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It was recently found that the leaky integrate-and-fire (LIF) model with the assumption of tempo-

rally uncorrelated inputs cannot account for the spiking characteristics of in vivo cortical neurons.

Specifically, the inter-spike interval (ISI) distributions of some cortical neurons are known to ex-

hibit relatively large skewness to variation, whereas the LIF model cannot realize such statistics with

any combination of model parameters. In the present paper, we show that the Bonhöeffer-van del Pol

(BvP) model incorporating the same assumption of uncorrelated inputs can, by contrast, exhibit large

skewness values. In this case, the large values of the skewness coefficient are caused by the mixture

of widely distributed ISIs and short-and-constant ISIs induced by a sub-threshold oscillation peculiar

to Class II neurons, such as the BvP neuron.
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1. Introduction

Cortical neurons receive input spike signals from thousands of other neurons. The statistical prop-

erties of the input spike signals provide useful information regarding the activity of a neuronal en-

semble, because the total input to a neuron reflects the activity of pre-synaptic neurons. However,

it is generally difficult to observe the input signals for a neuron of a behaving animal. On the other

hand, it is not as difficult to observe output spike sequences. Considering this fact, it is important to

investigate the possibility that analysis of the statistics of an output sequence can reveal features of

the input current, because the output sequence depends on the input current. In fact, the coefficient

of variation (CV) and the skewness coefficient (SK) of inter-spike intervals (ISIs) generated by the

leaky integrate-and-fire (LIF) model provide a good measurefor detecting temporal correlations of

inputs. This is because the values of CV and SK are limited to asmall region in the CV-SK plane,

whatever uncorrelated inputs the LIF neuron receives.1, 2) The existence of statistical coefficients lying

outside of this small region suggests temporal correlationof the inputs. Moreover, the magnitude of

the deviation from this region reflects the correlation timescale. Some cortical neurons generate spike

sequences whose SK values are several times larger than CV values. For these neurons, the values
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of (CV,SK) lie outside of the small region, and the magnitudeof the deviations correspond to input

correlations on a scale of hundreds of milliseconds in the LIF model.2)

The relationship between input and output statistics generally depends on the spiking mechanism

of the neuron. It is known that the spiking mechanisms of regularly spiking neurons can be classified

into two classes, Class I and Class II, according to their bifurcation structures in response to a constant

current injection.3, 4) Regularly spiking neurons discharge spikes regularly, at aconstant interval, for a

sufficiently large constant current. The type of bifurcation displayed is either a saddle-node bifurcation

or a Hopf bifurcation in most models of regularly spiking neurons. Neurons exhibiting the saddle-node

bifurcation are called “Class I” neurons, while those displaying the Hopf bifurcation are called “Class

II” neurons. One characteristic difference between the two classes is in the spike frequency. Thespike

frequency of a Class I neuron increases continuously from zero as a function of the input current

through the saddle-node bifurcation point. In contrast, the spike frequency of a Class II neuron jumps

discontinuously from zero to some finite value at the Hopf bifurcation point.

Most models of regularly spiking neurons are based on the Hodgkin-Huxley equations.5) The

original Hodgkin-Huxley model consists of four coupled ordinary differential equations describing

the ion-channel properties of squid nerve axons5) and belongs to Class II. The Hodgkin-Huxley model

with an A-type K+-channel belongs to Class I.6) The Morris-Lecar model consists of three coupled

differential equations incorporating only two essential ioniccurrents, the potassium current and the

calcium current.7) The original Morris-Lecar model belongs to Class II, but it becomes Class I with

an appropriate modification.8) Other simple models containing a few variables describe only spiking

properties without details of ion-channels. The Hindmarsh-Rose model, which contains three vari-

ables, was proposed to describe a bursting mode as well as a regularly spiking mode.9) In the regu-

larly spiking mode, this model belongs to Class I. One of the commonly used models containing two

variables is the Bonhöffer-van der Pol (BvP) model,10, 11) which is also well known as the FitzHugh-

Nagumo model.12, 13)The BvP model belongs to Class II. The LIF model consists of a one-dimensional

differential equation with an artificial threshold-and-reset mechanism. Although the LIF model cannot

be classified according to bifurcation type in the same way asthe other models because of the artificial

threshold-and-resetting mechanism, we can classify the LIF model as Class I from the point of view

of the behavior of the spike frequency.

