
e

gh a

PHYSICAL REVIEW D 1 APRIL 1996VOLUME 53, NUMBER 7

0556-2821
Supersymmetric SO„10… grand unified theory with an intermediate scale

Joe Sato*
Department of Physics, Kyoto University, Kyoto 606-01, Japan

~Received 9 August 1995!

We examine a superpotential for an SO~10! GUT and show that if the parameters of the superpotential ar
in a certain region, the SO~10! GUT has an intermediate symmetry SU~2!L^SU(2)R^SU(3)C^U(1)B2L

which breaks down to the group of the standard model at an intermediate scale 1010–1012 GeV. In the model,
by the breakdown of the symmetry, right-handed neutrinos acquire a mass of the intermediate scale throu
renormalizable Yukawa coupling.

PACS number~s!: 12.10.Dm, 12.60.Jv
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I. INTRODUCTION

When we construct a grand unified theory~GUT! based
on SO~10! @1#, in general, we have singlet fermions und
the standard model~SM!, which we call a right-handed neu
trino. Under the SM, right-handed neutrinos can have Ma
rana masses because they are singlets. Then the scale
right-handed neutrinos ([M nR

) is expected to be a scal
below which the SM is realized.

It is well known that in the minimal supersymmetric sta
dard model~MSSM!, the present experimental values
gauge couplings are successfully unified at a unificat
scaleMU.1016 GeV @2#. This fact implies that if we would
like to consider gauge unification, it is favorable that t
symmetry of the GUT breaks down to that of the SM at t
unification scale. In this case the scale of the right-han
neutrinosM nR

is expected to be the unification scaleMU .
This means also there is no intermediate scale between
supersymmetry-~SUSY-! breaking scale and the unificatio
scale.

On the other hand, it is said thatM nR
;1010–1012 GeV

@3#. The experimental data on the deficit of the solar neutr
can be explained by the Mikheyev-Smirnov-Wolfenste
~MSW! solution @4#. According to one of the MSW solu-
tions, the mass of the muon neutrino seems to
mnm

.1023 eV. Such a small mass can be led by the sees
mechanism@5#: A muon neutrino can acquire a mass
;1023 eV if the Majorana mass of the right-handed mu
neutrino is about 1012 GeV.

Then how can the right-handed neutrinos acquire mas
about 1012 GeV? It was our question in our previous pap
@6#, because if we take the prediction of the MSSM serio
M nR

is expected to beMU.1016GeV. Our point of view was
that it is more natural to consider that one energy scale c
responds to a dynamical phenomenon, for instance, sym
try breaking. That mass is given by a renormalizable co
pling is also the crucial point of our view. This idea
consistent with the survival hypothesis. Thus we were led
the possibility that a certain group breaks down to the S
group at the intermediate scale at which right-handed neu
nos gain mass through arenormalizable coupling.
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In the previous work we searched possibilities to
construct such a SUSY SO~10! GUT with an inter-
mediate symmetry1 SU(2)L^SU(2)R^U(1)B2L^SU(3)C
([G2231) which breaks down to the SM group at an inter-
mediate scaleM nR

;1010–1012 GeV where a right-handed
neutrino gains mass.

In such a scenario, as we showed in the previous work,
make the model consistent with the gauge unification, w
have to introduce several multiplets at the intermediate re
gion between the GUT scale and the intermediate scale,
addition to ordinary matters, three generations of quarks an
leptons and a pair of so-called Higgs doublets.

Although we showed a possibility to construct a SUSY
SO~10! GUT with an intermediate symmetryG2231, it is not
trivial whether it is actually possible to construct such a GUT
since there are many extra fields in the intermediate regio
We did not show the superpotential for the theory explicitly
which can realize such a scenario that we have suggested
Ref. @6#.

The purpose of this paper is to show an explicit form of a
superpotential for a SUSY SO~10! GUT to construct a SUSY
SO~10! GUT whose symmetry breaks down toG2231 at a
GUT scaleMU andG2231 breaks down to the SM symmetry
at the intermediate scaleM nR

.
We give the scenario and the model briefly in Sec. I

where we give a candidate for the matter content in the in
termediate region@the spectrum~1!#. Then in Sec. III we
show the most general form of the superpotential and
symmetry-breaking condition as preparation for our analysi
In Sec. IV first we calculate parameters of the theory
namely, parameters appearing in the superpotential, whic
produce the spectrum~1! at the intermediate region. Then we
show the exact parameters which realize the MSSM belo
M nR

. Finally, in Sec. V we give a summary and a discussion

II. SCENARIO AND MODEL

A. Scenario

We construct a SUSY SO~10! GUT whose symmetry
breaks down toG2231 at a GUT scaleMU andG2231 breaks

1We use a notationGlmn . . . to represent SU(l )^SU(m)
^SU(n)•••. If l51, it means U~1!.
3884 © 1996 The American Physical Society
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down to the SM symmetry at the intermediate scaleM nR
.

WhenG2231 breaks down to the SM symmetry, the right
handed neutrinos gain mass through arenormalizable
Yukawa coupling.

Let us first recapitulate the content of the previous wo
@6#. To achieve the gauge unification in the scenario, we ha
to introduce a certain combination of multiplets. Because
our model right-handed neutrinos acquire mass ofO(M nR

)
via a renormalizable Yukawa coupling by the symmet
breaking, we have to introduce at least a pair of~1,3,1,6! 1
H.c. multiplet underG2231. We adopt the normalization for
U~1!B2L , T4

155diag(21,21,21,3). When we introduce
only ~1,3,1,6! 1 H.c. multiplet in addition to the ordinary
matter, gauge couplings do not unify. Then we have to intr
duce certain matter content underG2231.

