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The formalism of nonstandard four-fermion interactions provides a convenient, model-independent
way of parametrizing a wide class of ‘‘new physics’’ scenarios. In this article, we study the performance of
reactor and superbeam neutrino experiments in the presence of such nonstandard interactions (NSI).
Because of interference between the standard and nonstandard amplitudes, sizeable effects are to be
expected if the NSI parameters are close to their current upper limits. We derive approximate formulas for
the relevant oscillation probabilities including NSI, and show how the leading effects can be understood
intuitively even without any calculations. We will present a classification of all possible NSI according to
their impact on reactor and superbeam experiments, and it will turn out that these experiments are highly
complementary in terms of their sensitivity to the nonstandard parameters. The second part of the paper is
devoted to detailed numerical simulations, which will demonstrate how a standard oscillation fit of the
mixing angle �13 may fail if experimental data is affected by NSI. We find that for some nonstandard
terms, reactor and superbeam experiments would yield seemingly conflicting results, while in other cases,
they may agree well with each other, but the resulting value for �13 could be far from the true value. This
offset may be so large that the true �13 is even ruled out erroneously. In the last section of the paper, we
demonstrate that reactor and superbeam data can actually establish the presence of nonstandard
interactions. Throughout our discussion, we pay special attention to the impact of the complex phases,
and of the near detectors.
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I. INTRODUCTION

At the dawn of the era beyond the standard model, a
plethora of new theoretical models has been devised to
resolve many of the experimental and theoretical short-
comings of our current picture of elementary particles.
However, in the context of future experiments, it is often
desirable to describe new physics in a more model-
independent way. One possibility to achieve this is through
effective four-fermion operators, so-called nonstandard
interactions (NSI), which arise naturally in the presence
of heavy mediator fields. In this article, we shall focus, in
particular, on NSI in the neutrino sector, which have been
discussed on general phenomenological grounds in [1–8],
and in the context of specific models in [9–12]. The
importance of NSI for neutrino oscillation physics has
been pointed out in a pioneering work by Grossman [13],
and many authors have studied their impact on solar neu-
trinos [14–17], atmospheric neutrinos [18–23], conven-
tional and upgraded neutrino beams [24–30], neutrino
factories [8,25,31–37], beta beams [38], supernova neutri-
nos [39–41], cosmological relic neutrinos [42], e�e�

colliders [43], neutrino-electron scattering [44], and

neutrino-nucleus scattering [45,46]. Existing experimental
bounds are presented in [47].

Our main interest in this work will be on nonstandard
interactions in upcoming reactor and accelerator neutrino
experiments. Although the main design goal for these
experiments is the precision measurement of the standard
oscillation parameters, the search for deviations from the
standard framework is an equally interesting part of their
physics program. Moreover, while in the race for the
standard oscillation parameters, reactor and beam experi-
ments are competing, we will show that their results will be
highly complementary when one is interested in nonstan-
dard physics.

In the numerical simulations which we are going to
present, we will focus on the experiments T2K [48,49],
NO�A [50], Double Chooz [51,52], and a hypothetical
200 t reactor experiment [53]. Of course, the analytical
results apply also to other experiments such as T2HK [48]
and Daya Bay [54].

We will first introduce our formalism in Sec. II, and give
a detailed discussion of the different possible Lorentz
structures and their relevance for reactor and superbeam
experiments. Although this discussion may seem rather
technical, it will ultimately allow us to greatly simplify
the problem and considerably reduce the number of pa-
rameters. In Sec. III, we will then present approximate
expressions for the oscillation probabilities including NSI
for the ��e ! ��e, �� ! �e, and �� ! �� channels. We will
also show in an intuitive way why certain NSI terms appear
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in these expressions, and others do not. Sec. IV is devoted
to a discussion of numerical simulation techniques, and of
the specific experiments which we have simulated. In
Sec. V, we show how the data from these experiments
may be misinterpreted, if NSI are not taken into account
in the fits. We will finally demonstrate in Sec. VI that a
combined analysis of reactor and superbeam data may
allow for the actual discovery of a wide variety of non-
standard interactions by goodness-of-fit arguments. Our
conclusions will be presented in Sec. VII.

II. THE FORMALISM OF NONSTANDARD
INTERACTIONS

A. The NSI Lagrangian

It is well-known that in the low-energy regime, weak
neutrino interactions can be described by effective four-
fermion operators like

 L � �
GF���

2
p � ������1� �5�‘��� �f0���1� �5�f�; (1)

and

 LMSW �
GF���

2
p � ������1� �5����� �f���1� �5�f�; (2)

where �� is the neutrino field of flavor �, ‘� is the
corresponding charged lepton field, and f, f0 are the com-
ponents of an arbitrary weak doublet.

The low-energy fingerprint of many ‘‘new physics’’
scenarios has a structure similar to Eqs. (1) and (2), and
the corresponding operators are called nonstandard inter-
actions. If we consider only lepton number conserving
operators, the most general NSI Lagrangian reads

 L NSI � LV�A �LS�P �LT; (3)

where the different terms are classified according to their
Lorentz structure in the following way:
 

LV�A �
GF���

2
p

X
f;f0

~"s;f;f
0;V�A

�� � ����
��1� �5�‘��

	 � �f0���1� �
5�f�

�
GF���

2
p

X
f

~"m;f;V�A�� � ������1� �5����

	 � �f���1� �5�f� � H:c:; (4)

 L S�P �
GF���

2
p

X
f;f0

~"s;f;f
0;S�P

�� � ����1� �
5�‘��� �f

0�1� �5�f�;

(5)

 L T �
GF���

2
p

X
f;f0

~"s;f;f
0;T

�� � �����	‘��� �f0��	f�: (6)

Here, GF is the Fermi constant, � and ‘ are the neutrino

and charged lepton fields, and the f’s represent the inter-
action partners of the neutrinos. The dimensionless pa-
rameters ~" give the strength of the nonstandard
interactions relative to GF, where an upper index s stands
for NSI in the neutrino source or detector, while m denotes
nonstandard matter effects, i.e. NSI affecting the propaga-
tion. In general, the ~"s can be arbitrary complex matrices,
while the ~"m have to be Hermitian.

Note that we have required the neutrino fields to be
purely left-handed, since processes involving right-handed
neutrinos would require either a neutrino helicity flip, or
their amplitudes would have to contain at least two NSI
terms (e.g. one to create the right-handed neutrino and one
to absorb it), and would therefore be strongly suppressed.
This constraint on the neutrino chirality, in particular,
forbids ��ff terms in LS�P and LT .

Before proceeding, let us give a simple estimate which
relates the magnitude of the ~" parameters to the corre-
sponding new physics scale MNSI [31]: If we assume the
nonstandard interactions to be mediated by some inter-
mediate particles with a mass of order MNSI, the effective
vertices in Eqs. (4)–(6) will be suppressed by 1=M2

NSI in
the same way as the standard weak interactions are sup-
pressed by 1=M2

W. Therefore we expect

 j~"j 

M2

W

M2
NSI

: (7)

B. Relevance of the different NSI terms to reactor and
superbeam experiments

We see from Eqs. (4)–(6) that the number of possible
NSI terms is very large. However, the number of parame-
ters for our discussion of reactor and superbeam experi-
ments can be greatly reduced by a few simple, but rather
technical arguments. Many of these arguments are based
on constraints coming from the requirement of interference
between the standard and nonstandard amplitudes. Of
course, the total interaction rate will also contain pure
NSI terms, for which these constraints do not apply, but
they are suppressed by ~"2, and can therefore be assumed to
be negligible compared to the interference terms, which are
linear in ~". The following arguments are also summarized
in Table I.

