we examinedftieets of the diferences.
4.1 Constraint on the reset potential

The number of dimensions of theffdirential equations is fierent: the BvP model consists of
a two-dimensional diierential equation, whereas the LIF model consists of a égmerbsional dif-
ferential equation. Also, while the BvP model realizes timeshold-and-resetting mechanism by the
dynamics of two variables, the LIF model has an explicit shid-and-resetting mechanism. This
difference in the threshold-and-resetting mechanism leadgfeyahce in the constraint on the re-
set point. In the LIF model, the reset poigtis independent of the mean input Contrastingly, the
effective reset point in the BvP model depends on the mean ppotcause the variables are reset
around the fixed point in the case of zero fluctuations, @re=, 0. The statistical cd&cients for the
LIF model under the constraint that the reset potential hektp the mean inpyt fall on a one-
dimensional curve (Fig.1(c)). Thus, we see that the BvP mextabits a still larger variety of values
of the statistical quantities (CV,SK) when the two modeks subject to the same constraint. There-
fore, the diference in the constraint on the reset potential can not beigin of the diference in the
variety of CV and SK values.
4.2 Existence of refractoriness

Another diference between the models is in refractoriness. Specjfitd LIF model does not
possess refractoriness, while the BvP model does. Thehesfgthe dfective refractory period in
the BvP model is approximately for any values of the inputs. Thefect of refractoriness can be
simulated in the LIF model by introducing an absolute refsacperiod. However, such an absolute
refractory periodR only causes CV to be scaled by a factoMg{T + R) and does not influence SK.
Thus, because an introduction of refractoriness into titerhddel causes only a shift of the statistical
guantities (CV,SK), it cannot contribute to the variety adues of (CV,SK).
4.3 Existence of damped oscillation

Even the BvP model also possesses mechanisms of tempaggtation and threshold-and-
resetting. The ISI sequence includes ISls determined bfjrdigpassage time after a refractory period
in a diffusion process. Another type of ISI can be included as a resuass Il behavior. Figure
2(a) displays the detailed time evolution of the membrarterg@l v after a short impulse input in
the BvP model. When the constant input lexaé$ suficiently small or stficiently large, the response
to a short impulse is qualitatively the same as in the LIF rhodéhen the input level is slightly
smaller than the bifurcation point, however, damped a#dlh is observed in the sub-threshold range.
In this case, there is a high probability for spiking aroune peaks of the sub-threshold oscillation
for stochastic inputs, and burst-like patterns are obsefiay.2(b)), despite the fact that the neuron
model is a model of a regularly spiking neuron. The mean itguel 4 changes the amplitude of the
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sub-threshold oscillation, which leads to a change in tledability for the spiking to be locked to
the sub-threshold oscillation, which, in turn, would cauagety in the statistical quantities (CV,SK),
despite the reset point constraint. Note that the subttbidslamped oscillation after self-spikes are
generally observed before the Hopf bifurcation in Classlinons?

The dfects of the sub-threshold oscillations are observed in i§bgrams of simulations with
the BvP model (Fig.3). We can see that two ISIs are mixedaleilSIs and ISls determined by the
sub-threshold oscillations. Various combinations of C\ &K values are produced by the various
combination of the mean ISI and the fraction of two types dél%or the input parameters corre-
sponding to large value of SK (Fig.3(c)) or CV (Fig.3(f)), &5ls by the sub-threshold oscillations
are dominant, and instead, the variable ISls follow a laibelistribution (sub-plots in Figs.3(c) and
(). Itis considered that the keyftitrence between the cases of large SK (Fig.3(c)) and CV (Pip.3
values is the ratio of the mean IST & 57 and 2@) to the period of the sub-threshold oscillation.

To confirm these consideration in the entire parameter negie examined a simple mixture of
two types of ISIs. We can see in Fig.3 that spikes occurrinthatfirst peak of the sub-threshold
oscillation are dominant. Hence, théfext of ISIs determined by the sub-threshold oscillatiores ar
approximated by thefiect of constant ISls. We now try to consider a simple mixtdreapiable 1Sls
and constant ISls. Although there are possible ways forribsg this ISI mixture, one of the plau-
sible choices is to introduce a Markov switching mechanidtamely, ISIs were produced randomly
through a current mode switching in a Markov process betileerariable 1ISI mode and the constant
ISI mode (see Fig. 4). In the variable ISI mode, every IS| waslpced randomly through sampling of
an |ISI distributionFo(T) derived from the constrained LIF model (Fig.1(c)) with dsalute refrac-
tory periodR. In the constant ISI mode, every ISI was equal to the constaner: spikes occurred
regularly at a constant interval The next mode was chosen independently with a probalwliigr
the constant ISI mode and-1p for the variable ISI mode.