In this paper, we consider the BvP model as a minimum model of Class II neurons and compare it

with the LIF model, representing Class I behavior. We examine in the case of the BvP model whether

certain statistical quantities (namely, CV and SK) are distributed in a small region in the CV-SK plane,

as in the case of the LIF model. If these statistical quantities are distributed in a small region, we can

conclude that the ISI statistics of the BvP model may be capable of detecting temporal correlations of

inputs. If, however, they are distributed over a wider region, we will be led to conclude that the ISI

statistics of the BvP model cannot be used for detecting temporal correlation.

It is important to examine differences between Class I and II neurons in response to a highly
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fluctuating input, because it is known that a cortical neuronreceives highly fluctuating inputs.14, 15)

Although Class I and II behaviors have been discussed for a constant input or a specific input pattern

in most works4, 16–19), the behaviors are yet clarified for the highly fluctuating inputs.

Several works have reported differences between the responses to stochastic inputs of the BvP and

LIF models.20, 21)These works examined only up to the second-order ISI statistical quantities (namely,

the mean ISI and CV). These differences are important to understand the differences between Class I

and Class II mechanisms. However, although those works pointed out various differences between the

relationships of ISI statistics and input properties, it does not provide a proper comparison, because it

is difficult to normalize the space of input parameters in each model. For this reason, in this paper, we

examine the third-order ISI statistics, and consider only the structures in the space of the output ISI

statistics, sweeping input parameters over the entire region in order to avoid the normalization problem

of input parameters. Thus, this study provides new systematic knowledge of differences between the

neuron classes for fluctuating inputs, which has not been yetclarified by the conventional studies.

2. Models and methods

2.1 Uncorrelated inputs

A cortical neuron receives spike signals from thousands of pre-synaptic neurons. Each spike signal

causes a slight change in the membrane potential. If each change is small enough relative to the spiking

threshold, then the overall variation of the membrane potential can be approximated as continuous

fluctuations. Uncorrelated continuous fluctuations are described by Gaussian noise in the form14)

I(t) = µ + σξ(t), (1)

whereξ(t) is white Gaussian noise with zero mean and unit variance perunit time. Thus the parameters

µ andσ control mean and fluctuation of inputs, respectively. In thesimulations whose results are

reported below these parameters were varied over the entirerange in parameter space for which the

mean firing rate takes biologically feasible values.

2.2 Neuron models

2.2.1 LIF model

The leaky integrate-and-fire (LIF) model has two essential mechanisms: temporal integration of

inputs and a threshold-and-resetting. The dynamics is described by the equation














τv̇ = −v + I(t), (2)

if v > θ, thenv = v0 andti = t,

wherev̇ represents the temporal derivative ofv. Using scale and shift transformations inv-space, we

normalized the parameters so thatv0 = 0 andθ = 1, without loss of generality.

2.2.2 BvP model

The Bonhöffer-van der Pol (BvP) model consists of a two-dimensional differential equation whose

nullclines are cubic and linear functions. Using scale and shift transformations, we express the BvP
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model as the following equations, without loss of generality:

v̇ = v − v3/3− w + I(t), (3)

τẇ = kv − w. (4)

In this study, we used the same parameter values as Fitzhugh (1961), which yield qualitatively the

same behavior as that of the original Hodgkin-Huxley equations.5) The parameter values correspond

to the case thatk = 1.25 andτ = 11.25 in Eqs.(3) and (4). We defined spike timings by using an

internal variables, in order to avoid double counting for accidental back steps:














if s = 0 andv > 1, then spike and sets = 1, (5)

if s = 1 andv < 0, then sets = 0. (6)
2.3 ISI statistics

As dimensionless statistical coefficients of ISI, we introduce the second- and third-order statistical

coefficients, CV and SK, defined as

CV =

√

(T − T )2

T
, (7)

SK =
(T − T )3

√

(T − T )2
3
, (8)

T ≡ lim
n→∞

1
n

n
∑

i=1

Ti, (9)

whereTi is the i-th ISI, determined by the series of spike timings{· · · , ti, ti+1, · · · } asTi ≡ ti+1 − ti.

The coefficient CV is a dimensionless measure of the interval variation, and the coefficient SK is a

dimensionless measure of the asymmetry in the interval distribution. Spike event series generated by

a Poisson process always gives (CV,SK) = (1, 2), regardless of the firing rate.

In the following, we directly compare the coefficients CV and SK for the LIF and BvP models.