(1) The standard production and detection processes of
reactor and superbeam neutrinos are, on the funda-
mental level, decays of u quarks into d quarks, or
vice-versa. Since interference of standard and non-
standard amplitudes requires the external particles
to be identical, only the ~"s;f;f

0
terms with f � u,

f0 � d will be relevant, and we will henceforth
simply omit the indices f and f0.

(2) For the nonstandard matter effects, only coupling to
electrons, up quarks, and down quarks is important.

(3) Nonstandard couplings involving 	 leptons are ir-
relevant since 	 production is impossible in reactor
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and beam sources, and is not considered as a detec-
tion process here, although it might in principle be
possible for high energy superbeam neutrinos.
Hence we take

 ~" s;V�A	� � ~"s;S�P	� � ~"s;T	� � 0: (8)

For the same reason, processes involving muons can
be neglected in reactor experiments, and processes
involving electrons can be neglected in the super-
beam source, since they constitute subdominant
backgrounds even in the standard framework.

(4) In the couplings to muons, there is still room for
non-�V � A��V � A� contributions. For neutrino
production in pion decay, the effect of �S� P�	
�S� P� type NSI is even enhanced by a factor of
[55,56]

 ! �
m


m�

m


mu �md

 20; (9)

and the importance of this enhancement for accel-
erator neutrino experiments has been pointed out in
[26]. However, there exist limits on the muon helic-
ity in pion decay [57,58], which ensure that, in spite
of the enhancement, �S� P��S� P� type NSI can-
not affect the neutrino oscillation amplitude by more
than a few percent.

(5) Tensor interactions are impossible in pion decay
since the decay operator must have a parity-odd
component.

(6) In the detection processes involving muons, the
�S� P��S� P� and TT terms are chirally sup-
pressed by the smallness of m� compared to the
typical superbeam energies of O�1 GeV�. As men-
tioned above, the leading effect in the total event
rate is given by the interference of the nonstandard
amplitude and the standard �V � A��V � A� ampli-
tude. This interference can only occur if the initial
and final state particles have identical helicities, so
for �S� P��S� P� and TT type nonstandard inter-
actions, a mass-suppressed helicity flip of the muon
is required. We can also see the emergence of the
suppression factor explicitly by considering the
Dirac traces, which have to be evaluated when cal-
culating the cross section. For example, in the case
of �S� P��S� P� NSI, the spin sum in the inter-
ference term of standard and nonstandard ampli-
tudes is
 X
spins

Tr����1��5�� ���1��5�� ���

�Tr����1��5�u �u�1��5�d �d�

�
X
spins

Tr����1��5��p6 ��m���1��
5��p6 ��m���

�Tr����1��5��p6 u�mu��1��5��p6 d�md��:

(10)

Similar equations can be derived for �S� P��S� P�
and TT interactions. Because of the orthogonality

TABLE I. Classification of the vertices from Eqs. (4)–(6) according to their impact on reactor and superbeam experiments. Terms
marked with � can give a sizeable contribution; for all other terms, the reason for their suppression is given (see text for details).

Reactor source and detector (f � u, f0 � d)
Source Detector

‘� � e ‘� � � ‘� � 	 ‘� � e ‘� � � ‘� � 	

V � A � No � production No 	 production � No � production No 	 production
V � A � No � production No 	 production � No � production No 	 production
S� P Strong constraints No � production No 	 production Strong constraints No � production No 	 production
S� P Strong constraints No � production No 	 production Strong constraints No � production No 	 production
T Strong constraints No � production No 	 production Strong constraints No � production No 	 production

Superbeam source and detector (f � u, f0 � d)
Source Detector

‘� � e ‘� � � ‘� � 	 ‘� � e ‘� � � ‘� � 	

V � A No e production � No 	 production � � No 	 detection
V � A No e production � No 	 production � (Mild supp.) � (Mild supp.) No 	 detection
S� P No e production � No 	 production Strong constraints Chiral supp. No 	 detection
S� P No e production � No 	 production Strong constraints Chiral supp. No 	 detection
T No e production No P-odd part No 	 production Strong constraints Chiral supp. No 	 detection

Propagation �f � e; u; d�

V � A �
V � A �
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property of the chirality projection operators, a con-
tribution proportional to m� remains of the first
trace in Eq. (10), and a contribution proportional
to mu from the second. This leads to a suppression
factor of O�m�mu=E

2�. Low-energy neutrinos (E &

1 GeV) interact with whole nucleons, rather than
single quarks, therefore mu should be replaced by
the much larger nucleon mass mn, so that in this
case, the overall chiral suppression is only of
O�m�=E�. At typical superbeam energies around
1 GeV, we are in the transition regime between
neutrino-nucleon interactions (quasielastic scatter-
ing and resonance scattering) and neutrino-quark
interactions (deep-inelastic scattering) [59,60].

(7) For �V � A��V � A� interactions involving muons
in the detector, chiral suppression occurs only for
the hadronic interaction partners, and according to
our above discussion, it is not very pronounced for
them. Therefore, �V � A��V � A� type interactions
may in general be important for the cross sections,
and modify their overall magnitude as well as their
energy dependence.

(8) From measurements of the electron angular distri-
bution in nuclear � decays, �S� P��S� P� and TT
couplings to electrons are strongly constrained [61–
65]. Consequently, we take

 ~" s;S�Pe� � ~"s;Te� � 0 (11)

for � � e, �, 	.
(9) There is still room for �V � A��V � A� type terms

involving electrons, because these terms differ from
the standard model term only in the quark current,
which cannot be directly measured. Limits exist
only for the effective vector and axial-vector cou-
plings of protons and neutrons [65], but due to the
nonperturbative nature of the strong interactions,
these cannot be easily related to the couplings of
the fundamental quarks.
If �V � A��V � A� couplings to electrons exist, the
processes in which they appear will in general have
an energy dependence different from that of the
corresponding standard processes. For antineutrino
production in nuclear reactors, however, this differ-
ence is completely negligible because the neutrino
spectrum from nuclear � decay is governed by
kinematical effects and by the Fermi function,
which describes final state Coulomb interactions.
The cross section for the inverse � decay process,
which is used to detect reactor antineutrinos, is
derived from empirical values for the effective vec-
tor and axial-vector couplings, so any possible �V �
A��V � A� contribution is automatically taken into
account properly.
Finally, �V � A��V � A� interactions involving
electrons in the beam detector, are mildly chirally

suppressed, in analogy to �V � A��V � A� interac-
tions involving muons.

(10) As we have seen in Eqs. (4)–(6), nonstandard
matter effects can only have a �V � A��V � A� or
�V � A��V � A� Lorentz structure, as long as we
restrict the discussion to left-handed neutrinos. For
the computation of the coherent forward scattering
amplitude, the factor � �f���1� �5�f� has to be
averaged over the neutrino trajectory, and for un-
polarized matter at rest, the only contribution is
Nf � �f�0f, the fermion density appearing in the
matter potential. Since Nf is independent of the
axial current, we conclude that both possible
Lorentz structures would have the same impact
on the nonstandard matter effects.

To conclude this discussion, we would like to emphasize
again that non-�V � A��V � A� Lorentz structures can play
an important role in reactor and superbeam experiments.
However, these experiments do not have the capability to
distinguish different Lorentz structures, unless the spectral
distortion caused by �V � A��V � A� terms in the super-
beam detector is taken into account. In the following, we
will neglect this spectral distortion for simplicity, assuming
that it is anyway hidden by the systematical uncertainties in
the neutrino cross sections.