Markovness in switching is irrelevant to the CV and SK valumscause these statistics are inde-
pendent of the order of ISIs. The essential parameter igdotidn of the two types of ISls. However,
if the two types of ISIs in the BvP model switch by uncorrethfieictuation, then the Markov switch-
ing mechanism could statistically reproduce ISI sequempteduced by the BvP model. Thus, we
introduced the Markov switching mechanism in the mixtureariable I1SIs and constant ISIs.

The mixture of variable ISIs and constant I&Ig(T) is expressed in terntSy(T) and p as follows;

Fp(T) = po(T — 1) + (1 - p) Fo(T), (12)

wheres is the Dirac delta function, arilis an ISI. The statistical quantitie$ (CV, SK) of the model
are easily derived fromT(p, CVo, SKo) for the ISI distributionFo(T). Changing the input parameter
values (i, o) corresponds to changirigy(T) andp in this model.

Here we set the constant ISI and the refractory period to 257, R = 7. These values are
consistent with the behavior of the BvP model. Figure 1(@tT /7 contour lines in the CV-SK
plane obtained by sweepirkp(T) and p. We find in comparison with Figs.1(b) and Fig.1(d) that the
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mixture of the variable ISI and constant ISls yields a vgragtvalues in the CV-SK plane, similar to
that obtained with the BvP model.

The mixed ISI distribution gives a relatively large valueSK for a CV value in the case that
the mixture is biased to the constant ISls (iis large) and the mean ISl is small (< 57). Such
values of CV and SK are not produced by the LIF model. Coritrglst in the case that the mean ISI
is suficiently large T > 10r), a large value op leads to a large value of CV relative to the value of
SK. Such values of CV and SK are obtained with the LIF modeéré&fore, it is found that burst-like
spike patterns do not always lead to large values of SK. Terdehe the values of SK, the balance of
the two modes and the mean ISI are significant. The LIF modepoaduce burst-like spike patterns,
but this balance and the mean ISI are restricted. By contitastBvP model can produce various
types of burst-like spike patterns with various amplitudethe sub-threshold oscillation after spiking
controlled by the mean input level.

5. Discussion

In this paper, we have shown the two points that (1) a largetyein CV and SK values is observed
in the BVP neuron receiving uncorrelated inputs, and tHag2h a variety is also observed in a simple
mixture of variable ISIs and constant ISls. The constarg E3€ set to be equal to the interval from
a spike to the first peak of the sub-threshold damped oseillat the BvP neuron. These two points
imply a possibility that the large variety in CV and SK valwd#ghe BvP neuron may arise from the
sub-threshold damped oscillation.

Class Il neurons generally exhibit the sub-threshold daimmeeillation after the emission of
spikes?”) Therefore, it is also expected that a large variety in thest&tistical quantities (CV,SK)
may be observed in many Class Il neurons, even in responsectirelated inputs. Contrastingly,
state variables monotonically approach to a fixed point afself-spike near the saddle-node bifurca-
tion point. Therefore, the timings of firings, that is, IS4se determined only by the first passage time
in a diffusion process. This mechanism is essentially the same asRheodel. In addition to this
similarity, the LIF model and the Class | neuron have sametfans:

e A threshold is defined explicitly in both models: The thrdsghof the LIF model is provided
artificially, but the threshold of the Class | neuron is antabke fixed point.

e Post-spiking behavior is same in both models: In the LIF rhdtle time required for the mem-
brane potential to move from reset potential to resting mitedepends on the time constant of
the membrane potential. In the Class | neuron, the time redud move from the reset potential,
which corresponds to the point at which state variableshrea@ nulicline of a variable of the
membrane potential, to the resting potential depends amed¢bnstant of a slow variable. This
time constant corresponds to the time constant of the Classrbn.

e During the oscillation, the input stimulus decides the §irirequency: In the LIF model, as the
input stimulus increases, the membrane potential incseddeus, the firing frequency is pro-
portional to the strength of the input stimulus. In the Clasguron, distance between the two
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nullclines decides the oscillation period. The distangarigortional to the strength of the input
stimulus. Although the mechanisms aréfelient, the strength of the input stimulus decides the
firing frequency in both models.

Different from the LIF model, the Class | neuron has non-zeraespillth. However, the spike width
does not fiect the statistics of the spike trains, for the same reasdeofefractoriness as we have
shown in the section 4.2. Thus, the ISI statistical qua#i{iCV,SK) of Class | neurons are expected
to be confined to a small region in the case of uncorrelatedténpn this case, the combination of
the two ISI statistical quantities CV and SK is a good measui@etect the temporal correlation of
inputs2®) The remaining problem is to determine how in general the alsowclusion can be applied
to various Class | and Class Il neurons.