We found very many candidates for matter content in t
intermediate region between the GUT scale and the interm
diate scale which lead the gauge unification. Among them
showed two candidates for the matter content as the simp
examples. Here we use another candidate which was
shown in the previous paper. In the examples appearing
@6#, a ~1,3,1,0! multiplet underG2231 was not included. In
constructing a GUT following the idea, however, we have
introduce a~1,3,1,0! multiplet in the intermediate region. The
reason why we have to introduce a~1,3,1,0! multiplet is
stated in Appendix A. Thus, we have to use another can
date for matter content.

The matter content other than quarks and leptons~includ-
ing right-handed neutrinos!, which we assume survive until
G2231breaks down to the SM group at the intermediate sca
are given below:

~1,3,1,26! 1 ~1,3,1,6! 1 responsible fornR mass

~2,2,1,0! 2 ordinary Higgs doublets

~2,1,3,21! 1 ~2,1,3̄,1! 1

~2,1,1,3! 1 ~2,1,1,23! 1

~1,3,1,0! 1

~1,1,8,0! 1 ~1!

In this list, for example,~1,3,1,26! 1 stands for that the
representation of the matter underG2231 is ~1,3,1,26! and its
number is one. When we have the particle content listed h
in the intermediate region, the unified couplingaU(MU) is
about 1/18 if we take the intermediate scale to be 1012 GeV.
As a candidate which contains~1,3,1,0!, this candidate leads
the smallest unified coupling.

In our scenario, at the GUT scaleMU where SO~10!
breaks down toG2231, almost of all particles have mass o
O(MU) while the particles listed in~1! as well as quarks and
leptons are left massless. Then at the intermediate sc
whereG2231 breaks down to the SM groupG231, all extra
multiplets in~1!, besides a pair of Higgs doublets and righ
handed neutrinos, have mass ofO(M nR

), that is, they de-

couple from the spectrum. Thus belowM nR
the MSSM is

realized.
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B. Model

1. Matter content

To have multiplets~1! and quarks and leptons at the in-
termediate region, we introduce following multiplets of
SO~10!:

SO~10! G2231

H : 10 ~2,2,1,0!, . . .

A : 45 ~1,3,1,0!,~1,1,8,0!, . . .

F : 126 ~1,3,1,26!,~2,2,1,0!, . . .

F̄ : 126 ~1,3,1,6!,~2,2,1,0!, . . .

D : 210 ~1,3,1,0!,~1,1,8,0!, . . .

C i5124 : 16 ~2,1,3,21!,~2,1,1,3!, quarks and leptons

C̄ : 16 ~2,1,3̄,1!,~2,1,1,23!, . . . .

~2!

In this list numbers in the columns of SO~10! mean SO~10!
representations. In the last column we show what represen
tation in ~1! is contained in the corresponding SO~10! mul-
tiplet.

By the requirement that the right-handed neutrinos ge
mass through a renormalizable coupling, we introduce126
and 126. As a candidate of ordinary Higgs doublets 10 is
introduced. There are other candidates for ordinary Higgs
doublets in126 and126. Then the ordinary Higgs doublets
will be a mixture of these three. To break SO~10! to the
SM group viaG2231, namely, to have the intermediate sym-
metry G2231, we use 45 and 210.2 These also contain
~1,3,1,0! and~1,1,8,0!. 4 16’s and 116 represent 4 generation
1 1 antigeneration. The reason why we introduce a pair o
16 and 16 is that they contain~2,1,3,21! 1 H.c. and
~2,1,1,3! 1 H.c.

At this stage the matter content~2! is just a candidate
which may realize our scenario.

As we will see, we can write down the superpotential with
these matter which realize our idea.

2. Singlets under the SM group

In the SO~10! multiplets ~2!, there are many singlets un-
der the SM symmetry~see Appendix B for the meaning of
subscripts 1, . . . ,0!:

2Using only210 it is impossible to break SO~10! to G231 through
G2231 @7#. We can break SO~10! to the SM group viaG2231 using
45154. In this case if there is no multiplet which contains~1,3,1,0!
other than45, ~3,1,1,0! is also massless. The reason is that mass
terms for~1,3,1,0! and~3,1,1,0! come from the mass term of45and
the vacuum expectation value of 54 through the coupling45254and
because ofD parity @8#, they are same as each other’s. Thus we can
get rid of the possibility of using45154.
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Field : Component Little Group

A : a12134156[a G2231

: a78190[b G241

F : f122i ,324i ,526i ,728i ,920i[f SU~5!

F̄ : f̄112i ,314i ,516i ,718i ,910i[f̄ SU~5!

D : d7890[a G224

d12341345615612[b G2231

d (12134156)(78190)[c G2311

C i5124 : c i5124 SU~5!

C̄ : c̄ SU~5!
~3!

wherea,b,... stand for vacuum expectation values~VEV’s!
of the corresponding fields. Little group means a remaini
symmetry when only a corresponding component has a VE
For example, when onlya gets a VEV, SO~10! breaks down
to G224.

Among them,a,b, and a areG2231 singlets and hence
their order of magnitudes is expected to be the GUT sc
MU;1016 GeV. By assumption that SO~10! breaks down to
G2231at the GUT scale,b or a must be of orderMU . Others
must be of order at mostM nR

[MUe by assumption because

they are notG2231singlets. Also,f̄ is required to be of order
M nR

,

f̄;M nR
~5MUe! ~4!

because it gives masses to the right-handed neutrinos.
course, as we will see, there are constraints among VEV’s
addition to the well-known constraints:F-flat andD-flat con-
ditions because we require that certain multiplets must ha
a mass ofO(M nR

).