C. Hamiltonian approach to nonstandard interactions
in neutrino oscillations

The observations from the previous section can be ex-
ploited to further reduce the number of free parameters in
our problem. To this end, we define effective couplings
"s��, "d��, and "m��, corresponding to nonstandard interac-
tions in the production, detection, and propagation pro-
cesses. "s�� describes a nonstandard admixture of flavor �
to the neutrino state which is produced in association with a
charged lepton of flavor �. This means that the neutrino
source does not produce a pure flavor neutrino eigenstate
j��i, but rather a state

 j�s�i � j��i �
X

��e;�;	

"s��j��i: (12)

Similarly, the detector is sensitive not to the normal weak
eigenstates, but to the combination

 h�d�j � h��j �
X

��e;�;	

"d��h��j: (13)

Note that in "s��, the first index corresponds to the flavor of
the charged lepton, and the second to that of the neutrino,
while in "d��, the order is reversed. We have chosen this
convention to be consistent with the literature.

In general, the matrices �1� "s� and �1� "d� are non-
unitary, i.e. the source and detection states are not required
to form complete orthonormal sets of basis vectors in the
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Hilbert space:

 

X
��e;�;	

j�s�ih�
s
�j � 1;

X
��e;�;	

j�d�ih�
d
�j � 1; (14)

 h�s�j�
s
�i � ���; h�d�j�

d
�i � ���: (15)

We can read off from Table I that the 3	 3 coupling
matrix "s�� receives contributions from ~"s;u;d;V�A�� and

~"s;u;d;S�P�� , while "d�� and "m�� are built up only from �V �
A��V � A� contributions.

Since the coefficients "se� and "d�e (for � � e,�, 	) both
originate from ~"s;u;d;V�A, the �V � A��V � A� coupling to
up and down quarks, we have the constraint

 "se� � "d��e; (16)

which again reduces the number of independent parame-
ters by 3. The aforementioned spectral distortion and mild
chiral suppression in the superbeam detector could invali-
date Eq. (16), but we will neglect it in the following.

Similarly, the �V � A��V � A� part of "s�� and "d�� are
the same, and since the �S� P��S� P� Lorentz structures
have less impact in "d�� than in "s��, we will typically have

 j"s��j * j"d��j (17)

(barring fine-tuned cancellation effects). If we assume all
nonstandard interactions to be of the �V � A��V � A� type,
as is sometimes done in the literature, the constraints from
Eqs. (16) and (17) are tightened to "s � �"d�y.

It is clear from Table I that coupling to 	 leptons is
irrelevant in our case, so we can also take

 "s	� � "d�	 � 0 (18)

for all �, �.
"m is an additive contribution to the Mikheyev-Smirnov-

Wolfenstein (MSW) potential in the flavor basis, VMSW �
aCC diag�1; 0; 0�, which now becomes

 

~V MSW � aCC

1� "mee "me� "me	
"m�e� "m�� "m�	
"m�e	 "m��	 "m		

0
@

1
A; (19)

with aCC � 2
���
2
p
GFNeE. Recall from Eq. (4) that the di-

agonal entries in this matrix have to be real, so that the
Hamiltonian will remain Hermitian, and can be diagonal-
ized by a unitary mixing matrix.

Since we are interested in a combined analysis of reactor
and superbeam experiments, it is important to keep in mind
that the effective " matrices are the same for both types of
experiments, because, under the assumptions and approx-
imations discussed above, those entries which may be
relevant in both of them ("m�� and "d�e) are identical in
both cases.

The oscillation probability is obtained as

 P�s�!�d� � jh�
d
�je
�iHLj�s�ij2

� j�1� "d����e�iHL����1� "s���j2

� j��1� "d�Te�iHL�1� "s�T���j
2; (20)

where

 H�� �
1

2E

�
U�j

0
�m2

21

�m2
31

0
@

1
A
jk

�Uy�k� � � ~VMSW���

�
: (21)

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U is parametrized as

 U �
c12c13 s12c13 s13e�i�CP

�s12c23 � c12s13s23ei�CP c12c23 � s12s13s23ei�CP c13s23

s12s23 � c12s13c23e
i�CP �c12s23 � s12s13c23e

i�CP c13c23

0
B@

1
CA: (22)

As usual, sij and cij denote the sine and cosine of the
mixing angle �ij, and �CP is the (Dirac) CP phase.

For antineutrinos, we have to replace "s, "d, and "m by
their complex conjugates in the above equations, and re-
verse the signs of aCC and �CP.

D. Perturbative calculation of oscillation probabilities

In practice, it is very convenient to expand the oscilla-
tion probabilities in a perturbative series with respect to the
small quantities �13, �m2

21=�m2
31, and j"s;m;d�� j instead of

attempting to evaluate Eq. (20) exactly. Following a pro-
cedure similar to the one explained in the appendix of [66],
the first order expansion reads

 P�s�!�d� � P�0�
�s�!�d�

� P�1�
�s�!�d�

� . . . ; (23)

where

 P�0�
�s�!�d�

� j�e�iH
�0�L���j

2; (24)
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P�1�
�s�!�

d
�
� �e�iH

�0�L�����e
�iH�0�L�1� "s�T��� � �e

�iH�0�L������1� "
d�Te�iH

�0�L���

� i�e�iH
�0�L����

�Z L

0
dxe�iH

�0��L�x�H�1�e�iH
�0�x
�
��
� H:c:; (25)

and

 H�0��� �
1

2E

2
4U�0� 0

0
�m2

31

0
@

1
AU�0�y � aCC

1
0

0

0
@

1
A
3
5; (26)

 H�1��� �
1

2E

2
64U�0� 0

�m2
21

0

0
@

1
AU�0�y �U�1� 0

0
�m2

31

0
@

1
AU�0�y �U�0� 0

0
�m2

31

0
@

1
AU�1�y

� aCC

"mee "me� "me	
"m�e� "m�� "m�	
"m�e	 "m��	 "m		

0
B@

1
CA
3
75: (27)

By U�0�, we denote the PMNS matrix for �13 � 0, and U�1�

contains the first order terms in �13. The unperturbed
Hamiltonian, H�0���, can be easily diagonalized exactly, so
that the matrix exponentials in the above equations can be
evaluated. It is straightforward to extend the expansion to
higher orders.

III. MODIFIED NEUTRINO OSCILLATION
PROBABILITIES FOR REACTOR AND

SUPERBEAM EXPERIMENTS

To study the impact of nonstandard interactions on
reactor and superbeam experiments, we need, in particular,
the oscillation probabilities P ��se! ��de , P�s�!�de , and P�s�!�d� ,
to which these experiments are sensitive. We will first
present approximate analytic formulas for these quantities
in Secs. III A to III C, and then discuss them in Sec. III D.
All approximations were carried out with the perturbative
method described in the previous section. We have checked
that the expressions presented in this section reduce to the
well-known standard oscillation results if NSI are absent
by comparing them to the expressions derived in [66–68].
Moreover, we have verified all formulas numerically, term
by term, using Mathematica.

To simplify the notation, let us make the abbreviations
sij � sin�ij, cij � cos�ij, s2	ij � sin2�ij, and c2	ij �

cos2�ij. Moreover, it will be convenient to split the "

parameters into their real and imaginary parts by writing
"s;m;d�� � j"s;m;d�� j exp�i�s;m;d

�� �. To keep our results as general
as possible, we will not impose the constraint from
Eq. (16), but treat "s and "d as completely independent
matrices. Thus, our formulas will be also applicable to
experiments with fundamentally different production and
detection processes, e.g. to a neutrino factory, where the
production occurs through a purely leptonic ��e� vertex,
while the detection process �‘ud involves coupling to
quarks. For reactors and superbeams, it is, of course,
straightforward to impose Eq. (16) a posteriori.

A. The ��e ! ��e channel

In a reactor experiment, the ratio L=E is chosen close to
the first atmospheric oscillation maximum, so we can
safely neglect terms proportional to �m2

21=�m2
31.