This can be done because these are dimensionless quantities. By contrast, we cannot compare the

mean ISI orT directly between the models becauseT is not dimensionless. However, the ratio ofT

to the temporal scale of the dynamics can be compared directly between the different models. In the

LIF model, the time constant corresponding to the decay to the fixed point,τ, is equal to the temporal

scale of the dynamics. The time constant for the BvP model, contrastingly, depends on the state in the

state space because of the nonlinearity of this model. However, with the parameter values used in this

paper, the time constant ofw, τ, is an upper limit on the slower time scale. Therefore, we regardτ as

the time scale of the BvP model. Hence, we compare the values of (CV,SK) between the models using

a fixedT/τ.

Shinomoto et al.(1999) obtained analytical solutions for (T/τ,CV,SK) of the LIF model with

uncorrelated inputs based on established methods.22, 23) For the BvP model, however, it is not easy

to obtain analytical solutions, and therefore we estimated(T/τ,CV,SK) from a finite ISI sequence

consisting of 10,000 ISIs obtained by numerical simulation.
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3. Structure in ISI statistics space

We calculated the statistical quantities (T/τ,CV,SK) as functions of the input parameters (µ, σ).

These input parameters were swept, and the corresponding set of values (T/τ,CV,SK) were obtained.

These values are plotted in the CV-SK plane as contour plots of T/τ in Fig.1. Figures 1(a) and 1(b)

display the structure of the ISI statistics in the CV-SK planes for the LIF model and the the BvP

model, respectively. The limiting forms of the contour lines for the LIF model are described by simple

arithmetical functions:

T/τ = 0 :

SK = 3CV, (10)

T/τ = ∞ :

SK =























2 (CV < 1),

3
2CV + 1

2CV−3 (CV ≥ 1).
(11)

For comparison, these contour lines for the LIF model are plotted in the background as thin dotted

lines.

For most spiking data of cortical neurons, the conditionT > τ is satisfied. Decay time constants

of cortical neurons have been estimated to be less than 20 ms,24, 25)and mean firing rates are no more

than approximately 50 Hz. The region in which the (CV,SK) values are confined forT > τ is small

for the LIF model in response to uncorrelated inputs (the grey regions in Fig.1(a)). It is also known

that temporal correlation enlarges the region to cover the upper area.2) If the (CV,SK) values obtained

from biological spiking data fall in the upper area of this region, then it is suggested that the recording

neuron receives temporally correlated inputs if the neuroncan be faithfully described by the LIF

model.

In the BvP model, the corresponding (CV,SK) region is largerthan that in the LIF model and

spreads over most of the upper region (the grey region in Fig.1(b)). Even the contour line for which

T/τ > 1 lies in the large SK region. If the decay time constant is smaller thanτ, the corresponding re-

gion will spread still more.26) Therefore, we can conclude that the pair (CV,SK) is not a goodmeasure

to detect temporal correlation in inputs, on the assumptionthat the neuron can be faithfully described

by the BvP model.

We can see in Fig.1(b) that the lower boundary (T/τ → ∞) is almost identical to that in the LIF

model (the dotted line in Fig.1(b) determined by Eq.(11)). It is implied that the lower boundary is

determined by some common mechanisms for both the LIF and BvPmodels.

4. Origin of the difference in ISI statistics

We now attempt to identify the origin of the difference between the LIF model and the BvP model

with regard to ISI statistics. The input parametersµ andσ were swept for both models, with all other

parameters fixed. Thus, in both cases we searched two-dimensional parameter spaces. However, the
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LIF model and the BvP model differ in following points: (i) the constraint on the reset potential, (ii)

the existence of refractoriness, and (iii) the existence ofdamped oscillation after the emission of a

spike. The difference in ISI statistics between the two models may originate from some of these three

differences. In following three subsections, we examined the effects of the differences.

4.1 Constraint on the reset potential

The number of dimensions of the differential equations is different: the BvP model consists of

a two-dimensional differential equation, whereas the LIF model consists of a one-dimensional dif-

ferential equation. Also, while the BvP model realizes the threshold-and-resetting mechanism by the

dynamics of two variables, the LIF model has an explicit threshold-and-resetting mechanism. This

difference in the threshold-and-resetting mechanism leads to difference in the constraint on the re-

set point. In the LIF model, the reset pointv0 is independent of the mean inputµ. Contrastingly, the

effective reset point in the BvP model depends on the mean inputµ, because the variables are reset

around the fixed point in the case of zero fluctuations, i.e.,σ = 0. The statistical coefficients for the

LIF model under the constraint that the reset potential be equal to the mean inputµ fall on a one-

dimensional curve (Fig.1(c)). Thus, we see that the BvP model exhibits a still larger variety of values

of the statistical quantities (CV,SK) when the two models are subject to the same constraint. There-

fore, the difference in the constraint on the reset potential can not be an origin of the difference in the

variety of CV and SK values.