III. PREPARATION

A. Superpotential

With the multiplets~2!, the most general form of the su-
perpotentialW is written as

W5Wmass1Wint1WC . ~5!

Wmassconsists of the most general bilinear terms:

Wmass5
1

2
MHH

21MFF̄F1
1

2
MDD21

1

2
MAA

2

1MCC̄C4 . ~6!

We define onlyC4 has a mass term withC̄, because by a
redefinition ofC4 , namely, by a rotation amongC i5124 , it
is possible that only the newC4 has a mass term withC̄.

We require all mass parameters areO(MU) becauseMU
is the natural order for them.

Wint has the most general interaction terms without16and
16:

Wint5YHFDHFD1YHF̄DHF̄D1
1

3!
YDD31YFDF̄DF

1YFAF̄AF1
1

2
YDA2A

2D1
1

2
YD2AAD2. ~7!
ng
V.

ale
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We require all Yukawa couplings are at most of order 1.
More exactly, as an expansion parameter for the perturbation
we require they are at most of order 1. As an expansion
parameter for the perturbation, they appear multiplied by a
certain overall factor. The overall factors for each couplings
are given in Appendix B 3.

Finally,WC represents the most general interaction terms
with 16 and16:

WC5(
i53

4

YCD iC̄DC i1(
i52

4

YCAiC̄AC i1(
i j

yi jC iC jF̄

1y8C̄C̄F1(
i j

ỹi jC iC jH1 ỹ8C̄C̄H. ~8!

By the same reason that onlyC4 has a mass term withC̄,
only C3,4 have couplings withD and onlyC2,3,4 have cou-
plings withA.

To see in which direction the gauge group SO~10! can
break down, we examine theD-term and theF-term condi-
tions.

B. D-flat condition

To keep the SUSY, allD-terms must be zero up to SUSY-
breaking scale:

F†TF
a F1F̄†Ta1(

i
C i

†TC
a C i1C̄†T

C̄

a
C̄1D†TD

aD

1A†TA
aA50.

Since theD term for real representations automatically van-
ishes@9,10#,

2~ ufu22uf̄u2!1S (
i51

4

uc i u22uc̄u2D 50 ~9!

must be satisfied. The factor 2 reflects the difference of U~1!
charge which corresponds to a broken generator.

Later we putc i ’s andc zeros. In this case

ufu22uf̄u250. ~10!

C. F -flat condition

First we examine theF-flat condition for16 and16 with
a mass term for (1,2,1,23)1H.c. component because the
singlet components of16 and 16 are contained in it and
therefore there is a relation between the mass term and th
F-flat condition. By such an examination we see that both
c i andc̄ should be zeros though it is not a strict reason for it.

The F-flat conditions for16 and 16 are as follows@see
Appendix B to know how to calculate the Clebsch-Gordan
~CG! coefficient#:

]W

]c1
52(

j51

4

y1 jc j f̄50, ~11!

]W

]c2
52(

j51

4

y2 jc j f̄2YCA2~A6ia12ib!c̄50, ~12!
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]W

]c3
52(

j51

4

y3 jc j f̄2YCA3~A6ia12ib!c̄

2YCD3~2A6a16A2b112c!50, ~13!

]W

]c4
52(

j51

4

y4 jc j f̄2YCA4~A6ia12ib!c̄

2YCD4~2A6a16A2b112c!1MC

50, ~14!

]W

]
52 y8c̄f1(

i52

4

2YCAi~A6ia12ib!c i

2(
j53

4

YCD i~2A6a16A2b112c!c i1MCc4

50. ~15!

By the way, in the intermediate region whereG2231 is
realized,b5c50 and the mass term for~1,2,1,23!1H.c. is
given by

]2W

]c i]c̄
5S 0

2A6iYCA2a

2A6iYCA3a22A6YCD3~a1A3b!

2A6iYCA4a22A6YCD4~a1A3b!1MC

D .
~16!

If f,f̄,c i ,c̄5O(e) , using F-flat conditions @Eqs. ~12!–
~14!#, all elements of the mass term for~1,2,1,-3!1H.c., ~16!,
are calculated to be of orderM nR

. This, however, contradicts
with the mass spectrum~1!. Though we may be able to mak
some elements of the mass termO(MU), for example, by
making c̄ O(e2) @with an appropriate value o
c i ,f̄5O(e)#, we put bothc i andc̄ zeros since what we try
to do is to show a possibility of SUSY SO~10! GUT with an
intermediate scale and to takec i5c̄50 as the solution of
the F-flat conditions for16 and 16 is the easiest way of
doing it.

Then, otherF-term conditions are

]W

]a
524A2iYD2Aab2

YDA2b
2

2A6
1

YDc
2

12A6
1MDa1

YFDf̄f

10A6

50, ~17!

]W

]b
524A2iYD2Aaa2

YDA2a
2

3A2
1

YDb
2

18A2
124A2iYD2Abc

1
YDc

2

18A2
1MDb1

YFDff̄

10A2

50, ~18!
e

]W

]c
52

YDA2ab

A6
124A2iYD2Abb1

YDac

6A6

116A6iYD2Aac1
YDbc

9A2
1MDc1

YFDff̄

10

50, ~19!

]W

]a
524A2iYD2Aab2

A2YDA2ab

3
2
YDA2bc

A6

18A6iYD2Ac
21MAa1

A6YFAff̄

10

50, ~20!

]W

]b
52

YDA2ab

A6
2
YDA2ac

A6
124A2iYD2Abc1MAb

1
YFAff̄

5

50, ~21!

]W

]f
5FYFAS A6a

10
1

b

5 D 1YFDS a

10A6
1

b

10A2
1

c

10D
1MfG f̄

50. ~22!