Moreover, matter effects are irrelevant, i.e. we can take
aCC � 0. Finally, we will neglect terms suppressed by s3

13,
"s2

13, or "2. The last approximation implies that we only
consider the interference terms between standard and non-
standard contributions, but not the pure, incoherent, NSI
effect. This is justified for most realistic extensions of the
standard model, where "
 1, but it has been pointed out
in [28] that, from current model-independent experimental
limits, the NSI might even dominate over the standard
oscillations in some situations. We find for the oscillation
probability
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P ��se! ��de � 1� 4s2
13sin2 �m2

31L
4E

� 2j"seej cos�s
ee � 2j"deej cos�d

ee � 4j"se�js13s23 cos��CP ��
s
e��sin2 �m2

31L
4E

� 2j"se�js13s23 sin��CP ��
s
e�� sin

�m2
31L

2E
� 4j"se	js13c23 cos��CP ��

s
e	�sin2 �m2

31L
4E

� 2j"se	js13c23 sin��CP ��s
e	� sin

�m2
31L

2E
� 4j"d�ejs13s23 cos��CP ��d

�e�sin2 �m2
31L

4E

� 2j"d�ejs13s23 sin��CP ��d
�e� sin

�m2
31L

2E
� 4j"d	ejs13c23 cos��CP ��d

	e�sin2 �m2
31L

4E

� 2j"d	ejs13c23 sin��CP ��d
	e� sin

�m2
31L

2E
�O

�
�m2

21

�m2
31

�
�O�"s2

13� �O�s3
13� �O�"2�: (28)

It is interesting to remark that, due to the "see and "dee terms, this expression can be different from unity even for
�m2

31L=4E
 1, i.e. at the near detector (ND) site. Indeed, we obtain in this case

 PND
��se! ��de

� 1� 2j
seej cos�s
ee � 2j
deej cos�d

ee � j
seej2 � j
deej2 � 2j
seejj
deej�cos��s
ee ��d

ee� � cos��s
ee ��d

ee��

� 2j
se�jj

d
�ej cos��s

�e ��
d
e�� � 2j
se	jj


d
	ej cos��s

	e ��
d
e	� �O

�
�m2

31L
4E

�
�O�"3�; (29)

where we have taken into account also second order terms in ", which may be important in the near detector due to the large
event rates. Equation (29) corresponds to an overall rescaling of the neutrino flux, which, however, will be hard to detect in
a realistic experiment due to the systematical flux uncertainty.

B. The �� ! �e channel

In the derivation of P�s�!�de , we will relax our approximations from the previous section, and take into account also terms
of O�s13�m2

21=�m2
31�, O���m

2
21=�m2

31�
2�, and O�"�m2

21=�m2
31�, to reproduce the correct �CP dependence. For experi-

ments with a relatively short baseline, such as T2K, it is justified to assume vacuum oscillations, if the "m parameters are
& O�0:1� (in Sec. V, we will discuss cases where this is not true, and we will see that nonstandard matter effects can then be
large in T2K). The vacuum oscillation probability reads
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�
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�
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13� �O�"2�: (30)
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The corresponding expression for the near detector is

 Pvac;ND
�s�!�de

� j"s�ej2 � j"d�ej2 � 2j"s�ejj"d�ej cos��s
�e ��d

�e� �O

�
�m2

31L
4E

�
�O�"3�: (31)

If the baseline is longer, as is the case e.g. in NO�A, matter effects are important. To keep the notation concise in this case,
we define the effective 13-mixing angle in matter, which is given to lowest order by

 ~s 13 �
�m2

31

�m2
31 � aCC

s13 �O�s2
13�: (32)

The oscillation probability is then
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Most of the O��m2
21=�m2

31� terms contain factors of �m2
31=aCC, which can be large at low matter densities, and might

therefore seem to spoil the accuracy of the expansion in this case. However, the oscillatory terms in square brackets
become small as �m2

31=aCC becomes large, so that overall, the O��m2
21=�m2

31� terms remain subdominant even if the
vacuum limit is approached.

C. The �� ! �� channel

For P�s�!�d� , we obtain
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in vacuum, and
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in matter.
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D. Interpretation

To understand the physical origin of the formulas de-
rived in the previous sections, let us consider Figs. 1–3,
where we show schematically the possible reaction chains
that a neutrino can follow before its detection. We also
indicate the respective suppression factors of the transition
amplitude, but to simplify the discussion and to improve
the clarity of the figures, we do not explicitly show con-
tributions proportional to �m2

21=�m2
31, which would ap-

pear in concurrence to the �13-suppressed processes if �13

is very small. Dotted lines indicate suppression due to
standard effects, while dashed lines represent transitions
that are suppressed by the nonstandard parameters. The
thick paths are those followed by the standard oscillation
channels, while light gray lines indicate paths that are
suppressed by more than one " parameter, and are there-
fore mostly negligible. In Table II we summarize the same
considerations in tabular form. In the first part of the
discussion, we will assume "s and "d to be completely
independent in order to keep the discussion as general as
possible. The constraints from Eqs. (16) and (17) will only
be implemented afterwards.

On the reactor side, we can read off from Fig. 1 and
Table II, that, in the presence of just one type of non-

FIG. 1 (color online). Possible contributions of "s and "d to
the event rate in the far detector (a), and the near detector (b) of a
reactor ��e disappearance experiment. Thick lines indicate the
reaction chain for standard oscillations. Dotted lines indicate
processes that are suppressed by standard three-flavor effects
proportional to �13 or �m2

21=�m2
31, while dashed lines represent

transitions that are suppressed due to nonstandard interactions.
Paths which would only be accessible in the presence of two
different nonstandard effects, are shown in light gray since they
are usually subdominant.

FIG. 3 (color online). Possible contributions of "m to the event
rate in the superbeam appearance channel (a), and in the corre-
sponding disappearance channel (b). The meaning of the line
styles is the same as in Fig. 1.

FIG. 2 (color online). Possible contributions of "s and "d to
the event rate in a superbeam experiment for the appearance
channel (a), the disappearance channel (b), and in the near
detector (c). The meaning of the line styles is the same as in
Fig. 1.
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standard interaction, only "see, "se�, "se	, "dee, "d�e, and "d	e
are relevant. Of these, "see and "dee have an O�"� effect
which could even exceed standard oscillations if it were not
for the near detector, where these parameters would induce
a similar effect as in the far detector. Since the absolute
reactor neutrino flux is not known precisely, the measure-
ment relies on the relative counting rates in both detectors,
so that the impact of "see and "dee is canceled. The remaining
NSI, "se�, "se	, "d�e, and "d	e, contribute to the oscillation
probability at O�" sin2�13� (or at O�" sin2�13 � "2�, if the
constraint "se� � "d��e from Eq. (16) is implemented). This
can be comparable to the standard term, so that these NSI
are expected to have a large impact on the far detector.
They do not affect the near detector as long as only one of

them is present, but if Eq. (16) is taken into account, the
near detector will receive an O�"2� contribution that can be
important in some situations. All these considerations are
nicely confirmed by Eq. (28).

For a superbeam experiment, Fig. 2 and Table II show
that, as long as only one type of NSI is taken into account,
"s�e, "s��, "s�	 can affect the production process, while "dee,
"de�, "d�e, "d��, "d	e, and "d	� may be important in the
detector. The propagation can be affected by all entries
of "m. As for the reactor case, the suppression factors
associated with these different processes can be understood
from simple physical arguments, which are confirmed in a
more rigorous way by Eqs. (30) and (34). Let us discuss the
different types of NSI in more detail:

TABLE II. Classification of the reparametrized nonstandard interactions "s, "d, and "m according to their impact on the transition
amplitudes for reactor and superbeam experiments. For each NSI coupling, only the leading order effect is shown. The framed entries
highlight those terms that are the most relevant to the determination of �13 (see text for details).

