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Supersymmetric SQ10) grand unified theory with an intermediate scale

Joe Satd
Department of Physics, Kyoto University, Kyoto 606-01, Japan
(Received 9 August 1995

We examine a superpotential for an @0 GUT and show that if the parameters of the superpotential are
in a certain region, the S@0) GUT has an intermediate symmetry @) ® SU(2)z®SU(3)c®U(1)g_,
which breaks down to the group of the standard model at an intermediate st¢&dddGeV. In the model,
by the breakdown of the symmetry, right-handed neutrinos acquire a mass of the intermediate scale through a
renormalizable Yukawa coupling.

PACS numbsd(s): 12.10.Dm, 12.60.Jv

[. INTRODUCTION In the previous work we searched possibilities to
construct such a SUSY 300 GUT with an inter-
When we construct a grand unified thed§UT) based mediate symmetfy SU(2) ® SU(2)z® U(1)g_, ® SU(3)c
on SQ10) [1], in general, we have singlet fermions under (=G,,37) Which breaks down to the SM group at an inter-
the standard modéBM), which we call a right-handed neu- mediate scaleM,~10'°-10" GeV where a right-handed
trino. Under the SM, right-handed neutrinos can have Majoneutrino gains mass.

rana masses because they are singlets. Then the scale of thep such a scenario, as we showed in the previous work, to
right-handed neutrinosM, ) is expected to be a scale make the model consistent with the gauge unification, we
below which the SM is realized. have to introduce several multiplets at the intermediate re-
It is well known that in the minimal supersymmetric stan- gion between the GUT scale and the intermediate scale, in
dard model(MSSM), the present experimental values of addition to ordinary matters, three generations of quarks and
gauge couplings are successfully unified at a unificatiodeptons and a pair of so-called Higgs doublets.
scaleM = 10'® GeV[2]. This fact implies that if we would Although we showed a possibility to construct a SUSY
like to consider gauge unification, it is favorable that theSO(10) GUT with an intermediate symmeti§,,3,, it is not
symmetry of the GUT breaks down to that of the SM at thetrivial whether it is actually possible to construct such a GUT
unification scale. In this case the scale of the right-handedince there are many extra fields in the intermediate region.
neutrinosM,_ is expected to be the unification scav, . We did not show the superpotential for the theory explicitly

This means also there is no intermediate scale between tighich can realize such a scenario that we have suggested in

supersymmetry¢SUSY, breaking scale and the unification Ref.[6]. _ _ N
scale. The purpose of this paper is to show an explicit form of a

On the other hand. it is said thM . ~10°—10'2 gey  superpotential for a SUSY §00) GUT to construct a SUSY
1 VR

[3]. The experimental data on the deficit of the solar neutrinoso(lo) GUT whose symmetry breaks down @3 at a

can be explained by the I\/Iikheyev-Smirnov-WoIfensteinGt":; S.Ca:IEMU da}n:16223hbreaks down to the SM symmetry
(MSW) solution [4]. According to one of the MSW solu- &t \N€ INtErMediate scald, . _ _

tions, the mass of the muon neutrino seems to be We give the scenario and the model briefly in Sec. I
m, =103 eV. Such a small mass can be led by the seesai/here we give a candidate for the matter content in the in-
mepézhanism[S]: A muon neutrino can acquire a mass of termediate regiorithe spectrum1)]. Then in Sec. Il we

~1073 eV if the Majorana mass of the right-handed muonShOW the most general form of the superpotential and a
neutrino is about 16 GeV symmetry-breaking condition as preparation for our analysis.

Then how can the right-handed neutrinos acquire mass anan?(;C. I\a/r;rfét(::lse acalt;t;l:?;e ﬁ]art?]g]i[srzro(f)tg:]?.afheor%h
about 10? GeV? It was our question in our previous paper Y, P PP 9 Perp 1al, whi

: - ! roduce the spectrufl) at the intermediate region. Then we
[6], because if we take the prediction of the MSSM seriousP : ;
M, is expected to bal ,~ 10 GeV. Our point of view was Show the exact parameters which realize the MSSM below

o , M, . Finally, in Sec. V we give a summary and a discussion.
that it is more natural to consider that one energy scale cor- R

responds to a dynamical phenomenon, for instance, symme-

try breaking. That mass is given by a renormalizable cou- Il. SCENARIO AND MODEL
pling is also the crucial point of our view. This idea is
consistent with the survival hypothesis. Thus we were led to
the possibility that a certain group breaks down to the SM We construct a SUSY S@0) GUT whose symmetry
group at the intermediate scale at which right-handed neutribreaks down td5,,3; at a GUT scaléM; and G,,3; breaks
nos gain mass throughranormalizable coupling

A. Scenario

We use a notationG,, = to represent SUj®SU(mM)
*Electronic address: joe@gauge.scphys.kyoto-u.ac.jp ®SU(n)---. If I=1, it means W1).
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down to the SM symmetry at the intermediate scMgR. B. Model

When G,,3;, breaks down to the SM symmetry, the right-

handed neutrinos gain mass through renormalizable . .
g g To have multipletq1) and quarks and leptons at the in-

Yukawa coupling ] diat . introd followi ltivlets of
Let us first recapitulate the content of the previous work eg(nl%)_'a € region, we introduce loliowing muftiplets o

[6]. To achieve the gauge unification in the scenario, we have
to introduce a certain combination of multiplets. Because in
our model right-handed neutrinos acquire mas6M, )

1. Matter content

via a renormalizable Yukawa coupling by the symmetry SQ(10) Gooay
breaking, we have to introduce at least a paifh8,1,6 + H 10 (2,2.1.0
H.c. multiplet underG,,3,. We adopt the normalization for A
UQ)g_., T3=diag(—1,—1,—1,3). When we introduce A 45 (13.1,0.(1.180,...
only (1,3,1,6 + H.c. multiplet in addition to the ordinary % 126 (131-6),(221,0,...
matter, gauge couplings do not unify. Then we have to intro- g 126 (1,3,1,6,(2,2,1,0, . . .
duce certain matter content und@p,3;.
We found very many candidates for matter content in the A 210 (1,3.1,0,(1,1.80, . ..
intermediate region between the GUT scale and the interme¥i-1-4 16 (2,1,3-1),(2,1,1,3, quarks and leptons
diate scale which lead the gauge unification. Among them we 16 (21,31),(21,1-3), . ...

showed two candidates for the matter content as the simplest
examples. Here we use another candidate which was not
shown in the previous paper. In the examples appearing in
[6], a (1,3,1,0 multiplet underG,,3; was not included. In
constructing a GUT following the idea, however, we have to
introduce &(1,3,1,0 multiplet in the intermediate region. The | this list numbers in the columns of $0) mean S@LO)

reason why we have to introduce (&,3,1,0 multiplet is  representations. In the last column we show what represen-
stated in Appendix A. Thus, we have to use another Ca”d'fation in (1)

@

date for matter content.
The matter content other than quarks and leptomdud-
ing right-handed neutringswhich we assume survive until

G,,31 breaks down to the SM group at the intermediate scale,

are given below:

(1,31-6) 1 (1,3,1,6 1 responsible fowg mass
(2,2,109 2 ordinary Higgs doublets
(213-1) 1 (21,31 1
(21,13 1 (211-3) 1
(1,310 1
(1,180 1 (1)

In this list, for example,(1,3,1,-6) 1 stands for that the
representation of the matter und®j,; is (1,3,1-6) and its

number is one. When we have the particle content listed here

in the intermediate region, the unified coupliag (M) is
about 1/18 if we take the intermediate scale to b& GeV.
As a candidate which contairi$,3,1,0, this candidate leads
the smallest unified coupling.