IV. ANALYSIS

The purpose of this paper is to give the input paramete
appearing in the superpotential~5!. Though VEV’s listed in
~3! are functions of the input parameters, we will expres
them in the terms of the VEV’s since we know the desirable
values of the VEV’s.

A. First step

First, we check whether it is possible to break SO~10!
down to G2231 consistently with the requirement that the
spectrum~1! remains massless up toO(e)5O(M nR

/MU).

1. Multiplets under G2231

First, we show what multiplets exist in the SO~10! mul-
tiplets ~2!.
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Multiplet underG2231 under SO~10!, contained in NG1 NG2

~2,2,1,0! 10,126,126
~1,1,3,2!1H.c. 10, 126, 126
~3,1,1,0! 45, 210
~1,3,1,0! 45, 210 z̃
~1,1,3,24!1H.c. 45, 210 x x̃
~1,1,8,0! 45, 210
~2,2,3,2!1H.c. 45, 210 y ỹ
~3,1,1,6!1H.c. 1261126
~3,1,3,2!1H.c. 1261126
~3,1,6,22!1H.c. 1261126
~1,3,1,26!1H.c. 1261126 z̃

~1,3,3̄,22!1H.c. 1261126 x̃

~1,3,6̄,2!1H.c. 1261126
~2,2,3,24!1H.c. 126, 126 ỹ

~2,2,8,0!1H.c. 126, 126
~3,1,3,24!1H.c. 210
~1,3,3,24!1H.c. 210 x̃
~3,1,8,0!1H.c. 210
~1,3,8,0!1H.c. 210
~2,2,1,6!1H.c. 210
~2,1,3,21!1H.c. 16116 ỹ

~1,2,3̄,1!1H.c. 16116 x̃

~2,1,1,3!1H.c. 16116
~1,2,1,23!1H.c. 16116 z̃

~23!

In this table NG1 means a Nambu-Goldstone~NG! mode
associated with the breakdown of SO~10! to G2231. An NG
mode associated with the SO~10! breaking down to the SM
groupG231 is contained in a multiplet withx̃,ỹ, andz̃ in the
column NG2. UnderG231, certain components of the mul-
tiplets with x̃ ( ỹ,z̃) have the same quantum numbers and m
with each other. One of the combinations ofx̃ ( ỹ,z̃) is mass-
less which is swallowed by a gauge boson.

There are also singlets ofG2231 which we denotea, b,
anda.

2. F-flat condition

In the intermediate regionc,b,f50. And hence, the
F-term conditions@Eqs.~17!–~22!# are reduced to

]W

]a
524 iA2YD2Aab1MDa50, ~24!

]W

]b
524 iA2aYD2Aa2

YDA2a
2

3A2
1

YDb
2

18A2
1MDb

50, ~25!

]W

]a
524 iA2YD2Aab2

A2YDA2ab

3
1MAa50. ~26!

3. Tuning of parameters

From now on, as we stated at the top of this section, w
express the input parameters in the terms of the VEV’s.
ix

e

Using theF-flat conditions@Eqs.~24! and ~26!#, MD and
MA are expressed as

MD5MD~YD2A ,a,b,a!5
224A2iYD2Aab

a
, ~27!

MA5MA~YD2A ,YDA2,a,b,a!

5
272A2iYD2Aab1A2YDA2ab

3a
. ~28!

There is an additional constraint which is obtained by
eliminatingMD from Eqs.~24! and ~25!:

224A2iYD2Aa
2a1

YDA2aa2

3A2
2
YDab

2

18A2
124A2iYD2Aab2

50. ~29!

We can interpret that this constraint with~27! and~28! is
equivalent with that determinant of the mass matrix for
~1,1,3,24! @[M (1,1,3,24), an explicit form is given in Ap-
pendix C# vanishes because~1,1,3,24! is an NG mode and
hence when we substitute VEV’s into the mass matrix for it,
there must be one massless mode which mean the determi-
nant vanishes:

detM ~1,1,3,24!5MAMD1
YDMAb

18A2
2
YDA2MDb

3A2

11152YD2A
2 a2116 iYDA2YD2Aaa

2
YDA2
2 a2

18
2
YDYDA2b

2

108

50. ~30!

Now, we required that one~1,1,8,0! mode be massless and
therefore determinant of the mass matrix for it
@[M (1,1,8,0)# should vanish:

detM ~1,1,8,0!5MAMD2
YDMAb

18A2
1
YDA2MDb

3A2

11152YD2A
2 a2116 iYDA2YD2Aaa

2
YDA2
2 a2

18
2
YDYDA2b

2

108

50. ~31!

Substituting~27! and ~28! into ~30! and ~31!, we find

28 i

3
YDYD2Aa

21
YDYDA2aa

27
116 iYDA2YD2Aa250

~32!

$@~30!2~31!#aa/b2%

and
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2304YD2A
2 a3132 iYDA2YD2Aaa2

YDA2
2 aa2

9
2
YDYDA2ab

2

54

22304YD2A
2 ab2232 iYDA2YD2Aab250 ~33!

$@~30!1~31!#* a%.

Solving simultaneously Eqs.~32! and ~33!, we get forms
of YD andYDA2 as functions ofYD2A ,a,b,a. Then, by sub-
stituting these expressions into~27! and ~28!, we find the
following three sets of solutions forMD , MA , YD , and
YDA2 as functions ofYD2A ,a,b,a.

Solution 1:

MD 5
224A2iYD2Aab

a
,

MA5
24A2iYD2Aab

a
,

YD5
2864iYD2Aa

a
,

YDA25
144iYD2Aa

a
. ~34!