NSI Reactor Superbeam
��e disappearance Effect in ND �e appearance �� disappearance Effect in ND

None 1 sin2�13 cos��m2
31L=4E�

"see " Modified ��e flux
"se�
"se	
"s�e " sin2�13 Modified �e flux
"s�� " sin2�13 " cos��m2

31L=4E� Modified �� flux
"s�	 " sin2�13 "
"s	e
"s	�
"s		

"dee " Modified ��e flux " sin2�13

"de� " sin2�13

"de	
"d�e " cos��m2

31L=4E� Modified �e flux
"d�� " cos��m2

31L=4E� Modified �� flux
"d�	
"d	e
"d	� "
"d		

"see � "d�ee " Modified ��e flux " sin2�13

"se� � "d��e Modified ��e flux " cos��m2
31L=4E� Modified �e flux

"se	 � "d�	e Modified ��e flux

"s�e � "d�e� " sin2�13 � "
2 Modified �e flux

"s�� � "d��� " sin2�13 " cos��m2
31L=4E� Modified �� flux

"s�	 � "d�	� " sin2�13 "

"mee " sin2�13 "sin22�13

"me� " sin2�13

"me	 " sin2�13

"m�� " sin2�13 " cos2�23
a

"m�	 " sin2�13 "
"m		 " sin2�13 " cos2�23

a

aThe factor cos2�23 cannot be derived from Fig. 3, but only from Eq. (35).
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(1) "de� and "d	� affect only the disappearance channel
and are therefore irrelevant for the measurement of
�13 (they may, however, lead to wrong results for the
leading atmospheric parameters).

(2) "d�� also affects the disappearance channel, but it
can also lead to a modified �� rate in the near
detector, and therefore to wrong assumptions on
the initial neutrino flux. This, in turn, could lead
to a misinterpretation of the far detector ap-
pearance measurement, so that the �13 measurement
is influenced indirectly. The effect in the near de-
tector is suppressed by ", so it will affect the far
detector analysis only at the subleading level of
"sin22�13.

(3) "s��, "s�	, and "dee are relevant for the appearance
channel, but the corresponding amplitude is sup-
pressed by " sin2�13, so that in the oscillation proba-
bility, we would obtain a subdominant contribution
of O�"sin22�13� from the interference of the stan-
dard and nonstandard terms.

(4) "s�e, "d�e, and "d	e have amplitudes of O�"�, i.e. they
contribute to the appearance probability on the level
of " sin2�13, which can be comparable to the leading
contribution
sin22�13. "d�e, however, is suppressed
by a factor of cos��m2

31L=4E�, which is small at the
first atmospheric maximum around which the beam
is centered. Note also that the modified �e flux in the
near detector that is expected in the presence of "s�e
or "d�e can help to actually detect the NSI, although
part of it may be misinterpreted as a systematical
error on the intrinsic beam background.

(5) Of the nonstandard matter effects, only "me� and "me	
contribute at leading order to the appearance proba-
bility Pmat

�s�!�de
. Of these, "me� is already strongly con-

strained experimentally [47], and so is not expected
to have a large impact on reactor and superbeam
experiments. "me	, on the other hand, could contrib-
ute significantly to the superbeam appearance chan-
nel, in accordance with [8,30]. All other
nonstandard matter effects are suppressed by an
additional power of s13, (or, more correctly, ~s13,
which is, however, still small since we are far from
the MSW resonance).
It is interesting to observe that the sensitivity to "mee
is very weak, although this type of interaction cor-
responds to a simple rescaling of the standard MSW
potential. However, it is not a leading order effect,
and therefore does not appear in our approximate
formula, Eq. (33).

(6) In Pmat
�s�!�d�

, the dominant matter effect is "m�	, and

since there is no �13 suppression from the interfer-
ence with the standard amplitude, this effect is even
stronger than those in Pmat

�s�!�de
. Note that, from

Fig. 3, one might expect "m�� and "m		 to be of similar

strength as "m�	, but when one performs the calcu-
lation, it turns out that an additional suppression
factor c2	23 appears [cf. Eq. (35)].

(7) The implementation of the constraints "se� � "d��e
[Eq. (16)] and j"s��j * j"d��j [Eq. (17)] does not
lead to any new effects, except for the appearance of
an additional "2 term in the disappearance channel
for "s�e � "d�e�.

Let us finally emphasize the crucial importance of the
standard and nonstandard phases in the oscillation proba-
bilities: The formulas from Secs. III A, III B, and III C
reveal that unfavorable phase combinations may suppress
nonstandard effects, even if the modulus of the correspond-
ing " parameter is large.

IV. SIMULATION OF REACTOR AND SUPERBEAM
EXPERIMENTS

To fully assess the high-level consequences of nonstan-
dard interactions for realistic reactor and superbeam ex-
periments, we have performed numerical simulations using
the GLoBES software [69,70]. We have considered the
following scenarios:

(1) T2K+Double Chooz. Our simulation of the T2K far
detector, Super Kamiokande, is based on [71]. Most
parameters are taken from the T2K letter of intent
[48], and the systematical uncertainties are based on
[72]. We include a separate 1.0 kt water Čerenkov
near detector with similar properties as the far de-
tector, and similar systematical uncertainties. To
model the interplay of the two detectors, we intro-
duce a common 10% uncertainty on the neutrino
flux, and a common 20% error on the number of
background events in the �e appearance channel. In
the absence of nonstandard interactions, these cor-
related errors would cancel completely, since the
total neutrino flux and the background contribution
are effectively calibrated by the near detector, but if
"s;d � 0, this calibration can be wrong, and there
may be an observable effect. The neutrino interac-
tion cross sections are taken from [60,73]. We as-
sume 3 years of neutrino running and 3 years of
antineutrino running, each with a beam power of
0.77 MW. The fiducial far detector mass is 22.5 kt,
and the baseline is 295 km. We consider �e appear-
ance events as well as the �� disappearance signal.
The background for the disappearance channel is
made up of neutral current events, while for the
appearance measurement, neutral current events,
misidentified muons, and the intrinsic beam back-
grounds can contribute.
For the simulation of Double Chooz, we use the
same parameters as in [53], and the cross sections
for inverse beta decay are taken from [74]. As for
T2K, we simulate the near and far detectors sepa-
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rately, but take into account the appropriate corre-
lations between systematical errors. In particular,
we introduce a 2.8% flux normalization error, which
is correlated between the near and far detectors,
uncorrelated 0.6% fiducial mass errors for both de-
tectors, uncorrelated 0.5% energy calibration uncer-
tainties, and an 0.5% bin-to-bin uncorrelated error.

(2) NO�A+DC-200, where DC-200 refers to a reactor
experiment similar to Double Chooz, but with a
200 t far detector [53]. Such a large reactor experi-
ment has a considerable sensitivity not only to the
total event rate, but also to distortions of the energy
spectrum.
The simulation of the �e appearance signal in
NO�A is based on [50], while for the �� disappear-
ance channel, we follow [75]. We assume 3 years of
neutrino running and 3 years of antineutrino run-
ning, with a beam power of 1.12 MW. The far
detector mass is 25 kt, and the baseline is 812 km,
with an average matter density of 2:8 g=cm3 along
the trajectory, while the near detector has a mass of
0.0204 kt, and is located at 1 km from the target.
Again, we introduce, in addition to the uncorrelated
systematical errors from [50,75], a correlated 10%
uncertainty on the total neutrino flux, and a corre-
lated 20% error on the �e background.
The parameters and systematical errors of the DC-
200 scenario are identical to those of Double Chooz.