In our scenario, at the GUT scald, where SQ@10)
breaks down tdG,,3;, almost of all particles have mass of
O(My) while the particles listed ifl) as well as quarks and
leptons are left massless. Then at the intermediate scal
where G,,3; breaks down to the SM grou@,s;, all extra
multiplets in(1), besides a pair of Higgs doublets and right-
handed neutrinos, have mass (b(MVR), that is, they de-

couple from the spectrum. Thus beldeR the MSSM is
realized.

is contained in the corresponding 80) mul-
tiplet.
By the requirement that the right-handed neutrinos get
ass through a renormalizable coupling, we introdi2é
and 126. As a candidate of ordinary Higgs doublets 10 is
introduced. There are other candidates for ordinary Higgs
doublets in126 and 126. Then the ordinary Higgs doublets
will be a mixture of these three. To break @0) to the
SM group viaG,,3;, Nnamely, to have the intermediate sym-
metry G,yg;, We use45 and 2102 These also contain
(1,3,1,0 and(1,1,8,0. 4 16's and 116 represent 4 generation
+ 1 antigeneration. The reason why we introduce a pair of
16 and 16 is that they contain(2,1,3,-1) + H.c. and
(2,1,1,3 + H.c.

At this stage the matter contef®) is just a candidate
which may realize our scenario.

As we will see, we can write down the superpotential with
these matter which realize our idea.

m

2. Singlets under the SM group

In the SA10) multiplets (2), there are many singlets un-
der the SM symmetrysee Appendix B for the meaning of
subscripts L..,0:

2Using only210it is impossible to break SQ@O0) to G, through
G931 [7]. We can break SQO0) to the SM group viaG,,3; USing
95+54. In this case if there is no multiplet which contaifis3,1,0
other than45, (3,1,1,0 is also massless. The reason is that mass
terms for(1,3,1,0 and(3,1,1,0 come from the mass term db and
the vacuum expectation value of 54 through the couplisi4 and
because ob parity [8], they are same as each other’s. Thus we can
get rid of the possibility of usingl5+54.
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Field : Component Little Group We require all Yukawa couplings are at most of order 1.
More exactly, as an expansion parameter for the perturbation,
A : Q12434+ 56= @ Ga231 we require they are at most of order 1. As an expansion
: azg+90=8 Gaa1 parameter for the perturbation, they appear multiplied by a
l : $1-2i 3-4i 5-6i,7-81,9-0= P SU5) certain overall factor. The overall factors for each couplings
N : 142 3+4i 5+6i,7+8i 9+ 0 = P SU®s) are given in Appendix B 3.
A : S7g9=2 Gooa Finally, Wy, represents the most general interaction terms
01234+ 3456+ 5617=D G231 with 16 and 16:
5( 12+34+56)(78+90)=C Goann 4 4
Vi ; e Sus — — .
_i=tma Viz1-a SU(S) Wy =2, Yyu VAW + D, Yy VAV + ) v W0
v 11/ (5) i=3 i=2 ij
()
wherea,b,... stand for vacuum expectation valud4€V’s) +y,w®+z f/ij‘lfi\IfjH+§/’\I’—‘IfH. %)
ij

of the corresponding fields. Little group means a remaining

symmetry when only a corresponding component has a VEV. _

For example, when onlg gets a VEV, SQL0) breaks down By the same reason that orly, has a mass term witlf,

to Gooy. only ¥3 4 have couplings witl\ and only¥, 3 , have cou-
Among them,a,b, and a are G,,3; singlets and hence plings with A.

their order of magnitudes is expected to be the GUT scale To see in which direction the gauge group (30 can

M~ 10'® GeV. By assumption that S@0) breaks down to break down, we examine thH-term and theF-term condi-

G,o3; at the GUT scaleh or @ must be of ordeM ;. Others  tions.

must be of order at mo#l e=Mye by assumption because

they are noG,,3; singlets. Also,¢ is required to be of order B. D-flat condition
M, To keep the SUSY, alD-terms must be zero up to SUSY-
_ breaking scale:
$~M, (=Mye) (4)
tTa HTTa frag. Lt tTa
because it gives masses to the right-handed neutrinos. Of P Te@+@'T +§i: WiTy Wi+ W IT,W+ATTHA
course, as we will see, there are constraints among VEV’s in

addition to the well-known constraints:flat andD-flat con- +A'T4A=0.
ditions because we require that certain multiplets must have . ]
a mass ofO(M,). Since theD term for real representations automatically van-
R ishes[9,10],
I1l. PREPARATION _ 4 _
2_ 1412 12112 —
A. Superpotenial 2(12=1l?)+| 2, 1il*= 1] ) 0 )

With the multiplets(2), the most general form of the su-

perpotential is written as must be satisfied. The factor 2 reflects the difference (@) U

charge which corresponds to a broken generator.

W=W,pnasst Wine+ Wiy . (5) Later we puti;'s and ¢ zeros. In this case
W,,.ssconsists of the most general bilinear terms: |¢|>=|9|?=0. (10
1 B L 1 C. F-flat conditi
Winass=5 MyH? M @@ + 5 M A%+ 5 MaA? - - -fiat condition
L First we examine th&-flat condition for16 and 16 with
+MyPW,. (6) a mass term for (1,2,13)+H.c. component because the

_ — singlet components ol6 and 16 are contained in it and
We define onlyW, has a mass term witlir, because by a  therefore there is a relation between the mass term and the
redefinition of¥,, namely, by a rotation amor;_; 4. it F-flat condition. By such an examination we see that both

is possible _that only the neW , has a mass term witi. 4 andy should be zeros though it is not a strict reason for it
i We require all mass parameters &¢My) becauseMy The F-flat conditions forl6 and 16 are as followssee
's the natural order for ther. : _ Appendix B to know how to calculate the Clebsch-Gordan
__ W,y has the most general interaction terms withbéiand (CG) coefficient;
16:
! aw_zi Yi6=0 (12)
Wint:YH(IJAH(DA+YH(BAHqTA+ gYAAs“'Y(DAqTAq) 3¢1 = ylj j )
P/ 1 1 aW 4 N . - -
TYoaPAD+ EYAAZAZA-I— EYAzAAAz_ (7) 5_4!/2:221 Yoo — Yuao(\Bia+2iB)y=0, (12)
=
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4
IW _ _ - dW  Yapeap . Y ac
T, =22 Voo~ Vs VBiat2iB)y o= T qg T2AN2Yanbst e
- = Y, bc Y b
Yyas(2y6a+642b+12c)=0, (13) +16 JBiY szpact 228 Mo oA PP
92 10
4
IW - : = =0, (19
— =22 Yaith b~ Yuna(V6ia+2i B)y
Iy =1
—Yyaa(2\/6a+612b+12c) + My b
oW 2Y b Y c
=0, (14) S =24\2iY yopab- g‘\z“ _ A?%'g
g V6Yonddb
5 =2y 0+ 3 —Yuu(Bia+2iB)y, +BBIYa2ac® t Maart —— 0
4 =0, (20
=2, Yyai(2/6a+612b+120) g+ My i,
=3
=0. (19 OW  Yap2aB  YaacaC
B AQ%B— A?% +242iY y2AbC+ M A8
By the way, in the intermediate region whe@,3; is _
realized,8=c=0 and the mass term f¢t,2,1-3)+H.c. is Yord P
given by Tt
PW —V6iYynra
Y —V6iYyaza—2\6Yya(a+\3b) | W fBa b e
—\6iY yag—26Yy (@t \/§b)+MW( ) b @A(ﬁJrg + Yo m+m+ﬁ
16
- = : iy +My|d
If &,é,4;,4=0(€), using F-flat conditions[Egs. (12)— 4

(14)], all elements of the mass term fdr,2,1,-3+H.c., (16),

are calculated to be of ordé4 . This, however, contradicts =0. (22
with the mass spectruiil). Though we may be able to make

some elements of the mass te@{M ), for example, by

making ¥ O(e?) [with an appropriate value of

i, ,¢=0(e)], we put bothy; and s zeros since what we try IV. ANALYSIS
to do is to show a possibility of SUSY S00) GUT with an
intermediate scale and to takle=¢=0 as the solution of The purpose of this paper is to give the input parameters
the F-flat conditions for16 and 16 is the easiest way of appearing in the superpotentid@). Though VEV's listed in
doing it. (3) are functions of the input parameters, we will express
Then, other-term conditions are them in the terms of the VEV's since we know the desirable
values of the VEV’s.
W Yan2BB2  Y,c? Yordo
— =24+/2iY b——+ —F—+Ma+ ——
Ja vai ARG 26 126 A8 106 A. First step
=0, 17 First, we check whether it is possible to break (3@
down to G,,3; consistently with the requirement that the
AW 24 Giv Y p2a? N Y \b? 243y spectrum(1) remains massless up @(e)=0(M VR/MU).
—= i ag———+—— i c
b a2pda— — 7 182 a2apB
Y aC? Yordd 1. Multiplets under Gy,