4.2 Existence of refractoriness

Another difference between the models is in refractoriness. Specifically, the LIF model does not

possess refractoriness, while the BvP model does. The length of the effective refractory period in

the BvP model is approximatelyτ for any values of the inputs. The effect of refractoriness can be

simulated in the LIF model by introducing an absolute refractory period. However, such an absolute

refractory periodR only causes CV to be scaled by a factor ofT/(T + R) and does not influence SK.

Thus, because an introduction of refractoriness into the LIF model causes only a shift of the statistical

quantities (CV,SK), it cannot contribute to the variety in values of (CV,SK).

4.3 Existence of damped oscillation

Even the BvP model also possesses mechanisms of temporal integration and threshold-and-

resetting. The ISI sequence includes ISIs determined by thefirst passage time after a refractory period

in a diffusion process. Another type of ISI can be included as a resultof Class II behavior. Figure

2(a) displays the detailed time evolution of the membrane potential v after a short impulse input in

the BvP model. When the constant input levelµ is sufficiently small or sufficiently large, the response

to a short impulse is qualitatively the same as in the LIF model. When the input levelµ is slightly

smaller than the bifurcation point, however, damped oscillation is observed in the sub-threshold range.

In this case, there is a high probability for spiking around the peaks of the sub-threshold oscillation

for stochastic inputs, and burst-like patterns are observed (Fig.2(b)), despite the fact that the neuron

model is a model of a regularly spiking neuron. The mean inputlevelµ changes the amplitude of the
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sub-threshold oscillation, which leads to a change in the probability for the spiking to be locked to

the sub-threshold oscillation, which, in turn, would causevariety in the statistical quantities (CV,SK),

despite the reset point constraint. Note that the sub-threshold damped oscillation after self-spikes are

generally observed before the Hopf bifurcation in Class II neurons.4)

The effects of the sub-threshold oscillations are observed in ISI histograms of simulations with

the BvP model (Fig.3). We can see that two ISIs are mixed: variable ISIs and ISIs determined by the

sub-threshold oscillations. Various combinations of CV and SK values are produced by the various

combination of the mean ISI and the fraction of two types of ISIs. For the input parameters corre-

sponding to large value of SK (Fig.3(c)) or CV (Fig.3(f)), The ISIs by the sub-threshold oscillations

are dominant, and instead, the variable ISIs follow a long-tail distribution (sub-plots in Figs.3(c) and

(f)). It is considered that the key difference between the cases of large SK (Fig.3(c)) and CV (Fig.3(f))

values is the ratio of the mean ISI (T = 5τ and 20τ) to the period of the sub-threshold oscillation.

To confirm these consideration in the entire parameter region, we examined a simple mixture of

two types of ISIs. We can see in Fig.3 that spikes occurring atthe first peak of the sub-threshold

oscillation are dominant. Hence, the effect of ISIs determined by the sub-threshold oscillations are

approximated by the effect of constant ISIs. We now try to consider a simple mixture of variable ISIs

and constant ISIs. Although there are possible ways for describing this ISI mixture, one of the plau-

sible choices is to introduce a Markov switching mechanism.Namely, ISIs were produced randomly

through a current mode switching in a Markov process betweenthe variable ISI mode and the constant

ISI mode (see Fig. 4). In the variable ISI mode, every ISI was produced randomly through sampling of

an ISI distributionF0(T ) derived from the constrained LIF model (Fig.1(c)) with an absolute refrac-

tory periodR. In the constant ISI mode, every ISI was equal to the constantvaluer: spikes occurred

regularly at a constant intervalr. The next mode was chosen independently with a probabilityp for

the constant ISI mode and 1− p for the variable ISI mode.

Markovness in switching is irrelevant to the CV and SK values, because these statistics are inde-

pendent of the order of ISIs. The essential parameter is the fraction of the two types of ISIs. However,

if the two types of ISIs in the BvP model switch by uncorrelated fluctuation, then the Markov switch-

ing mechanism could statistically reproduce ISI sequencesproduced by the BvP model. Thus, we

introduced the Markov switching mechanism in the mixture ofvariable ISIs and constant ISIs.