Unless indicated otherwise, we calculate the respective
event rates using the following ‘‘true’’ values for the os-
cillation parameters [76]:
 

sin22�true
12 � 0:84;

sin22�true
23 � 1:0;

sin22�true
13 � 0:05;

�true
CP � 0:0;

��m2
21�

true � 7:9	 10�5 eV2;

��m2
31�

true � 2:6	 10�3 eV2;

(36)

and assume a normal mass hierarchy. To analyze the
simulated data, we follow the statistical procedure de-
scribed in the appendix of [71], and define the following
�2 function:1
 

�2 � min
�

Xchannel

j

Xbin

i

jNij��true; "true� � Nij��; " � 0�j2

Nij��true; "true�

� Priors; (37)

where Nij denotes the number of events in the i-th energy

bin for oscillation channel j, the vector � � ��12; �13;
�23; �CP;�m

2
21;�m

2
31; ~b� contains the standard oscillation

parameters and the systematical biases ~b, and " represents
the nonstandard parameters. In the fit, we marginalize �2

over all standard oscillation parameters and over the sys-
tematical biases, but since we want to study how a
standard-oscillation fit gets modified if there are nonstan-
dard interactions, we keep the NSI parameters fixed at 0.2

The prior terms implement external input from other ex-
periments and have the form �x� xtrue�2=�2

x, where x
stands for any oscillation parameter or systematical bias,
and �x is the corresponding externally given uncertainty.
We assume �12 to be known to within 10%, and �m2

21 to
within 5% from solar and reactor experiments [76]. When
analyzing the reactor experiment alone, we additionally
assume a 15% uncertainty on �23 and a 5% error on �m2

31.
Beam experiments are themselves sensitive to �23 and
�m2

31, so we omit these priors for them.

V. NSI-INDUCED OFFSETS AND DISCREPANCIES
IN �13 FITS

Using the simulation techniques discussed in the pre-
vious section, we can now determine the errors that are
introduced when nonstandard interactions are present in
reactor and superbeam experiments, but are not properly
taken into account in the respective fits. Possible outcomes
of such fits are shown in Fig. 4 for our two scenarios. As
true parameter values, we have taken sin22�13 � 0:05 and
�CP � 
, and the NSI contribution was assumed to be
"me	 � 0:5e�i
=2 in the upper panel, and "se	 � "d	e �
0:05 [fulfilling Eq. (16)] in the lower panel. These NSI
parameters are rather large, but still consistent with current
bounds [31,47]. According to the discussion in Sec. III,
only the superbeam experiment should be affected in the
first case, while in the second case, there should be an
impact on both experiments. The shaded areas show the
90% confidence regions for the reactor experiment, while
the contours are for the superbeam. The data has been
calculated under the assumption of a normal mass hier-
archy, but the fit has been performed for both the normal
mass ordering (solid contours) and for the inverted order-
ing (dashed contours). The vertical line and the diamonds
represent the respective best fit values, while the star stands
for the assumed true parameter values. We have assumed 2
degrees of freedom for the superbeam experiments, and 1
degree of freedom for the reactor setups, which are insen-
sitive to �CP.

It is obvious from the plots that the standard oscillation
fit to �13 and �CP can be severely wrong if NSI are present.
This observation is similar to the one made in [34] for a

1In the implementation of superbeam experiments, we assume
the events to follow the Poisson distribution. However, for
illustrative purposes, it is sufficient to consider the more compact
approximative Gaussian expression.

2Of course, when computing confidence intervals for certain
parameters, we have to keep these parameters fixed as well.
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neutrino factory. In the case shown in the upper plots of
Fig. 4, the reactor experiment gives the correct best fit
value, but the superbeam results conflict with this mea-
surement. In the case of NO�A, we even obtain a fit value
above the Chooz bound and a fake 90% hint to the mass
hierarchy, indicated by the fact that, within the resolution
of the plot, the 90% contour reduces to a single point. In the
second case (lower plots), both experiment agree very well,
but they erroneously seem to rule out the true �13.

Of course, the NSI scenarios analyzed in Fig. 4 were
only two examples, and a more systematic analysis of
nonstandard interactions in reactor and superbeam experi-
ments is desirable. This is done in Figs. 5–7, where we
show how the (standard oscillation) �13 fits in T2K/Double
Chooz, respectively, in NO�A/DC-200 may be distorted in
the presence of nonstandard interactions. For each dia-
gram, only one of the independent " parameters was
assumed to be nonzero, but we have ensured that

Eqs. (16) and (17) are fulfilled. In particular, we did not
consider the hypothetical case "s�� � 0, "d�� � 0, but only
"s�� � 0, "d�� � 0, and "s�� � "d�� � 0. Moreover we
omit all entries of "m except "me	, because they are either
strongly constrained already ("me�), or do not have any
impact on the �13 measurements ("mee, "m��, "m�	, and
"m		). The modulus of each parameter has been varied
between 0 and its current upper bound, which is 0.1 for
"s;d�� from universality in charged lepton decays [31], and
0.7 for "me	 [47].3 The complex phases were allowed to vary
between 0 and 2
. For each combination of j"j and arg�"�,
we have then performed a fit assuming standard oscilla-
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FIG. 4 (color online). Two examples for the errors that are introduced if nonstandard interactions are neglected when fitting �13 and
�CP to the data of reactor and superbeam experiments. In the upper plots, a discrepancy arises between the two experiments (the NO�A
fit is even above the Chooz bound), while in the lower plots, there is a common offset, leading to consistent results, but erroneously
‘‘ruling out’’ the true �13 (indicated by the black star) at a high confidence level. The left-hand plots are for T2K and Double Chooz,
and the right-hand ones are for NO�A and DC-200. The gray shading represents the 90% confidence region from the reactor
experiment, and the vertical black line shows the corresponding best fit value for �13. The 90% contours from the superbeam are shown
as solid dark gray lines for a normal hierarchy fit, and as dashed light gray lines for an inverted hierarchy fit. The diamonds represent
the corresponding best fit values. In interpreting the computed �2 values, we have assumed 2 degrees of freedom for the beam
experiments, and 1 degree of freedom for the reactor setups.

3Note that, according to the naive estimate from Eq. (7), such
large values of j"j would correspond to MNSI 
O�100 GeV�. In
many models, such low new physics scales are already ruled out,
but in our model-independent treatment, they are still viable.
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tions, and the resulting best fit values for �13 are shown in
the plots. Points giving a good fit (better than 3� in both
experiments), are drawn as thick lines, with the hue in-
dicating the respective value of j"j. Dark gray corresponds
to j"j � 0, while medium gray corresponds to the upper
bound of j"j. Points giving a fit quality worse than 3� are
shown by thin light gray lines, and the information on j"j is
omitted for them. All computations have been performed
for two different true values, sin22�13 � 0:01 and
sin22�13 � 0:05, as indicated by the black stars.