+—18\/§+MAb+—10\/§
First, we show what multiplets exist in the §0) mul-
=0, (18 tiplets (2).
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Multiplet underG,,3, under S@10), contained in NG1 NG2 Using theF-flat conditions[Egs.(24) and (26)], M, and
M, are expressed as

(22,10 101261& —24 \/EiYAzAab
(1,1,3,2+H.c. 10, 126,126 May=M,p(Ya20,8,b,0)= —————,  (27)
(3,1,1,0 45,210 a
(1,3,1,0 45,210 z B
(1,1,3-4)+H.c. 45,210 X % Ma=Ma(Ya2a,Yanz,8,b,a)
(11,80 45,210 —72\2iY y25ab+ \2Y  p2ab
(2,2,3.3+H.c. 45,210 y v = 2 e A (28)
(3,1,1,6+H.c. 126+126
(3.1,33+H.c. 126+126 There is an additional constraint which is obtained by
(3,1,6-2)+H.c. 126+126 eliminatingM , from Egs.(24) and(25):
(1,3,1~-6)+H.c. 126+126 z

_ p— ~ 2
(1,3,3-2)+H.c. 126+126 X : ,  Yapaa YAa

= — —24\2iY p2pa”a+ +242iY b2
(13,62 +H.c. 126+126 V2IY gapale 3V2  18\2 V2iYszaa
(2,2,3—4)+H.c. 126,126 y

= =0. 29
(2,2,8,0+H.c. 126,126 29
(3,13-4)+H.c. 210 . We can interpret that this constraint witg7) and(28) is
(1,33-4)+H.c. 210 X equivalent with that determinant of the mass matrix for
(3,1,8,0+H.c. 210 (1,1,3-4) [=M(1,1,3-4), an explicit form is given in Ap-
(1,3,8,0+H.c. 210 pendix d vanishes becaudd,1,3-4) is an NG mode and
(2,2,1,6+H.c. 210 ) hence when we substitute VEV's into the mass matrix for it,
(2,1&—1)+H.c. 16+16 y there must be one massless mode which mean the determi-
(1,23 +H.c. 16+16 X nant vanishes:
(2,1,1,3+H.c. 16+16 b Yy.eMb
(1,2,1-3)+H.c. 16+16 pi d Ma AA2
etM(1,1,3,—4)=MaM, -I—
(23 ( J=Ma 18 V2 32

In this table NG1 means a Nambu-Goldstdh&S) mode
associated with the breakdown of 80) to G,,3;. An NG
mode associated with the $1®) breaking down to the SM
groupG,3, is contained in a multiplet witlk,y, andz in the —

+1152Y3,,8%+161Y yp2Y y20800

YiAZQ’2 YAYAAZbZ

column NG2. UndeiG,3;, certain components of the mul- 18 108
tiplets withX (y,z) have the same quantum numbers and mix =0. (30)
with each other. One of the combinationsxofy,z) is mass-
less which is swallowed by a gauge boson. Now, we required that ong,1,8,0 mode be massless and

There are also singlets @;,3, which we denotea, b, therefore determinant of the mass matrix for it
anda. [=M(1,1,8,0) should vanish:

2. F-flat condition YaMab Y a2M,b
In the intermediate regiore,3,¢=0. And hence, the deM(1,1.8.0=MaM,~ 182 + 3.2

F-term conditiond Egs.(17)—(22)] are reduced to
+1152Y5,,22+ 161Y yp2Y y2pac
oW B ,
—q =24 V2Y j20ab+M,a=0, (24) Y2 002 Y Y pob?
- 18 108

dW _ YAAzaz Y ,b? _
——=24i\2aY 20— —— +M,b =0. (3D
b \/— AZpQ 3\/5 18\/_

Substituting(27) and (28) into (30) and(31), we find

=0, (25)
_8| YAYAAzaa .
W 2Y sa2eb —— Y Ya2p8%+ ———+16iY p2Ya20a?=0
— =24i \/EYAzAab— \/—$+MAa=O. (26) 3 ATAZA 27 AA2T AZpC
Jda 3 @2
3. Tuning of parameters {[(30)—(31)]aa/b2}

From now on, as we stated at the top of this section, we
express the input parameters in the terms of the VEV’s. and
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YiAzaaz YAYAAzabZ
9 54

2304Y3,,a%+32iY yp2Y y2080—

—2304Y3;,ab?—32iY yp2Y y2pab?=0 (33

{[(30)+(31)]*a}.

Solving simultaneously Eq$32) and (33), we get forms
of Y, andY,a2 as functions ofY 425 ,a,b,a. Then, by sub-
stituting these expressions int@7) and (28), we find the
following three sets of solutions foM,, M, Y,, and
Y a2 as functions ofY y2,,8,b, .

Solution 1:

— 24\J2iY y2pab
AT
| 24\2iY y2pab

A a

_ - 864iYA2Aa’

AT a '

144Y y2pa

YAA2 = (34)

Solution 2:

_24\/§|YA2ACYb
s

. - 24iYA2Ab

M,=
" 2aa

 —432Y y2pa(—3a’+3b°— ya®—10a°b”+9b%)

(—a’+3b?—\a*—10a%b’+9b%),

s (—a%+3ab?—aya*— 10a2b%—9b%) '
—36Y
Y gpo= Tm(—3a2+3b2— Ja*—10aZ02+ 9b%).
(395
Solution 3:
— 24\J2iY y2pab
Azfa
—24iY A2,b
Ma=— """ (—a2+3b2+ a’— 10a2b?+ 9b%),
\/Eaa

_ —432Y y2pa(—3a+3b%+ Va'— 10a’b*+9b?)
4 —a%+3ab®+aya*—10a’b?+9b*

- 36iYA2A

™ (—3a’+3b%+ \a*—10a’h?+9b%).

(36)

YAAZZ

3889

In other words, oncéM, ,M,,Y,, and Y2 are set to be
one of these solutions, the VEV's &b, and o can be
chosen at our will and ong,1,8,0 mode becomes massless.

Because we require also that ofie3,1,0 mode be mass-
less, determinant of the mass matrix forf #M(1,3,1,0)
must be zero

YA Y s p2a? Y2 2C¥2
deM(1,3,1,0= — ——2" _16iY gp2Y 2080 — —o
36 6
YAYancab
- % +16\3iY gp2Y azach
YaM,a
+1152Y2,,b%+
A2A 6\/6
3 YAMAb YAAZMAa
+16\6iY y2aM pr + -
\/—l a2aMpa 9\/5 \/E
+ MM,
=0. (37

Using (37) and (34)—(36), we obtain following equations
which determine relations betwearandb corresponding to
a set of above solutions, respectively.

Solution 1:

a?(—3a%+7\3ab—6b?)=0.
Solution 2:
—15a°+62 \3a°h+237a%h?— 280 /3a%b3— 249a%b*
+234/3ab%+27b®
=(33a*-50+/3a%h—78a%b?+ 78 \/3ab3+ 9 b%)

X yJa*—10a%b%+9b*.

Solution 3:
15a®— 62 \/3a°h— 237a*b2+ 280 \/3a3b3+ 249a%b*
—234/3ab°—27b®
=(33a*-503a%b—78a%b?+ 78 \3ab*+ 9 b*)
X Ja*—10a’b®+9b*.