The mixture of variable ISIs and constant ISIsFp(T ) is expressed in termsF0(T ) andp as follows;

Fp(T ) = p δ(T − r) + (1− p) F0(T ), (12)

whereδ is the Dirac delta function, andT is an ISI. The statistical quantities (T , CV, SK) of the model

are easily derived from (T 0, CV0, SK0) for the ISI distributionF0(T ). Changing the input parameter

values (µ, σ) corresponds to changingF0(T ) andp in this model.

Here we set the constant ISI and the refractory period tor = 2.5τ, R = τ. These values are

consistent with the behavior of the BvP model. Figure 1(d) plots T/τ contour lines in the CV-SK

plane obtained by sweepingF0(T ) and p. We find in comparison with Figs.1(b) and Fig.1(d) that the
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mixture of the variable ISI and constant ISIs yields a variety of values in the CV-SK plane, similar to

that obtained with the BvP model.

The mixed ISI distribution gives a relatively large value ofSK for a CV value in the case that

the mixture is biased to the constant ISIs (i.e.,p is large) and the mean ISI is small (T < 5τ). Such

values of CV and SK are not produced by the LIF model. Contrastingly, in the case that the mean ISI

is sufficiently large (T > 10τ), a large value ofp leads to a large value of CV relative to the value of

SK. Such values of CV and SK are obtained with the LIF model. Therefore, it is found that burst-like

spike patterns do not always lead to large values of SK. To determine the values of SK, the balance of

the two modes and the mean ISI are significant. The LIF model can produce burst-like spike patterns,

but this balance and the mean ISI are restricted. By contrast, the BvP model can produce various

types of burst-like spike patterns with various amplitudesof the sub-threshold oscillation after spiking

controlled by the mean input level.

5. Discussion

In this paper, we have shown the two points that (1) a large variety in CV and SK values is observed

in the BvP neuron receiving uncorrelated inputs, and that (2) such a variety is also observed in a simple

mixture of variable ISIs and constant ISIs. The constant ISIs are set to be equal to the interval from

a spike to the first peak of the sub-threshold damped oscillation in the BvP neuron. These two points

imply a possibility that the large variety in CV and SK valuesof the BvP neuron may arise from the

sub-threshold damped oscillation.

Class II neurons generally exhibit the sub-threshold damped oscillation after the emission of

spikes.27) Therefore, it is also expected that a large variety in the ISIstatistical quantities (CV,SK)

may be observed in many Class II neurons, even in response to uncorrelated inputs. Contrastingly,

state variables monotonically approach to a fixed point after a self-spike near the saddle-node bifurca-

tion point. Therefore, the timings of firings, that is, ISIs,are determined only by the first passage time

in a diffusion process. This mechanism is essentially the same as theLIF model. In addition to this

similarity, the LIF model and the Class I neuron have same functions:

• A threshold is defined explicitly in both models: The threshold of the LIF model is provided

artificially, but the threshold of the Class I neuron is an unstable fixed point.

• Post-spiking behavior is same in both models: In the LIF model, the time required for the mem-

brane potential to move from reset potential to resting potential depends on the time constant of

the membrane potential. In the Class I neuron, the time required to move from the reset potential,

which corresponds to the point at which state variables reach at a nullcline of a variable of the

membrane potential, to the resting potential depends on a time constant of a slow variable. This

time constant corresponds to the time constant of the Class Ineuron.

• During the oscillation, the input stimulus decides the firing frequency: In the LIF model, as the

input stimulus increases, the membrane potential increases. Thus, the firing frequency is pro-

portional to the strength of the input stimulus. In the ClassI neuron, distance between the two
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nullclines decides the oscillation period. The distance isproportional to the strength of the input

stimulus. Although the mechanisms are different, the strength of the input stimulus decides the

firing frequency in both models.

Different from the LIF model, the Class I neuron has non-zero spike width. However, the spike width

does not affect the statistics of the spike trains, for the same reason ofthe refractoriness as we have

shown in the section 4.2. Thus, the ISI statistical quantities (CV,SK) of Class I neurons are expected

to be confined to a small region in the case of uncorrelated inputs. In this case, the combination of

the two ISI statistical quantities CV and SK is a good measureto detect the temporal correlation of

inputs.28) The remaining problem is to determine how in general the above conclusion can be applied

to various Class I and Class II neurons.