By comparing the plots with Table II, we find that
our expectations for the impact of the different " parame-
ters from the discussion in Sec. III are confirmed. A
particularly interesting situation arises for "d	e, because
this parameter has a sizeable effect in both the reactor
experiment and the superbeam setup. It is especially
dangerous because it induces a similar offset in both
experiments, i.e. one would find perfectly consistent �13

fits, which might, however, be far away from the true
value.
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FIG. 5 (color online). Distortion of the �13 fits in T2K and Double Chooz in the presence of "s�� and "d��. For each plot, the modulus
of the corresponding " parameter has been varied from 0 to 0.1, and its phase from 0 to 2
. For every such combination, we show the
result of standard oscillation fits of �13. Connected lines represent contours of equal j"��j and varying phase. Dark gray lines
correspond to j"��j � 0, while medium gray lines correspond to j"��j � 0:1. Points giving a quality of fit worse than 3� in at least
one of the two experiments are plotted in light gray. The black stars indicate the assumed true sin22�13.
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Other parameters may lead to fit points far from the
diagonal, corresponding to seemingly conflicting fits. An
interesting case is the "d�e term, for which the nonstandard
interaction mimics a significantly modified �e flux in the
near detector. This, in turn, leads to a miscalibration
of the beam-intrinsic backgrounds, so that, at the far site,
many of the actually oscillation-induced �e events will be
mistaken as background. Thus, the fit value for �13 be-
comes too small. However, we can also read off from the
plot that, in this situation, the quality of the standard
oscillation fit becomes so bad that the NSI effect can
actually be detected. Note that the curves for large j"d�ej
look slightly untidy, because for some parameter values,
the smallest �2 is provided by the normal hierarchy fit,

while for others the inverted hierarchy fit is marginally
better. Therefore, frequent ‘‘jumps’’ between these two
solutions occur.

When interpreting Figs. 5 and 6, it is important to keep
in mind that the error bars of the experiments considered
here are rather large (cf. Fig. 4), so that even sizeable
deviations from the diagonals will in most cases only
create some tension, but no unambiguous contradiction
between the beam and reactor fits.

Of the nonstandard matter effects, we expect from
Table II that only "me� and "me	 should have any effect on
the �13 fits. "me� is already strongly constrained from
charged lepton flavor violation experiments [47], but "me	
may still have a large impact. In fact, for extreme values of
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this parameter, there is even the possibility that NO�A
would erroneously report a �13 value above the Chooz
bound.

Let us emphasize that, in order to obtain reliable esti-
mates for the impact of nonstandard interactions on reactor
and superbeam experiments, it is crucial to take the infor-
mation from the near detectors into account. To show this,
we have also studied how Figs. 5 and 6 get modified if we
use a simplified simulation, in which the near detector does
not appear explicitly, but only through suitably small val-
ues for the systematical uncertainties. In doing so, we have
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FIG. 7 (color online). Effect of "me	 on the �13 fits in T2K and
Double Chooz, resp. in NO�A and DC-200. We do not show
plots for the other entries of "m, since these are either strongly
constrained already ("me�), or do not affect the �13 measurement
("mee, "m��, "m�	, and "m		). The shading is the same as in Fig. 5, but
the scale is different since the bound on "me	 is weaker than that
for "s;d�� [31,47].

FIG. 8 (color online). Possible outcomes of standard three-
flavor oscillation fits to reactor and superbeam data in the
presence of nonstandard interactions. Each plot contains two
datasets, one for sin22�true

13 � 0:01, and one for sin22�true
13 � 0:05

(indicated by the black stars). For each dataset, 5000 random
combinations of " parameters where chosen, with their moduli
being distributed logarithmically between 10�8 and the respec-
tive upper bounds [31,47], and their phases varying linearly
between 0 and 2
. Each of these random nonstandard scenarios
was then fitted under the assumption of standard three-flavor
oscillations. Dark gray points indicate a very good quality of this
fit, while light gray points denote a fit quality worse than 3� in at
least one of the two experiments, i.e. an effective discovery of
the nonstandard effect. The plots show that nonstandard inter-
actions can induce ostensible discrepancies between reactor and
superbeam data (off-diagonal points), or a common offset (close-
to-diagonal points), which would lead to consistent, but wrong
results. Note that some points lie even above the Chooz bound. A
reactor fit above the Chooz bound indicates that the correspond-
ing combination of NSI parameters and �true

13 could already be
ruled out using existing data.
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again treated "s and "d as completely independent matri-
ces, possibly violating Eqs. (16) and (17). Thus, the results
are also applicable to setups where "s and "d are indeed
unrelated. In accordance with our expectations from
Table II, we have found:

(1) For "see and "dee, the effect on the reactor becomes
stronger without the proper treatment of the near
detector, because these terms no longer cancel then.
Moreover, the discovery potential becomes worse,
i.e. there will be fewer light gray segments in the
plot.

(2) For the superbeam, the discovery of "s�e and "d�e
becomes also much harder without the near detector,
because the clear signature of an apparently modi-
fied �e flux at the near site is no longer available.
Moreover, for "d�e, the strong impact of the NSI on
the �13 fit in the superbeam, which we have identi-
fied as a near detector effect in the above discussion,
vanishes in the single-detector simulation.

(3) The contours for "se	 � "d�	e are deformed without
the near detector because in this (unrealistic) situ-
ation, it is no longer possible to misinterpret the
nonstandard effect as a reactor flux calibration error.
Note that this misinterpretation is only due to the
fact that "se	 and "d�	e are identical, since the near
detector is only affected if both are present
(cf. Table II). Otherwise, it would retain its capa-
bility to properly calibrate the reactor flux to its true
value.

So far, we have only considered situations in which one
nonstandard parameter is dominant, and all others are
negligible. In realistic models, however, many parameters
may be of the same order of magnitude. Since it is impos-
sible to visualize the resulting high-dimensional parameter
space, we resort to the scatter plots shown in Fig. 8. These
plots were created by choosing a random value for each
NSI parameter, and then performing a standard oscillation
fit to the resulting experimental data. The moduli of the "
parameters were logarithmically distributed between 10�8

and their current upper limits, where we have assumed the
model-independent bound from universality in charged
lepton decays [31] for "s and "d, and the results of [47]
for "m. The phases were distributed linearly between 0 and
2
.

We can see from Fig. 8 that there are again points which
yield a clear discrepancy in the �13 fits of the reactor and
superbeam data, and others which correspond to a common
offset of the fit value. The shading shows that for a con-
siderable fraction of the parameter space, the nonstandard
effect can actually be discovered. It is interesting to ob-
serve that there are some points for which the reactor fit lies
above the Chooz bound. This indicates that already with
the present data, some parts of the parameter space could
be ruled out.

VI. DISCOVERY REACH FOR NONSTANDARD
INTERACTIONS IN A COMBINED ANALYSIS OF

REACTOR AND SUPERBEAM DATA

Let us now discuss the prospects of actually detecting
the presence of nonstandard interactions in reactor and
superbeam experiments. We define the discovery reach as
the range of " parameters for which the quality of a
standard oscillation fit is below a given confidence level.
In Figs. 9–12, we show numerical results for this quantity,
which were obtained by performing standard oscillation
fits to the combined data of both experiments.

The results can again be interpreted with the help of
Table II and of the formulas derived in Sec. III. We see that
for those nonstandard parameters which have a large im-
pact on any of the observed oscillation channels, there is
typically also a good discovery potential. For some pa-
rameters, it comes from the reactor measurement, for
others, it is dominated by the superbeam. It is remarkable,
however, that in the case "se	 � "d�	e, there is practically no
discovery potential at all, because neither experiment can
discover these parameters on its own, and there is also no
significant discrepancy between them, but only a common
offset in their �13 fits.

It is interesting to observe that the good discovery reach
for "s�	 comes from the disappearance channel, as can be
easily verified from the corresponding analytical formulas
in Sec. III. Note that in those plots where "s�	 � "d�	� is
assumed, there is no discovery potential because the cor-
responding NSI terms in Eq. (34) cancel.

The discovery reach depends strongly on the phases of
the NSI coupling constants, �s;d;m

�� . To first order in s13, all
off-diagonal entries of the " matrices (except the "s	� and
"d�	 contributions in the �� ! �� disappearance channel)
are accompanied by a combination of �s;d;m

�� and �CP. To
first order in �m2

21=�m2
31, they typically appear together

with factors of cos�s;d
�� or sin�s;d

��. The diagonal compo-
nents of the " matrices usually have prefactors of cos�s;d

��.
The plots do not exhibit any phase dependence in the

discovery reach for "s�e and "d�e because the sensitivity to
these parameters comes mainly from the modified �e flux
in the near detector of the superbeam experiment. We have
checked, that, in accordance with Eq. (30), the phase
dependence would reappear if the near detector were omit-
ted in the simulation.