Solution 2:

MD5
224A2iYD2Aab

a
,

MA5
224iYD2Ab

A2aa
~2a213b22Aa4210a2b219b4!,

YD5
2432iYD2Aa~23a213b22Aa4210a2b219b4!

~2a313ab22aAa4210a2b229b4!
,

YDA25
236iYD2A

aa
~23a213b22Aa4210a2b219b4!.

~35!

Solution 3:

MD5
224A2iYD2Aab

a
,

MA5
224iYD2Ab

A2aa
~2a213b21Aa4210a2b219b4!,

YD5
2432iYD2Aa~23a213b21Aa4210a2b219b4!

2a313ab21aAa4210a2b219b4
,

YDA25
236iYD2A

aa
~23a213b21Aa4210a2b219b4!.

~36!
In other words, onceMD ,MA ,YD , andYDA2 are set to be
one of these solutions, the VEV’s ofa,b, and a can be
chosen at our will and one~1,1,8,0! mode becomes massless.

Because we require also that one~1,3,1,0! mode be mass-
less, determinant of the mass matrix for it@[M (1,3,1,0)#
must be zero

detM ~1,3,1,0!52
YDYDA2a

2

36
216 iYDA2YD2Aaa2

YDA2
2 a2

6

2
YDYDA2ab

18A3
116A3iYDA2YD2Aab

11152YD2A
2 b21

YDMAa

6A6

116A6iYD2AMAa1
YDMAb

9A2
2
YDA2MDa

A6

1MAMD

50. ~37!

Using ~37! and ~34!–~36!, we obtain following equations
which determine relations betweena andb corresponding to
a set of above solutions, respectively.

Solution 1:

a2~23 a217A3ab26 b2!50.

Solution 2:

215a6162A3a5b1237a4b22280A3a3b32249a2b4

1234A3ab5127b6

5~33a4250A3a3b278a2b2178A3ab319 b4!

3Aa4210a2b219 b4.

Solution 3:

15a6262A3a5b2237a4b21280A3a3b31249a2b4

2234A3ab5227b6

5~33a4250A3a3b278a2b2178A3ab319 b4!

3Aa4210a2b219 b4.

Numerically,a andb must satisfy the following relations,
respectively.

Solution 1:

a5H b/A3,
2A3b.

~38!

Solution 2:

a55
20.987293b,

~20.12036120.724007i !b,

~20.12036110.724007i !b,

5.11238b.

~39!
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Solution 3:

a55
23.13416b,

20.0643986b,

~1.1004720.0616122i !b,

~1.1004710.0616122i !b.

~40!

The solution 1 is the exact solution and the others
exact up toO(e).

In other words, ifa and b satisfy these relations, on
~1,3,1,0! mode becomes massless.

Other requirements that two~2,2,1,0! modes, one
~1,3,1,26! 1 H.c. mode, one~2,1,3,1! 1 H.c. mode, and one
~2,1,1,23! 1 H.c. mode be massless are easily satisfied
tuning parameters such asMF ,MH ,YHFD , YHF̄D , and so
on.

To make~1,3,1,26! 1 H.c. mode massless, from the ma
term for it ~see Appendix C!,

MF52S A6YFAa

10
1
YFDa

10A6
1
YFDb

10A2D . ~41!

To make two~2,2,1,0! modes massless, we tune param
eters MH ,MF ,YHFD , and YHF̄D so that the eigenvalue
equation for the mass matrix of~2,2,1,0!,

l32MHl21F2
YHF̄D

2
b2

10
2
YHFD
2 b2

10
2S YFDb

15A2
1MFD 2Gl

2S YFDb

15A2
1MFD FMHS YFDb

15A2
1MFD

1
YHF̄DA2YHFDb

2

5 G50, ~42!

has two zero solutions@exactly these two solutions may hav
at mostO(e) solution#.3 The way of getting two zero eigen
values is to tune the zeroth and first terms ofl zero. More
exactly, the zeroth term must be at mostO(e2) and the first
term must be at mostO(e).

To satisfy these constraints

MF1
YFDb

15A2
5O~e!,

YHFD;YHF̄D5O~Ae!. ~43!

Equation~41! and the first equation of~43! lead

YFA52
A3a1b

6A3a
YFD ~44!

up toO(e).

3Implicitly, it is assumed that the mass matrix for~2,2,1,0! is Her-
mite, that is, all parameters appearing in the mass matrix are r
re

by

ss

-

e
-

Finally, to make one~2,1,3,21! 1 H.c. mode and one
~2,1,1,3! 1 H.c. mode massless, for example, we can switch
only couplings with subscript 4 on and tune

YcD5
7

16A3
iYcAa/b, ~45!

MC52
3

4A6
iYcAa2

7

4A2
iYcA

a

b
a. ~46!

4. Check mass matrices

Now, we know the necessary condition for the parameters
realizing the spectrum~1!. Then we check all the mass ma-
trices to examine whether these parameters really produce
the spectrum~1!.

Solution 1: The solution 1 does not produce the spectrum
~1!, because by substituting the solution 1~34! into the mass
matrix of ~2,2,6,2! multiplet, this multiplet is calculated to be
massless.

Solution 2: First to see whether the solution 2 ,~35! with
a relation betweena andb ~39!, is usable, we substitute~39!
into ~35!.

MD

MA
J 5

{H 24.3089iA2YD2Aa

19.1441iA2YD2Ab
2/a

H ~32.257415.36258i !A2YD2Aa

~24.7884210.510831i !A2YD2Ab
2/a

H ~232.257415.36258i !A2YD2Aa

~4.7884210.510831i !A2YD2Ab
2/a

H 24.69449iA2YD2Aa

103.023iA2YD2Ab
2/a,

~47!