Numerically,a andb must satisfy the following relations,

respectively.
Solution 1:
b1+3, 38
a:
2/3b. 38
Solution 2:
—0.98729%,
(—0.120361 0.724007)b,
a= (39

(—0.120361 0.724007)b,
5.1123%.
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Solution 3:

—3.1341®k,
—0.0643986,
(1.10047 0.0616129)b,
(1.1004# 0.0616129)b.

(40

The solution 1 is the exact solution and the others are

exact up toO(e).

In other words, ifa and b satisfy these relations, one
(1,3,1,0 mode becomes massless.

Other requirements that twd?2,2,1,0 modes, one
(1,3,1,-6) + H.c. mode, oné¢2,1,3,) + H.c. mode, and one

JOE SATO
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Finally, to make ong2,1,3-1) + H.c. mode and one
(2,1,1,3 + H.c. mode massless, for example, we can switch

only couplings with subscript 4 on and tune

;
Yupr=——=iY /b, 45
YA 16\/§| YAl (45)
My = 3 iY ! iY a 46
v= ml N ml A @ (46)

4. Check mass matrices

Now, we know the necessary condition for the parameters
realizing the spectrunil). Then we check all the mass ma-

(2,1,1-3) + H.c. mode be massless are easily satisfied bjfices to examine whether these parameters really produce

tuning parameters such &84 ,My,Yyoa, Yuaa, and so
on.
To make(1,3,1-6) + H.c. mode massless, from the mass
term for it (see Appendix §
Yoad  Yoab

o= + +
Mq ( 106 1042

To make two(2,2,1,0 modes massless, we tune param-
eters M, ,M4,Yuoa, and Yypa SO that the eigenvalue
equation for the mass matrix ¢2,2,1,0,

V6Y pacr
10

. (41

22 2
N3 MoN2t _YH<I>Ab _Yambz_ YcDAb+M N
H 10 10 152 %
| =22t My || My —2=+ M
152 " ?)| THlis\2 T T®
YuaoaazYnoab?
HIDAA5 HDA :0, (42)

has two zero solution®xactly these two solutions may have
at mostO(€) solution].® The way of getting two zero eigen-
values is to tune the zeroth and first termshofero. More
exactly, the zeroth term must be at m@te?) and the first
term must be at mosD(e€).

To satisfy these constraints

Mot 220
[ 15\/5_ (E)l

Yuoa~ Yran=0(Ve). (43
Equation(41) and the first equation d#3) lead
3a+b
3 (44)

Yop=——=Y
DA 6\/§a DA

up toO(e).

3Implicitly, it is assumed that the mass matrix @,2,1,9 is Her-

mite, that is, all parameters appearing in the mass matrix are real.

the spectrum(l).

Solution 1: The solution 1 does not produce the spectrum
(1), because by substituting the solutiori34) into the mass
matrix of (2,2,6,2 multiplet, this multiplet is calculated to be
massless.

Solution 2: First to see whether the solution B5) with
a relation betweea andb (39), is usable, we substitut@9)

(—32.2574+5.36258)\2Y y2pcx

into (35).
[ (4.78842+0.510831) \2Y y2pb% a
[ —4.69449\2Y y2pa

\| 103.02312Y 24b% a,

24.3089/2Y y2pa

19.1441\2Y y20b%
(32.2574+5.36258)\2Y y2pcx
(—4.78842+0.510831) \2Y y20b% a

—13.6527Y y2abla
(37.7632-7.13352)Y y2ab/

YaR=\ (L377632-7.13352)Yaoabla O
677.159Y y2ab/ a,
- 104016YA2Aa/b
(—1560.23- 131.862)Y y20a/b
Ya= (49)

(1560.23- 131.862)Y y2pcr/b
—185.139Y y2pa/b.

In each of these equations, four expressions correspond to
the four relations betweea andb in (39), respectively.

As we required that Yukawa couplings are not too [lsige
the statement below?)], only the first expression of the
solution 2 is meaningful. This means that only the first rela-
tion betweera andb in (39) is meaningful.

By substituting(35) with the first equation of39), it is
easy to check that all multiplets other than thosélinhave
their mass ofO(My) which spread aroundl, up to one
order of magnitude and multiplets {ft) are massless. There-
fore, this solution can be a solution of our scenario.
Solution 3: First, we substitutét0) (relation betweera
andb) into (36) to see an explicit form of solution 3.
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7.657 2Y i
[ 765758 2Yszpa Yanz=Yaazo+ X, Yanzi€, (57)
—15.8066/2Y y27b% o =1
372.6792Y 20 S 5o
= . " 58
M, 1115.982Y y24b% A=z Pie 58
= (50)
M (1.21719-21.7407) J2Y s2p
(17.3100-22.7812) 2Y s2pb% a c= ;1 Cie'. (59)
—1.21719-21.7407) y2Y
[( 2 AzAaz In these expressions, variables with subscript O stand for
\[ (—17.3100-22.7812) \2Y y2pb%/ a, those which are obtained in the previous section.
Substituting(53)—(59) into theF-flat condition(17)—(22),
—273.079Y p25b/ we get the following relations.
§ 3343.29Y yo0b/ o From (17), (18), and(20) we get
AP (56,3660 10.8904)Y y2abla G oo Mo
Al™ T4 91
(—56.3660+10.8904)Y ,2xb/ , ao
b* 24\2iY y25b b2
793766YA2Aa/b MAl: 2YA1+ \/_ A%A 1+ 2_2 al,
9\/§a ag
6698.93Y y2pa/b )
YA: 5 1 2
144Y b
(241.144-102.803)Y y25a/b ¥ uner= (b6 Y1+ AzA( 1+ 2)a. 60
(—241.144-102.803)Y p25a/b. 2

. . W in the relati ituti
In each of these equations, four expressions correspond @3)_(5(5%?t\?\/'i?ht (gogﬁrigoagemg%)agg ?éllt(;;\//\l?bstltutlng

the four relations betweea andb in (40), respectively. First we note(19) and (21) can be rewritten
By the same way, as we picked up only the first expres-

sion from four cases in solution 2, the last two relations B 1(2Ygps| —

betweena andb in (40) are meaningful. M(1,3,1,0( )Z - R)( v )¢¢ (61)
By substituting(36) with the third or fourth equation of ¢ oA

(40), it is easy to check that all multiplets other than those ingq therefore

(1) have their mass db(M), which spread arountfl ; up

to one order of magnitude, and multiplets(if) are massless. B 1 2Ypn| —

Therefore, this solution can be a solution of our scenario too. ( c) =~ 10 M(1,3,1,0_1( You ) b, (62

B. Second step whereM(1,3,1,0 is a mass matrix fof1,3,1,0, and by as-

In thi ion we fin rameter region which pr umptiong, ¢=0(e). )
our szeﬁasr?gte?(actﬁ, d a parameter regio e oduceS Let us decompose the inverse Mf(1,3,1,0:

—1_ ~1

1. Deviation from the previous solutions M(1.3,1,0 de{M(1.3,1,0] [A+O(e)]. (69

Because the accuracy of the previous calculation isSince, by assumption there is one massless modg 31,0

O(e), all parameters besidds,e, and Y,2, can deviate Up toO(e), de{M(1,3,1,0)=0(e) and the first row inA is
from the value which is obtained at the previous section andparallel to the second row iA, that is

therefore we can expand the deviation in the powee af
ARV
=, (64)
_ ay  Axp
a=ap+ Y, aje, (53)
i=1 whereA =(a;)).
Then up to the leading order af

My=M o+ D, M, €, 54 a
A=Maot 2, My, (54 p=22c 5
11

i namely, as an exact relation
Ma=Mao+ 2 Maié, (55 y
|:

az
Blza_lcl (66)
11

Ya=Yrot+ D, Yai€, 56
AT a0 2’1 ai€ 6 is obtained.
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To see this explicitly, we follow the above calculation in
the case of the first relation of solution 2:

de(M(1,3,1,0)=| —26423.4%,,ba,

. 16.1727Y y25Y 21 0°

a

) e+0(€?)
as we expected the determinanQOge).
A is calculated to be

72.3850Y y2pcr,  —39.5148Y y25b

JOE SATO

2. Determination of input parameters of the theory

Though we can determine the parameters in the power of
e order by order, instead of doing so, we will give the pa-
rameters of the theory in terms of the VEV’s because the
purpose of the paper is to find a parameter region for the
theory,M’s andY's, which leads to the spectrufi). As we
will see, by the VEV’sa,b,c,a, and B, we can express the
input parameters of the theory.