Turning to nonstandard matter effects described by "m,
it is clear that the discovery potential will be very limited,
since already standard matter effects are small in T2K and
NO�A, and completely negligible in Double Chooz and
DC-200. Therefore, we use a different scale for the hori-
zontal axis in Figs. 11 and 12. However, for some entries of
"m, the present bounds are very weak. In particular we have
"mee & 1:0, "me	 & 0:7, and "m		 & 1:4 [47]. Figures 11 and
12 thus show that the bound on "me	 could be improved by
NO�A, but not by T2K. We should, however, keep in mind
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that, according to Eq. (7), j"me	j 
 0:7 corresponds to
MNSI 
 100 GeV, and it is hard to imagine a model that
could yield such a low NSI scale without violating present
electroweak precision data. Both T2K and NO�A have
some sensitivity also to "me� and "m�	, but they cannot
compete with the current bounds "me� & 5 � 10�4 and
"m�	 & 0:1.

Note that, according to Eqs. (33) and (35), the sensitivity
to "me� and "me	 comes from the �e appearance channel,

while the sensitivity to "m�	 has its origin in the disappear-
ance channel.

Let us dwell for a moment on the interesting shape
of the sensitivity contours for "me	 and "me�, which can
only be understood by taking into account terms propor-
tional to j"j2. Let us consider, for example, "me�.
According to Eq. (33), the NSI contribution to the oscil-
lation probability is, to first order in j"j and neglecting
�m2

21,
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FIG. 9 (color online). Discovery reach for "s�� and "d�� in a combined analysis of T2K and Double Chooz. Contours for 1�, 2�, and
3� are shown. A true value of sin22�true

13 � 0:05 was assumed, but we have checked that the results do not depend on sin22�true
13 .
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13 � 0:05 was assumed in the simulation, but we have checked that the results remain unchanged if we
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By carefully studying this expression, one finds that the
energy dependence in the first and third terms of Eq. (38) is
quite different from that of standard oscillations, which is
proportional to sin2��m2

31 � aCC�L=4E. Therefore, these
terms will be easy to detect, while the second term, which
modulates the spectrum in the same way as standard os-
cillations, can be absorbed into a modified �13 fit, and will
therefore be hard to detect. From the phase dependence of
these terms, we expect that, for our choice of �true

CP � 0, the
discovery reach should be good for �m

e� 
 0, 
, and poor
for �m

e� 

1
2
, 3

2
. The plots in Figs. 11 and 12 reveal that
the discovery reach indeed shows this behavior, except for
an unexpectedly good sensitivity at �m

e� �
3
2
. To under-

stand this, we have to take into account the second order
terms, which we have found to be

 4j
me�j
2c4

23sin2 aCCL
4E

 � 4j
me�j2s4
23

�
aCC

�m2
31 � aCC

�
2
sin2 ��m

2
31 � aCC�L

4E

 

� 2j
me�j2s2
2	23

aCC

�m2
31 � aCC

� cos
�m2

31L
4E

sin
aCCL

4E

	 sin
��m2

31 � aCC�L
4E

: (39)

The important observation is that the net effect of the
second order terms is always positive, while for the first
order terms, it is positive at �m

e� ’
3
2
, and negative at
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FIG. 11 (color online). Discovery reach for "m�� in a combined analysis of T2K and Double Chooz. Since these experiments have
essentially no sensitivity to "mee, "m��, and "m		, we show only the off-diagonal entries of "m. The shaded areas show the 1�, 2�, and 3�
confidence regions for sin22�13 � 0:05, while the black contours are for sin22�13 � 0:01. Note that the scaling of the horizontal axis is
different from Figs. 9 and 10.
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FIG. 12 (color online). Discovery reach for "m�� in a combined analysis of NO�A and DC-200. Since these experiments have
essentially no sensitivity to "mee, "m��, and "m		, we show only the off-diagonal entries of "m. The colored areas show the 1�, 2�, and 3�
confidence regions for sin22�13 � 0:05, while the black contours are for sin22�13 � 0:01. Note that the scaling of the horizontal axis is
different from Figs. 9 and 10.
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�m
e� ’

1
2
. In the first case, we would therefore need a

much stronger deviation of the fitted �13 from its true value
in order to absorb the nonstandard term. This, however, is
disfavored by the reactor measurement, so that the com-
bined fit improves the discovery reach by a considerable
amount at �m

e� ’
3
2
. We are here in the interesting situ-

ation that the combination of seemingly redundant data
sets can be beneficial if there are deviations from standard
three-flavor oscillations. For most other nonstandard pa-
rameters, the discovery reach is dominated by either the
reactor or the superbeam.

VII. CONCLUSIONS

In this paper, we have studied the impact of nonstandard
neutrino interactions on upcoming reactor and accelerator
neutrino experiments. We have first classified the allowed
NSI terms in the Lagrangian according to their Lorentz
structure, and have found that many of them are irrelevant
to reactor and superbeam setups. Those which can have an
impact are mostly of the �V � A��V � A� type, but in
superbeam experiments, also �S� P��S� P� type effects
can be important. Since reactor and superbeam experi-
ments are not able to distinguish different Lorentz struc-
tures, we have reparametrized the NSI coupling constants
in order to greatly reduce the number of free parameters in
the problem.

Using this reparametrization, we have then derived ap-
proximate analytic expressions for the nonstandard neu-
trino oscillation probabilities, both in vacuum and in matter
of constant density. We have developed an intuitive under-
standing of the terms relevant to specific oscillation chan-
nels, and have classified them accordingly.

In the second part of our work, we have performed
detailed numerical simulations using GLoBES. We have
considered two scenarios: T2K combined with Double
Chooz, and NO�A combined with a 200 t reactor experi-
ment, dubbed DC-200. Our simulations take into account
parameter correlations, degeneracies, and systematical er-
rors, and, in particular, we employ a realistic treatment of
the near detectors. We have found that nonstandard inter-
actions can have a sizeable impact on future reactor and
superbeam experiments, if the coupling constants are close

to their current upper limits, and if complex phases do not
conspire to cancel them. The biggest impact is on the �13

measurement: If NSI are not properly taken into account in
the fit, the results may be significantly wrong. There are
scenarios in which a clear discrepancy between reactor and
superbeam experiments shows up, but we can also have the
situation that both fits sets seem to agree very well, but the
derived �13 value has a significant offset from the true
value. It is even possible that the true �13 is erroneously
‘‘ruled out’’ at 3�. To detect this kind of problem, a third
experiment, complementary to the other two, would be
required. Thus, we see that the possibility of nonstandard
effects should always be kept in mind when planning or
analyzing upcoming experiments.

We have also studied the discovery potential for NSI in
reactor and superbeam experiments, i.e. the range of non-
standard parameters, which can actually be detected by
these experiments because the quality of a standard oscil-
lation fit becomes poor. We have found that, depending on
the complex phases, some NSI may be discovered if their
coupling constants are not more than a factor of 5 smaller
than the current upper bounds. The best discovery reach is
obtained only if both reactor and superbeam experiments,
and also the respective near detectors are considered in the
analysis. In most cases, one of the experimental channels
dominates the discovery reach, but there are also situations
where only the discrepancy between the single-experiment
fits indicates the presence of NSI. Our discussion thus
shows that reactor and superbeam measurements, which
might seem to be redundant in the standard three-flavor
framework, turn out to be highly complementary once
nonstandard effects are considered.
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