YDA255
213.6527iYD2Ab/a

~37.763227.13352i !YD2Ab/a

~237.763227.13352i !YD2Ab/a

677.159iYD2Ab/a,

~48!

YD55
2104.016iYD2Aa/b

~21560.232131.862i !YD2Aa/b

~1560.232131.862i !YD2Aa/b

2185.139iYD2Aa/b.

~49!

In each of these equations, four expressions correspond to
the four relations betweena andb in ~39!, respectively.

As we required that Yukawa couplings are not too big@see
the statement below~7!#, only the first expression of the
solution 2 is meaningful. This means that only the first rela-
tion betweena andb in ~39! is meaningful.

By substituting~35! with the first equation of~39!, it is
easy to check that all multiplets other than those in~1! have
their mass ofO(MU) which spread aroundMU up to one
order of magnitude and multiplets in~1! are massless. There-
fore, this solution can be a solution of our scenario.

Solution 3: First, we substitute~40! ~relation betweena
andb) into ~36! to see an explicit form of solution 3.

al.
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MD

MA
J 5

{H 7.65756iA2YD2Aa

215.8066iA2YD2Ab
2/a

H 372.679iA2YD2Aa

1115.98iA2YD2Ab
2/a

H ~1.21719221.7407i !A2YD2Aa

~17.3100222.7812i !A2YD2Ab
2/a

H ~21.21719221.7407i !A2YD2Aa

~217.3100222.7812i !A2YD2Ab
2/a,

~50!

YDA255
2273.079iYD2Ab/a

3343.29iYD2Ab/a

~56.3660110.8904i !YD2Ab/a

~256.3660110.8904i !YD2Ab/a,

~51!

YD55
793.766iYD2Aa/b

6698.93iYD2Aa/b

~241.1442102.803i !YD2Aa/b

~2241.1442102.803i !YD2Aa/b.

~52!

In each of these equations, four expressions correspon
the four relations betweena andb in ~40!, respectively.

By the same way, as we picked up only the first expr
sion from four cases in solution 2, the last two relatio
betweena andb in ~40! are meaningful.

By substituting~36! with the third or fourth equation of
~40!, it is easy to check that all multiplets other than those
~1! have their mass ofO(MU), which spread aroundMU up
to one order of magnitude, and multiplets in~1! are massless
Therefore, this solution can be a solution of our scenario t

B. Second step

In this section we find a parameter region which produc
our scenario exactly.

1. Deviation from the previous solutions

Because the accuracy of the previous calculation
O(e), all parameters besidesb,a, and YD2A can deviate
from the value which is obtained at the previous section a
therefore we can expand the deviation in the power ofe as

a5a01(
i51

aie
i , ~53!

MD5MD01(
i51

MD ie
i , ~54!

MA5MA01(
i51

MAie
i , ~55!

YD5YD01(
i51

YD ie
i , ~56!
d to

es-
ns

in

.
oo.

es

is

nd

YDA25YDA201(
i51

YDA2ie
i , ~57!

b5(
i51

b ie
i , ~58!

c5(
i51

cie
i . ~59!

In these expressions, variables with subscript 0 stand for
those which are obtained in the previous section.

Substituting~53!–~59! into theF-flat condition~17!–~22!,
we get the following relations.

From ~17!, ~18!, and~20! we get

MD152
MD0

a0
a1 ,

MA15
b3

9A2a2YD11
24A2iYD2Ab

a S 112
b2

a0
2Da1 ,

YDA215~b2/6a2!YD11
144iYD2A

a S 11
b2

a0
2Da1 . ~60!

We obtain the relation betweenb1 andc1 by substituting
~53!–~59! with ~60! into ~19! and ~21! as follows:

First we note~19! and ~21! can be rewritten

M ~1,3,1,0!S b

c D 52
1

10S 2YFA

YFD
Dff̄ ~61!

and therefore

S b

c D 52
1

10
M ~1,3,1,0!21S 2YFA

YFD
Dff̄, ~62!

whereM~1,3,1,0! is a mass matrix for~1,3,1,0!, and by as-
sumptionf,f̄5O(e).

Let us decompose the inverse ofM ~1,3,1,0!:

M ~1,3,1,0!215det@M ~1,3,1,0!#21@A1O~e!#. ~63!

Since, by assumption there is one massless mode in~1,3,1,0!
up toO(e), det„M (1,3,1,0)…5O(e) and the first row inA is
parallel to the second row inA, that is

a11
a21

5
a12
a22

, ~64!

whereA [(ai j ).
Then up to the leading order ofe,

b5
a21
a11

c; ~65!

namely, as an exact relation

b15
a21
a11

c1 ~66!

is obtained.
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To see this explicitly, we follow the above calculation in
the case of the first relation of solution 2:

det„M ~1,3,1,0!…5S 226423.4YD2A
2 ba1

1
16.1727iYD2AYD1b

3

a D e1O~e2!

as we expected the determinant isO(e).
A is calculated to be

A5S 72.3850iYD2Aa, 239.5148iYD2Ab

239.5148iYD2Ab, 21.5710iYD2Ab
2/a D .

Apparently,A satisfies~64!.
Then

b1521.83185
a

b
c1 ~67!

is obtained.
2. Determination of input parameters of the theory

Though we can determine the parameters in the power of
e order by order, instead of doing so, we will give the pa-
rameters of the theory in terms of the VEV’s because the
purpose of the paper is to find a parameter region for the
theory,M ’s andY’s, which leads to the spectrum~1!. As we
will see, by the VEV’sa,b,c,a, andb, we can express the
input parameters of the theory.