A large variety in CV and SK values is observed in severalicartegions, e.g. the middle tem-
poral area, the medial superior temporal area in the visoidéx, and the principal sulcus area in
the prefrontal corte?) These distributions of CV and SK values are not significadifferent by
the regiong? These facts imply existence of a mechanism common to vagori&al regions. We
find two possible mechanisms to reproduce such a distribaticCV and SK values: Class | neurons
receiving temporally correlated inputs and Class |l nean@teiving temporally uncorrelated inputs.
It is known that most cortical neurons exhibit Class | exaitty on standard slice preparations. This
fact seems to support the former possible mechanism. Howtieéeclass of a Hodgkin-Huxley-type
model can change from Class | to Class Il by slight changeseoparameter values. Therefore, it is
unclear whether the cortical neurons truly exhibit Clasgditability in vivo. Cortical neurons may
switch their classes by neuromodulators. Then, it is ingurtuture issue to develop a method to de-
termine which spiking mechanism is more plausible for obsgispike data, Class | neuron receiving
temporally correlated inputs or Class Il neuron receivemgporally uncorrelated inputs.

Naive classification of neurons in electro-physiology isdzhon supra-threshold behavior in re-
sponse to a constant input. According to this method of ifleagon, both of the Class | and Class
Il neurons are placed in the same category, that of ‘regukpiking neurons’. Neurons belonging
to the other category, i.e., ‘bursting neurons’, are defitwedroduce bursting spike patterns even in
response to a constant input. Class Il neurons, howevebiekirst-like spike patterns in response
to a fluctuating input, while they exhibit regular spike patis in response to a constant input. This is
because the sub-threshold behavior also appears in supsiold behavior, due to the fluctuation of
the input. Such a mixing of behavior is a common feature agfgshold mechanisms. An example of
such phenomena is known as ‘stochastic resonance’, in vettidhive noise enhances sub-threshold
signals. Biological neurons are subjected to a noisy enwilent and greatly fluctuating inputs. For
this reason, properly accounting to sub-threshold beh@&vimportant to understand neural systems.
The classification of neurons as Class | and Class Il is onelus@nner of thinking in order to study
the dfects of sub-threshold behavior.

In this study, we used a flierent model and compared the results obtained with it toiqguev
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results obtained with the LIF mod@&|To compare Class | and Class Il neurons, however, it is bietter
use a model that can realize both Class | and Class Il behayiadjusting its parameters. Appropriate
modification of the Morris-Lecar model or the Hindmarsh-asodel yields a model of this kirfolt

is an important future work to analyze such models.
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Fig. 1. Structures of the ISI statistical valudg'¢, CV, SK) for the two models in the CV-SK plane. Contour
lines of T/7 are plotted in the CV-SK plane except in (c). The mean spikgufencies are biologically
feasible (i.e.T > 7) in the grey area. The thin dotted lines appearing in all Bgutere are the contour
lines corresponding t& /7 = 0 andT /T — oo for the LIF model. (a) Theoretical contour lines for the LIF
model. (b) Contour lines for the BvP model estimated by satioh. The squares, circles and triangles
correspond to data for which is within +1% of the value satisfyind /= = 4, 10, 40, respectively. (c)
(CV,SK) (not contour lines) for the LIF model with the samenstyaint as in the BvP model that the reset
point be equal to the fixed pointyg = u. (d) Contour lines for a mixture of variable ISIs and const&ts.
The variable ISIs exhibit the ISI distribution of the LIF nmaldvith the constraint and refractory period.
The constant ISI and the refractory period are seta2.57, R=r.
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Fig. 2. Details of time evolution o¥ for the BvP model in response to (a) a short impulse input &)d (
fluctuating inputs with various mean input levalsWith a constant input whose levelis slightly smaller
than the bifurcation point, damped oscillation is obsetfivea sub-threshold range. In this case, burst-like
spike patterns are observed, because there is a high plitbabthe spikings around the peaks of the
oscillation in the case of stochastic inputs.
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3. The ISI histograms of the BvP model on the lineJ ¢pf=5 and 20. Statistical quantities of each ISI

histogram correspond to the points in the upper figure.
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Fig. 4. Schema of the mixture of constant ISIs and variabls. [$he ISI mixture can be produced by a
Markov switching mechanism. The spiking mode switches pitbbability p between the constant and
variable ISI modes.
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