A large variety in CV and SK values is observed in several cortical regions, e.g. the middle tem-

poral area, the medial superior temporal area in the visual cortex, and the principal sulcus area in

the prefrontal cortex.29) These distributions of CV and SK values are not significantlydifferent by

the regions.29) These facts imply existence of a mechanism common to variouscortical regions. We

find two possible mechanisms to reproduce such a distribution of CV and SK values: Class I neurons

receiving temporally correlated inputs and Class II neurons receiving temporally uncorrelated inputs.

It is known that most cortical neurons exhibit Class I excitability on standard slice preparations. This

fact seems to support the former possible mechanism. However, the class of a Hodgkin-Huxley-type

model can change from Class I to Class II by slight changes of the parameter values. Therefore, it is

unclear whether the cortical neurons truly exhibit Class I excitability in vivo. Cortical neurons may

switch their classes by neuromodulators. Then, it is important future issue to develop a method to de-

termine which spiking mechanism is more plausible for observed spike data, Class I neuron receiving

temporally correlated inputs or Class II neuron receiving temporally uncorrelated inputs.

Naive classification of neurons in electro-physiology is based on supra-threshold behavior in re-

sponse to a constant input. According to this method of classification, both of the Class I and Class

II neurons are placed in the same category, that of ‘regularly spiking neurons’. Neurons belonging

to the other category, i.e., ‘bursting neurons’, are definedto produce bursting spike patterns even in

response to a constant input. Class II neurons, however, exhibit burst-like spike patterns in response

to a fluctuating input, while they exhibit regular spike patterns in response to a constant input. This is

because the sub-threshold behavior also appears in supra-threshold behavior, due to the fluctuation of

the input. Such a mixing of behavior is a common feature of threshold mechanisms. An example of

such phenomena is known as ‘stochastic resonance’, in whichadditive noise enhances sub-threshold

signals. Biological neurons are subjected to a noisy environment and greatly fluctuating inputs. For

this reason, properly accounting to sub-threshold behavior is important to understand neural systems.

The classification of neurons as Class I and Class II is one useful manner of thinking in order to study

the effects of sub-threshold behavior.

In this study, we used a different model and compared the results obtained with it to previous
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results obtained with the LIF model.2) To compare Class I and Class II neurons, however, it is betterto

use a model that can realize both Class I and Class II behaviorby adjusting its parameters. Appropriate

modification of the Morris-Lecar model or the Hindmarsh-Rose model yields a model of this kind.8)It

is an important future work to analyze such models.
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(a) LIF (b) BvP

(c) LIF with reset point constraint (d) Mixture of variable ISIs and constant ISIs

Fig. 1. Structures of the ISI statistical values (T/τ,CV,SK) for the two models in the CV-SK plane. Contour

lines of T/τ are plotted in the CV-SK plane except in (c). The mean spike frequencies are biologically

feasible (i.e.,T > τ) in the grey area. The thin dotted lines appearing in all figures here are the contour

lines corresponding toT/τ = 0 andT/τ→ ∞ for the LIF model. (a) Theoretical contour lines for the LIF

model. (b) Contour lines for the BvP model estimated by simulation. The squares, circles and triangles

correspond to data for whichT is within ±1% of the value satisfyingT/τ = 4, 10, 40, respectively. (c)

(CV,SK) (not contour lines) for the LIF model with the same constraint as in the BvP model that the reset

point be equal to the fixed point,v0 = µ. (d) Contour lines for a mixture of variable ISIs and constant ISIs.

The variable ISIs exhibit the ISI distribution of the LIF model with the constraint and refractory period.

The constant ISI and the refractory period are set asr = 2.5τ, R = τ.
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Fig. 2. Details of time evolution ofv for the BvP model in response to (a) a short impulse input and (b)

fluctuating inputs with various mean input levelsµ. With a constant input whose levelµ is slightly smaller

than the bifurcation point, damped oscillation is observedin a sub-threshold range. In this case, burst-like

spike patterns are observed, because there is a high probability of the spikings around the peaks of the

oscillation in the case of stochastic inputs.
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Fig. 3. The ISI histograms of the BvP model on the lines ofT/τ=5 and 20. Statistical quantities of each ISI

histogram correspond to the points in the upper figure.
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Fig. 4. Schema of the mixture of constant ISIs and variable ISIs. The ISI mixture can be produced by a

Markov switching mechanism. The spiking mode switches withprobability p between the constant and

variable ISI modes.
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