To do this, first we see thE-flat conditions(17)—(21).
These equations can be rewritten

A:( 39.5148Y s20b, 21.5710Y y2ub?/ ) Ma [1/(1006))Yas
PRI, RS amn e Ma [14(10V2)] Y
Apparently,A satisfies(64). cl va _ (1/10)Yga b, (68)
Then
Yan2 (V6/10) Y
Br=— 1.8318%c1 67) Yaza (1/5)Ygpa
is obtained. where
1 1
a, o0 ——c?, - —=p2 244/2i
12\/€c 2\/€B \/_Iab
b, 0 Lb2+ ch —iaz 24\2iaa+242i Bc
71820 182 32
1 1 . .
c=| ¢ O mac%— mbc, - %aﬂ, 16\6i ac+24\2ib B (69)
V2 1
0, a, 0, — —ab—-——=pBc, 24/2iab+86ic?
3 7 5P
1 1
01 Bv 01 ——=aC— —=a y 24\/§le
NN
As we know from the previous argument that, anda can be chosen freely aradand 8 are given by
a=ag+ae,
B=PBie+ Bre?, (70

whereay, is given by the first equation ¢89) or one of the last two equations @0) andB; is given by(66). Note that higher
orders in(53) and (58) can be absorbed inta; and 3,, respectively.

Then, the input parameters are reduced to

My [1/(10V6)]Ya

Ma [1/(10y2)]1Y s

Yo |=—CY (110Yes | ¢o. (72)
Y aa2 (\6/10) Y g
Yaza (1/5Yqn

For example, in the case of solution 2,

C '=(deC) !C'e

deC=(—3.76350a°b*B,c, — 2.25347a°b%a;c?) €3+ O(e)*
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0, 0, —2.68018a%b%c;, 0, —1.08826a%bc,
0, 0, —2.11074ab°;, 0, —0.857040a°b*c,
c'=| 0, 0, 810927a’b?c;, 0, 3.29268a°bc; | +0(e).
0, 0, 1.0643Bab’c,, 0, 0.43218#ab3c,
0, 0, —0.077962@2b%c;, 0, —0.0316556:°b°c,
|
From this equation, it is easy to see that all parameters are 1 —
of order €® and they satisfy the first solution of the solution y== g ea®= O(e),
2.
Finally, from (22), M4 is determined: 1
y'===Yos9p=0(e),
M—Y\/€a+'BY a+b+C 0
+~ Yoo "5) Yl 106 T 10z T 10/

1 1
(72 u=-— \/T)YH<I>Ab+ ﬁYHMCZO(\E),

3. Check mass matrices

The multiplets in(1), besides oné2,2,1,0, must decouple
at MVR,that is, they must acquire mass(D(M,,R).

From now on, we check whether they have mass of
oM,). _ Yaoab

VR wW=Mgp+ ——==0(e),

First, we note oné¢2,1,3~1) + H.c. and(2,1,1,3 + H.c. 1542

can have masses G(MVR) by the following two reasons:

(1) Parametersy,,, and My may deviate from the value - Y‘MC+ YonB
given by (45) and (46), respectively. (2) There exist cou- 30 10

plings with c and 8. L . .
Then, we see the mass matrix 1&;2,1,0. Under SM, it M(2,2,1,§ is given in the Appendix C. Orders ofy, . ..
are followed from(43).

has a quantum numbé€2,1,+1/2).(2,2,1,6§ + H.c. also in- . .
cludes the same component. Then the mass matrix is Because on€2,1,+ 1/2) multiplet remains massless after
G931 breaks down to the SM group,

= Vbt o Yugac=O(Ve
v_\/l_O HOA 2\/3 HoaC=0(Ve),

—0(e). (74)

Ma, Y. 0 detM(2,1,=1/2)={M y(Z2—W?) +yy' (W—2)}M
XI! MH, U, .
M 2!11i 1/2 = , 73 + .
( ) o 0. w-z (73 2M yuvw
y', v, w+z, 0 =0, (75
Where and henceM, is determined as follows:
1 2uvw 4O 76
Ma=M(2.21,6+ 15 YaC+24Y pr28, H=z— 2 TO(e). (76)

In this case, the higher order terms must be included to have
1 = a2 a pair of light Higgs doublets.
X= - EYH®A¢:O(€ ), Next, let us consider1,1,8,0. This multiplet becomes
(1,8,0 under the SM group and therefore it mixes with
T3r=0 component of1,3,8,0 under the SM. Then the mass
< = iY b=0(¥?) matrix for (1,8,0 is represented as ax33 matrix.
= HPAP= ;
\/E M(1,1,8,0 mixing

M(1.8.0= mixing  M(1,3,8,0/

(77

4Though(2,1,3,—1) + H.c. has a same quantum number under the .
SM group as an NG mode associated with the breakdown 6t@0  After G231 breaks down to the SM group, there is a correc-
the SM grougsee Tablg23)], it does not mix with others because tion of O(Mye~M, ) to the mass matricel®l (1,1,8,0 and
the VEV of y=0 and therefore this NG mode does not consist of it. M (1,3,8,0 because parameters appearing in them are differ-
(2,1,1,3 + H.c. has the same quantum number as tha2¢#,1,0  ent byO(e) from those calculated in the previous section. It
under the SM group but by the same reason they do not mix withis directly calculated using71) [or equivalently(53)—(57)
(2,2,1,0. See the superpotentiéd)—(8). and (60)] that one of the eigenvalues ®f(1,1,8,0 is of
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O(My) which has already been suggested at the previousinglet and a pair of charged singlet with hypercharge
section and the other i@(MvR). As M(1,3,8,0 is O(My), Y==1.(1,3,1-6) + H.c. becomes two neutral singlets, a
even though there is a correction ©(M, ), M(1,3,8,0 is  Pair of Y==1 and a pair of Y==2 singlets. Then,
still O(My,). Contributions ofc and 8 to the mass matrix Y=x1 component of them will mix with each other.

(77) appear at mixing terms betweéh,1,8,0 and(1,3,8,0° Mass forY=*2 component takes the form

and they are oO(MvR). ThenM(1,8,0 takes the form

\/ga B c
O(My) 0 O(Mye) Yoa| 79 5] T Yea m+m_ﬂ) +M,
0 O(Mye) O(Mye) |. (78 2 1
O(Mye) O(Mye) O(My) :_chInA,B_ thDACv (79

Apparently, two eigenvalues are 6(M) and the other
is of O(MVR). This fact suggests that the lightest element ofywhere(72) is used.

(1,1,8,0 underGy,3; decouples at the scaM, . From this equation, obviously thé=*+2 component has

Finally, we check the mass ¢1,3,1,0 and(1,3,1-6) + & mass olO(M, ).
H.c. Under the SM(1,3,1,0 is decomposed into one neutral ~ Mass matrix ofY=*1 component is

YAAZa YAAZCK . Y(I)A¢
— 22"+ Mg, — +24i2Y y24b, -—=
\/g A \/5 \/_ A2A 5
Yan2a . Y a : Y,b Yopadh
- +24i\2Y r20b, ——=+16i+6Y +—=+M,, — 80
\/6 \/— A2A 6 \/6 \/— A2AC 9 \/E A 10 (80)
_ Yoag LYY _ YoaB  YouC
5" 10’ 5 10

Since it is an NG mode associated with the breakdown obe understood as a reflection of the breakdowiGef;, to
G931 10 Goygg, there is one massless mode. It is easy to se€&oz;.

that this matrix has O eigenvalue because 1st row There are many variations for a SUSY @0) GUT with
X Bl ¢+ 2nd rowx c/¢+3rd row=0 using theF-flat con- an intermediate scale because there are many candidates for
ditions (19) and (21). It is also explicitly calculated that one the particle content which exist in the intermediate region

eigenvalue is oD(My) and the other is 0O(M, ). and we have many variations for content of (3@ multi-
R plets which contain one of the candidates.