To do this, first we see theF-flat conditions~17!–~21!.
These equations can be rewritten

CS MD

MA

YD

YDA2

YD2A

D 52S @1/~10A6!#YFD

@1/~10A2!#YFD

~1/10!YFD

~A6/10!YFA

~1/5!YFA

D ff̄, ~68!

where
C51
a, 0,

1

12A6
c2, 2

1

2A6
b2, 24A2iab

b, 0,
1

18A2
b21

1

18A2
c2, 2

1

3A2
a2, 24A2iaa124A2ibc

c, 0,
1

6A6
ac1

1

9A2
bc, 2

1

A6
ab, 16A6iac124A2ibb

0, a, 0, 2
A2
3

ab2
1

A6
bc, 24A2iab18A6ic2

0, b, 0, 2
1

A6
ac2

1

A6
ab, 24A2ibc

2 . ~69!

As we know from the previous argument thatb,c, anda can be chosen freely anda andb are given by

a5a01a1e,

b5b1e1b2e
2, ~70!

wherea0 is given by the first equation of~39! or one of the last two equations of~40! andb1 is given by~66!. Note that higher
orders in~53! and ~58! can be absorbed intoa1 andb2 , respectively.

Then, the input parameters are reduced to

S MD

MA

YD

YDA2

YD2A

D 52C21S @1/~10A6!#YFD

@1/~10A2!#YFD

~1/10!YFD

~A6/10!YFA

~1/5!YFA

D ff̄. ~71!

For example, in the case of solution 2,

C215~detC!21C8e

detC5~23.76350ia2b4b2c122.25347ia3b2a1c1
2!e31O~e!4
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C85S 0, 0, 22.68018ia3b3c1 , 0, 21.08826ia4b2c1

0, 0, 22.11074iab5c1 , 0, 20.857040ia2b4c1

0, 0, 8.10927ia3b2c1 , 0, 3.29268ia4bc1

0, 0, 1.06439iab4c1 , 0, 0.432184ia2b3c1

0, 0, 20.0779620a2b3c1 , 0, 20.0316556a3b2c1

D 1O~e!.
e

-

From this equation, it is easy to see that all parameters
of ordere0 and they satisfy the first solution of the solutio
2.

Finally, from ~22!, MF is determined:

Mf52YFASA6a

10
1

b

5 D 2YFDS a

10A6
1

b

10A2
1

c

10D .
~72!

3. Check mass matrices

The multiplets in~1!, besides one~2,2,1,0!, must decouple
atM nR

,that is, they must acquire mass ofO(M nR
).

From now on, we check whether they have mass
O(M nR

).
First, we note one~2,1,3,21! 1 H.c. and~2,1,1,3! 1 H.c.

can have masses ofO(M nR
) by the following two reasons:

~1! ParametersYcD and MC may deviate from the value
given by ~45! and ~46!, respectively.4 ~2! There exist cou-
plings with c andb.

Then, we see the mass matrix for~2,2,1,0!. Under SM, it
has a quantum number~2,1,61/2). ~2,2,1,6! 1 H.c. also in-
cludes the same component. Then the mass matrix is

M ~2,1,61/2!5S M̃D , x, y, 0

x8, MH , u, v

0, u, 0, w2z

y8, v, w1z, 0

D , ~73!

where

M̃D5M ~2,2,1,6!1
1

12
YDc124iYAD2b,

x52
1

A5
YHF̄Df̄5O~e3/2!,

x852
1

A5
YHFDf5O~e3/2!,

4Though~2,1,3,21! 1 H.c. has a same quantum number under t
SM group as an NG mode associated with the breakdown of SO~10!
the SM group@see Table~23!#, it does not mix with others becaus
the VEV ofc50 and therefore this NG mode does not consist of
~2,1,1,3! 1 H.c. has the same quantum number as that of~2,2,1,0!
under the SM group but by the same reason they do not mix w
~2,2,1,0!. See the superpotential~5!–~8!.
are
n

of

y52
1

40
YFDf̄5O~e!,

y852
1

40
YFDf5O~e!,

u52
1

A10
YHFDb1

1

2A5
YHFDc5O~Ae!,

v5
1

A10
YHF̄Db1

1

2A5
YHF̄Dc5O~Ae!,

w5MF1
YFDb

15A2
5O~e!,

z5
YFDc

30
1
YFAb

10
5O~e!. ~74!

M ~2,2,1,6! is given in the Appendix C. Orders ofx,y, . . .
are followed from~43!.

Because one~2,1,61/2) multiplet remains massless after
G2231 breaks down to the SM group,

det„M ~2,1,61/2!…5$M̃D~z22w2!1yy8~w2z!%MH

12M̃Duvw•••

50, ~75!

and henceMH is determined as follows:

MH5
2uvw
w22z2

1O~e!. ~76!

In this case, the higher order terms must be included to hav
a pair of light Higgs doublets.

Next, let us consider~1,1,8,0!. This multiplet becomes
~1,8,0! under the SM group and therefore it mixes with
T3R50 component of~1,3,8,0! under the SM. Then the mass
matrix for ~1,8,0! is represented as a 333 matrix.

M ~1,8,0!5SM ~1,1,8,0! mixing

mixing M ~1,3,8,0!
D . ~77!

After G2231 breaks down to the SM group, there is a correc-
tion of O(MUe;M nR

) to the mass matricesM ~1,1,8,0! and

M ~1,3,8,0! because parameters appearing in them are differ
ent byO(e) from those calculated in the previous section. It
is directly calculated using~71! @or equivalently~53!–~57!
and ~60!# that one of the eigenvalues ofM ~1,1,8,0! is of

he

e
it.

ith
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O(MU) which has already been suggested at the previ
section and the other isO(M nR

). As M ~1,3,8,0! is O(MU),

even though there is a correction ofO(M nR
), M ~1,3,8,0! is

still O(MU). Contributions ofc and b to the mass matrix
~77! appear at mixing terms between~1,1,8,0! and~1,3,8,0!5

and they are ofO(M nR
). ThenM ~1,8,0! takes the form

S O~MU! 0 O~MUe!