For example, we can repla¢g,2,1,0 by (2,1,1,3 + H.c.
in the spectrunil) and vice versa, because their contribution
to the running of the gauge coupling relevantGegs; is the

As we saw, by constructing the input parameters for thes@me.
theory using(71), (72), (74), and(76) from the desired val- When we remove on€2,2,1,0 from the spectruntl) and
ues of VEV'sa,b,c,a, 3,6, and ¢ which satisfy(10) and add one(2,1,1,3 + H.c. to it, by adding a pair of SQO)
(70), we can have particlegl) in the intermediate region. Multiplets 16+16 which contains(2,1,1,3 + H.c. under
They decouple from the spectrum B, except a pair of G_2231, we can have s_uch a spectrum at the |n_termed|ate re-
what we call Hiaas doublets R gion. At that time, while we have to tune couplings relevant
It means tha??t is possiblle to construct a SUSY(SM to SQ10) m.ultiplets 16+16, we can release the constraint
GUT with an intermediate scale consistent with the gaugé43é¥or equ?rl]ently(m)]. ite diff t f content for th
unification. It suggests also that the right-handed neutrinos course, nere are quite ditrerent types ot content for the

: : . : andidates. Using them, we can construct quite a different
acquire mass through a renormalizable coupling, and it cal - NN .
q g pling QO(10) GUT with an intermediate scale.

Though the gauge unification by the MSSM is a very
attractive idea, to take into account a right-handed neutrino
mass, we should consider a possibility of a GUT with an
intermediate symmetry.

V. SUMMARY

SThere is no contribution ofc or B to M(1,1,8,0 and
M(1,3,8,0. The reason is as follows. Und&,,;;, ¢ and B8 are
contained in(1,3,1,0. Becaus&1,3,1,0(1,1,8,0f contains no sin-
glet, neitherc nor 8 couple to (1,1,8,0) Though (1,3,1,0
(1,3,8,0f can appear, as there is no three-point coupling of
T3;r=0 component of S(2) triplet, neitherc nor 8 couple to The author wishes to thank T. Kugo, M. Bando, and T.
T3r=0 component 0f1,3,8,0. Takahashi for valuable comments and discussion.
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APPENDIX A: THE REASON WHY WE NEED This means that to mak&¥=*2 component decouple
AMULTIPLET (1,3,1,0 from the spectrum after SU(gpreaking, we have to make a

Here, we show the reason why we need a multiloletmulnplet couple tod which will get a VEV of O(M,, ) and

(1,3,1,0 in the intermediate region. distinguishes the component of an SU{2jiplet, that is, a
First, we note that we required at least a pair of multipletN@nsinglet. It is easy to find what nonsinglet can couple to

(1,3,1-6) + H.c. (Eq>+q_>) in the intermediate regiof6] Od. Fromdd, we have three representations:

and hence at this region in the superpotential effectively (1,1,1,0,

there must be a term

Because we consider an 80) GUT the mass parameter (1,5,1,0. (A8)

Mg is, in general, thought to be @(M ). . .
In this case it is, however, impossible thtacquires a As SU(_Z)? no_nsmglets are the latter two al(nﬁ,S,l,O_ IS
not contained in a relatively smaller representation of

VEV. Of course if we tune the parametity, to be zero, as . B
there is a flat direction i term,® can acquire a VEV, but SO(lO), we have to ugél,s,l',(). SinceTap=0 component
of a triplet is an SM singlet, it can get a VEV.

in this case there are two problem&) there is no way to . ; f . .
P ma) y Since(1,3,1,0 is not a singlet undeG,,34, its VEV is at

determine a magnitude of the VEV df; (2) hypercharge Y ) -
— 49 componer?t ofb cannot have any(rr)1a§y£ g most of O(M,), while becausg1,3,1,0 gives a mass of

Then, we have to add other multiplets. The easiest way t&(M,,) to Y==2 component ofb, even if there are many
solve the problentd) is to add a singlet£S).” If thereisa  (1,3,1,0, one of their VEV's must be 0O(M,). This im-

singlet, the superpotential will have a form plies that at least one of1,3,1,0 must have a mass of
3 1 1 O(MVR). In the following, we will see it explicitly.
W=Mg4DPP+Y;SPP + 5M382+ gYSS3 (A2) First, when there are aldd,3,1,0 multiplets (=B;), the

superpotential takes the form

andF-flat conditions ard(®)=¢, (9=9) B B Y 1
W=Mg®®D+Y,SPD+ D, Y,BdD+ EMSSZ+ —YS?
|

oW 30
-7 =(Mg+Yes5)=0, (A3)
ad
1 1
&W _ 1 +§§ (M”+Y”S)BIBJ+§|’J2,|< YijkBiBjBk (A9)
E:Y%d’d""MsS*‘ EYSSZ- (A4)

andF-flat conditions are (B;)=p;)

Then VEV’s are determined to

oW _

—=|Mg+Yoss+Y YiB | =0, (A10)
I

Mg JP
s:__1 A5
Voo (A5)
W — 1 )
— MMy lY (Mq,)z A6 %ZYIIJSQSQS—"MSS"_ EYSS +i§;4 YsiiBiBj=0,
$b= Yos 2 S\ Yos (A6) (A11)

Though, as we mention belo@@1), M’s are thought to be OW _
of O(My), we can give a VEV oD(M,, ) to @ if coupling £:Yi¢¢+2 (Mjj+Yijs)B8;=0. (A12)
constants are fine tuned whigeis of O(My). ' )

L_Jnfortunately, even after we add a singlet, the prol_alem Note that there is no three-point Coup”ng'bjzo com-
(2) is not solved because the mass Yor =2 component is  ponent of SW2) triplet and hence there is no affect of

_ Yiik -
Mg+ Yss=0 (A7) From (A12), B; is calculated to
according to the~-flat condition(83). The reason why it is Bi= —(l\7| _1)__a_¢(z
still massless is that no multiplet couples do which ac- : W=
uires a VEV ofO(M,, ) and distinguishes the component of ~
a (M) g P My =(M;;+Y;s). (A13)

a SU(2) triplet and hence all components df are still
degenerate after SU(g)reaking. By assumptiong=0(M,, ) and as we mentioned one of
B; also must be oD(MVR). These facts imply that in the

SNote that only an NG mode can get a mass throDgterm. In above equationM must have at least one eigenvalue of
general, such a component corresponds to a massive gaugino. O(MVR)- BecauseM is a mass matrix for(1,3,1,0 [see

"Because we consider an 8&0) GUT, there are several singlets (A9)], it means that at least one df,3,1,0 must be massless
though naturally their masses are@{M ). at the GUT scale.
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In this case mass for=*2 is calculated 5(2)+5(—2)  under SU5)®U(1)
10=% (6,)+(1,9 under S@6)®SQO4)
Mq)+Yq»ss—Z a; B =—22 ai=0(M,), (Al4) (6,1,0+(2,2,) under SU4)®SU(2)®SU(2)

Then we can add a meaning of, for example(@®ector
where (A10) is used. Apparently, this component decouplesto indices 1 to 6 and S@) vector to 7 to 10. Hereafter, O
atM,_, namely, the probleni) is solved. stands forl0. In other words, S@), an SA@10) subgroup,
R acts on the indices 1-6 and S acts on 7-0.
We can add more meaning to indices of an(8® vector
APPENDIX B: CONSTRUCTION OF REPRESENTATIONS by giving a meanings(2) representation under $&) ®

In thi . briefl iew h truct U(1) to (1+2i,3+4i,5+6i,7+8i,9+0i) and its complex
n this section we briefly review how we construct repre- ., 1ate to (1 2i,3—4i,5— 6i,7—8i,9— 0i).

sentations of subgroups contained in($Q) representations
and give the rule for calculating CG coefficients appearing in,
three-point couplings. However, we do not mention about a
SO(10) spinor 16 because it is impossible to understand th
meaning of the indices for a spinor in the same way as un
derstanding an SQO0) vector 10 and essentially we do not
need to handle them directly in this paper. To see how to 0

handle an SQ0) spinor, see Ref12]. When calculating CG 1]1]ath 1 i
coefficient relevant to a spinor the gamma matrices for Earpi=—| . =—e,+—e,,
SO(10) constructed explicitly in the reference are used. V2| i [tbth 2 2

0

What 1+2i means is as follows. When we construct a
ector representation, we can use a b&sis,; and its com-
lex conjugateE, ,;=E,,pi, whereb=a+1 anda is an
dd number other thag; which is introduced at the top of
this section:

(B3)

where 1A2 is a normalization factor to achieve

T .=
1. Meanings of subscripts EaspiBarni=1.

Then,
For SQ10), the fundamental representatiois a ten- —
dimensional real vector H=hi&=hgpiEarbitNa-biEa-bi,
H=(H), i=1,...,10. where
t 1 -
It means when we construct a fundamental representation Nasbi=EaspiH= E(ha— hpi), (B4)

for SQ(10), we can use the basis for it
h, i is @ component of an SB) vector and its (1) charge

H=he;, (B1) is two. As it is easily seen, the component for an(8®
vector depends on a basis.
where Because both SB) and S@6) = SU4) contain

SU(3)c, we can add the meaning of ) 3 and 3 to the
SQ(6) vector indices 1 to 6: (% 2i,3+4i,5+6i) is an SU3)

0 vector 3. By the same way, we can add the meaning ¢25U
2 and2 to the S@4) = SU(2) ® SU(2) vector indices 7-0:
0 (7+8i,9+0i) is an SU2) vector2.
4 | 1| As we will see later, a higher representation is represented
hi=eiH,e= }ith component. (B2) as a tensor. By this construction when we consider what
0 representations a higher representation contains under, for
example, SQLO) subgroup SW), it is sufficient to deal with
indices 1 to 6. When considering $8) subgroup, we can
0 deal with combinations of S@0) subscripts ¥ 2i and so
on.
Hereafter in this appendix, repeated subscripts are assumed
to be contracted. 2. SO(10) representations and representations of subgroups
In this case, index means nothing but S@O) vector. contained in SQ(10) representations

For our convenience, we can attach an additional meaning
to it. SQO(10) includes SW5) ® U(1) and S@6) ® SQO4)
= SU4) ® SU2) ® SU2). Under them, the fundamental
representatiorl0 is decomposed intpll]

The representationd5, 126 + 126 and 210 are formu-
lated from the fundamental representation as antisymmetric
tensors of 2nd, 5th, and 4th ranks, respectively. By the char-
acteristic of S@L0), 5th rank antisymmetric tensor is decom-

8 . . .
Exact.ly |(;1 atTathematlc?l ;erm what fundamental representation %I the paper§7,9], the authors give a meaning of BDvector to
means 1S identity representation. indices 510 and that of S@ to 1—4.
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posed into two partsl,26and1_26 Using 10th rank antisym- singlets in 126 and 126 are determined to be
metric e tensor & eapcdeijkim» it IS decomposed into tWo €1 _5i 3-4i 5-6i,7-8i,9-0i +€1+2i 3+4i 5+6i 7+8i 9+0i - 1heYy are
eigenstate$§12]: understood in the same way Bs, 5 (B3):

[

—e o P =+ O , — i
51 “abcdeijkim¥ijkim abcde €1 2j,3—4i,5-6i,7-8i,9-0i = (13579~ 1€p357gt - . . ),
V10

gsabcdeijmm@ijmm: —Dypede (B5  where 14/10 is an extra normalization factor to achieve

What has_a plus eigenvalue is defined tdlBé and the other (el—2i,3—4i,5—6i,7—8i,9—Oi);bcde(el—2i,3—4i,5—6i,7— 8i,9-0i)abcde
is to bel26

In the same way as an $) vector10, we can express
these representations using a component and a basis. To Ainilar to 142 in (B3).
press45 (=A), we can take a basi; as

It is easily seen that the former is a basisl@6 and the

A=a;e, (B6) latter is that 0f126 by makinge apcqeijkim acting on them or
i by counting U1) charge[11]. All other representations of
where subgroups contained in $0D) representations are con-
structed in a similar way.
i

ajj=trAg; ,e;=[(&j)ap]= E(5ai5bj— OajOpi)- (B7)
a;j corresponds to a component 4% representation. In our 3. CG coefficient
notation, subscripts,j for a component and a basis satisfy ) — i
thati>j. Using 10, 45, 126 126, and 210 we have following

In a similar manneﬂ26+ﬁ3(z<b+5) is written as SO0 singlets[11]:

D(0r ®)=ijimijiim » (B9) HOA,HDA, A3 PAD, DAD,A2A, AA2.
where g;jm is an antisymmetric tensor and only when a ) ) o
combination of indices coincide with subscrigigkim}, it We can get singlets by contracting all indices of tensors:
has a value 4/5! or —1/y/5! . The sign is defined to make
€ijkim antisymmetric. Here {ijkim} satisfies HOA=H, D pcal bedes

i>j>k>I>m. Exactly, forejj,n to be a basis ol26 (or
126), there is another constraint for it as we explained in
(B5), though we do not touch the detail here. Then a com-
ponent of126is given by

HOA= Haq)abcdeAbcdea

3_
Dijkim= Pabcdd Eijkim) abcde- (B9) A™=Rabcdcderdera,
1/\5!is a necessary normalization factor to expresk?@
representation byB8) and(B9) similar to 1/\/5 in (B3).

In the case o210 a basis for it becomes 4th rank anti- o o
symmetric tensor and its normalization is/2!. Besides it, DAL =Dy AapPhiji »
210(=A) is represented in the same way:

PADP=Dyp;1 A b dP i »

A= Sijki€ijk » AZA=AapAci abcd
where AAZ= ACA LA
—8abcdefgh|anb cdefR ghij -
Sijki = Aabcd Gijki) abed
andi>j>k>1. In terms of components of the representations

To construct a representation under subgroups, we use a
linear combination of these bases in the same way as when 1
we extract a5(2) of the subgroup S{%) ® U(1) from an H®A=—h,dapcadbcdes
SQ(10) vector we use a basE,, ;- V5
For example, let us considéd,;; singlets contained in
126and126. They are S(b) singlets. Then it is sufficient to 1
deal with SU5) subscripts #2i and so on. By the —
quintality of SU5), the IOform of the basis of yS@B) Hoa \/ghad)abweabme’
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For example, let us calculate a CG coefficient for the
Aszmgabcdgcdefgefabv singlet 8 contained in45 and a contained in210 [see the
Table (3)]. They are contained in the form
Azg1 90= B€75+ 90 ANd A7g95= @€7590, respectively. Then

_ 1 —
PAD = —= dapijkSabcdPediijk »
10V6 AabAcdl abcd= B2a(€75+ 90) ab( €78+ 90) cd( €7890 abed

2

y i i21
PAD = ——=D;: 1 1A Ppiik » =B%al =] —2121x%
5\/5 aijkiMab® bijkl Ba > \/ﬂz 21X2
1
AZA:_ia ba d5 bed :_%ﬂza'
\/6 a C abc
AA2:24\/§iaab5cdef59hij , In the second linei/2 comes from an element efg, oo and

1/\/41 comes from an element @fggy. 2! comes from a
summation betweedab} and {cd}. {ab} and {cd} are

where repeated subscripts are not summed and in the Iaﬁ8} or {90}. The last factor 2 comes from an exchange of
equationabcdefghijare different from each other. {78 and{90}.

Then, we rewrite the superpotenti@) in terms of com-
ponents, for example,

APPENDIX C: MASS MATRICES UNDER G ,3; AND

Ya
YA A= —— 8.0 cdOcded
AT T g “abedvedefTefab THEIR EIGENVALUE EQUATIONS

and so on. Therefore, for components that as an expansion Under G,,3;, the multiplets of our model have mass
parameter for the perturbation Yukawa coupliagl, means terms as follows. They are listed following the order of the
Y,=6+/6 and so on. list (23). Full mass matrices are given with contributions

Of course, since a component of an irreducible represerffom ¢, 8, ¢, and afterG,3; breaks down td5,3;. But these
tation is a linear combination of these components, CG cocontributions are of ordeM,_~Mye and hence if the mass
efficient for an irreducible representation is different from, eigenvalue is ofO(M ), they are negligible and we do not
for example, 1/6/6 in the case of\3. need to consider them.

(2,2,1,0 multiplet:

M ~ Yuaab Yhaab
H» \/F) ) \/E)
Yhaab Yoab
_| - Thead 0, ALY
M(2,2,1,0 /10 152 T Me

(1,1,37~2) + H.c. multiplet:

Yhoa(V3a—b)  Yupa(y/3a+b)

My, ,
" J30 30
Y 3a—-b Yaor
M(1,1,3,2= % 0 ;’—A@+M¢

Yuga(¥3a+b)  Youa

1 +M 1
J30 56 "
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(3,1,1,0 + H.c. multiplet:

YAAZa YAAZOZ .
M A+ N - —24i\2Y y25b
6 G
M(3,1,1,0=
B0 T VN AL TN VL LY
— —_— I y — — I —
\/6 A2A 6\/5 AZpC 9\/5 A
(1,3,1,0 multiplet:
YAAZa YAAZOZ .
——+M,, — +24i\2Y x25b
\/6 A \/g \/_ A2A
M(1!31170:
YAAZCY

, Yaa . Ysb
- \/E +24|\/§YA2Abr m+16|\/6YA2Aa+m+MA

(1,1,37~4) multiplet:

_YAAZb 3 YAAZOZ
+ My, 24\2iY p2pa— ——
M(1,1,3-4 3\/5 " \/— - 3\/5
( 3Ly O, )_ 24\/§Y YAAZC( YAb +M
[ a——=, —=
A2ZA 3\/5 18\/5 A
(1,1,8,0 multiplet:
YAAZb A YAAZQ
—+Ma, 24i12Y p2pa— ——
3\/5 A \/— AZA 3\/5
M(1,1,8,0=
( 0 24\/§Y YAAZCL/ YAb +M
[ a— —=, -——
A2ZA 3\/5 18\/5 A
(2,2,3,2 + H.c. multiplet:
Y
MA’ 8\/6iYA2Ab, —ATAM
M(2,2,3,2= 86iY s2nb, My, 16 \/3Y 2pa
YAAZCY : YAb
— —t
5 16\3iY s2pa, TNA M,

(3,1,1,6 + H.c. multiplet:

6Y Y Yaorb
\/— PAY @Aa+ DA M.
10 106 1042

M(3,1,1,6=—

(3,1,3,3 + H.c. multiplet:

Y(pAa Y(I)Aa Yq,Ab
M(3,1,3,2=— — + +Mg.
(3133="2 6 "1ove "30y2 M

(3,1,6-2) + H.c. multiplet:

Y¢Aa Y@Aa Yq)Ab

- - +Myg.
56 106 302 °

M(3,1,6-2)=

(1,3,1-6) + H.c. multiplet:

6Y Yoprad  Ygab
\/— DAL DA n DA M.
10 106 1042

M(1,3,1-6)=

3899
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(1,3,37-2) + H.c. multiplet:

Y¢Aa

Yopad

M(1,3,3-2)= + + +Mg.
(133-2) 56 106 302 %

(1,3,6,2 + H.c. multiplet:

Yqua’

Yprd

M(1,3,6,3=— + - +Myg.
(1.36.2 56 106 302 °?

(2,2,3-4) + H.c. multiplet:

\/EYcDAa Yopab

+ +M 0
M(2,2,3—4 15 302 T
(22374 0 \/6Y<1>Aa+Y<I>Ab+M
: 15 302 °?
(2,2,8,0 multiplet:
M(2,280=———=++My.
( 0 3002 Mo

(3,1,3-4) + H.c. multiplet:

M(3.1,3—4)= — A2 8i\6Y LU
( 1Ly )_ 6\/5 | AzAa 18\/5 A

(1,3,3-4) + H.c. multiplet:

YAa.

M(1,3,3—4)= +8i\6Y 20+ Yab v
(11; _6\/6 | A2AX 18\/5 A

(3,1,8,0 multiplet:

Y, a

. Yab
M(3,1,8,0:_ 6 \/€+8|\/6YA2AQ_W+MA'

(1,3,8,0 multiplet:

Ypa

. Y, b
M(11318102m 8|\/€YA2AC¥—W+MA_

(2,2,1,6 + H.c. multiplet:

M(2,2,1,6=

(2,2,6;-2) + H.c. multiplet:

Y, b

24+ M,.
62 4

Y, b
M(2,2,6,—2)= - m'ﬁ‘MA.
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(2,1,3;-1) + H.c. multiplet:
0
1

\/giszAa

1
— —=iY, aa+2Y, \(V6a+ \2b)

V6

1
——=iY a2+ 2Y, 2 (V6at\2b)+ My

6

M(2,1,3~1)=

(1,231) + H.c. multiplet:

0
—=I o
\/— VA2

M(1,2,31)= 1
(1230 —iYyaza+2Yysa(—J6a+2b)

V6

%iY‘PA4a+ 2Yyaa(—6a+2b) + My
(2,1,1,3 + H.c. multiplet:
0
JBiY yarcr
VBiY yagar+2\8Yy 55(a— \3b)
VBIY yagar+2\6Yyx0(a—30) + My

M(2,1,1,3=

(1,2,1-3) + H.c. multiplet:
0
—V6iYyna
—\6iYyasa—2\6Yy3(a+ y3b)
—V6iY yasa—2\6Yya4(at\3b)+ My

M(1,2,1-3)=

[1] H. Georgi, inParticle and Fieldsedited by C. E. Carlson, AIP
Conf. Proc. No. 23AIP, New York, 1975; H. Fritzsch and P.
Minkowski, Ann. Phys(N.Y.) 93, 193(1975.

[2] U. Amaldi, W. de Boer, and H. Fatenau, Phys. Lett. B60
447 (1992); P. Langacker and M. Luo, Phys. Rev.43, 817
(199D.

[3] For a review, see M. Fukugita and T. YanagidaPimysics and
Astrophysics of Neutrinpsdited by M. Fukugita and A. Su-
zuki (Springer-Verlag, Tokyo, 1994

R. Slansky, inSupergravity Proceedings of the Workshop,

zen and D. Freedma(iNorth-Holland, Amsterdam, 1979
[6] M. Bando, J. Sato, and T. Takahashi, Phys. Re’2D3076
(1995.
[7] D. Lee, Phys. Rev. 9, 1417(1994).

30, 1052(1984%.
[9] X.-G. He and S. Meljanac, Phys. Rev.41, 1620(1990.
[10] F. Buccella, J.-P. Derendinger, and C. A. SavoyJimification

Stony Brook, New York, 1979, edited by P. van Nieuwenhui-

[8] D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. D

[4] L. Wolfenstein, Phys. Rev. 07, 2369(1978; S. P. Mikheev
and A. Yu. Smirnov, Sov. J. Nucl. Phy42, 913(1985.

of the Fundamental Particle Interaction, ledited by J. Ellis
and S. FerrargPlenum, New York, 1983

[5] T. Yanagida, inProceedings of the Workshop on Unified [11] R. Slansky, Phys. Ref9, 1 (1981).

Theory and Baryon Number in the UniverSsukuba, Japan,
1979, edited by A. Sawada and H. Sugaw@gK Report No.
79-18, Tsukuba, Japan, 1979. Gell-Mann, P. Ramond, and

[12] T. Kugo and J. Sato, Prog. Theor. Ph§4, 1217 (1994); H.

Georgi, Lie Algebras in Particle PhysicgAddison-Wesley,
Redwood City, 198R