0 O~MUe! O~MUe!

O~MUe! O~MUe! O~MU!
D . ~78!

Apparently, two eigenvalues are ofO(MU) and the other
is of O(M nR

). This fact suggests that the lightest element

~1,1,8,0! underG2231 decouples at the scaleM nR
.

Finally, we check the mass of~1,3,1,0! and~1,3,1,26! 1
H.c. Under the SM,~1,3,1,0! is decomposed into one neutra
ous

of

l

singlet and a pair of charged singlet with hypercharg
Y561. ~1,3,1,26! 1 H.c. becomes two neutral singlets, a
pair of Y561 and a pair ofY562 singlets. Then,
Y561 component of them will mix with each other.

Mass forY562 component takes the form

YFASA6a

10
2

b

5 D 1YFDS a

10A6
1

b

10A2
2

c

10D 1Mf

52
2

5
YFAb2

1

5
YFDc, ~79!

where~72! is used.
From this equation, obviously theY562 component has

a mass ofO(M nR
).

Mass matrix ofY561 component is
S 2
YDA2a

A6
1MA , 2

YDA2a

A6
124 iA2YD2Ab, 2

YFAf

5

2
YDA2a

A6
124 iA2YD2Ab,

YDa

6A6
116 iA6YD2Aa1

YDb

9A2
1MD , 2

YFDf

10

2
YFAf̄

5
, 2

YFDf̄

10
, 2

YFAb

5
2
YFDc

10

D . ~80!
Since it is an NG mode associated with the breakdown
G2231 to G231, there is one massless mode. It is easy to s
that this matrix has 0 eigenvalue because 1st ro
3b/f12nd row3c/f13rd row50 using theF-flat con-
ditions ~19! and~21!. It is also explicitly calculated that one
eigenvalue is ofO(MU) and the other is ofO(M nR

).

V. SUMMARY

As we saw, by constructing the input parameters for t
theory using~71!, ~72!, ~74!, and~76! from the desired val-
ues of VEV’s a,b,c,a,b,f, and f̄ which satisfy~10! and
~70!, we can have particles~1! in the intermediate region.
They decouple from the spectrum atM nR

except a pair of

what we call Higgs doublets.
It means that it is possible to construct a SUSY SO~10!

GUT with an intermediate scale consistent with the gau
unification. It suggests also that the right-handed neutrin
acquire mass through a renormalizable coupling, and it c

5There is no contribution ofc or b to M ~1,1,8,0! and
M ~1,3,8,0!. The reason is as follows. UnderG2231, c and b are
contained in~1,3,1,0!. Because~1,3,1,0!(1,1,8,0)2 contains no sin-
glet, neither c nor b couple to (1,1,8,0)2. Though ~1,3,1,0!
(1,3,8,0)2 can appear, as there is no three-point coupling
T3R50 component of SU~2! triplet, neither c nor b couple to
T3R50 component of~1,3,8,0!.
of
ee
w

he

ge
os
an

be understood as a reflection of the breakdown ofG2231 to
G231.

There are many variations for a SUSY SO~10! GUT with
an intermediate scale because there are many candidates for
the particle content which exist in the intermediate region
and we have many variations for content of SO~10! multi-
plets which contain one of the candidates.

For example, we can replace~2,2,1,0! by ~2,1,1,3! 1 H.c.
in the spectrum~1! and vice versa, because their contribution
to the running of the gauge coupling relevant toG231 is the
same.

When we remove one~2,2,1,0! from the spectrum~1! and
add one~2,1,1,3! 1 H.c. to it, by adding a pair of SO~10!
multiplets 16116 which contains~2,1,1,3! 1 H.c. under
G2231, we can have such a spectrum at the intermediate re-
gion. At that time, while we have to tune couplings relevant
to SO~10! multiplets 16116, we can release the constraint
~43! @or equivalently~74!#.

Of course, there are quite different types of content for the
candidates. Using them, we can construct quite a different
SO~10! GUT with an intermediate scale.

Though the gauge unification by the MSSM is a very
attractive idea, to take into account a right-handed neutrino
mass, we should consider a possibility of a GUT with an
intermediate symmetry.
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APPENDIX A: THE REASON WHY WE NEED
A MULTIPLET „1,3,1,0…

Here, we show the reason why we need a multip
~1,3,1,0! in the intermediate region.

First, we note that we required at least a pair of multip
~1,3,1,26! 1 H.c. ([F1F̄) in the intermediate region@6#
and hence at this region in the superpotential effectiv
there must be a term

W5MFFF̄. ~A1!

Because we consider an SO~10! GUT the mass paramete
MF is, in general, thought to be ofO(MU).

In this case it is, however, impossible thatF acquires a
VEV. Of course if we tune the parameterMF, to be zero, as
there is a flat direction inD term,F can acquire a VEV, but
in this case there are two problems:~1! there is no way to
determine a magnitude of the VEV ofF; ~2! hypercharge Y
562 component ofF cannot have any mass.6

Then, we have to add other multiplets. The easiest wa
solve the problem~1! is to add a singlet ([S).7 If there is a
singlet, the superpotential will have a form

W5MFFF̄1YFSSFF̄1
1

2
MSS

21
1

3!
YSS

3 ~A2!

andF-flat conditions are~^F&[f, ^S&[s!

]W

]f
5~MF1YFSs!50, ~A3!

]W

]s
5YFSff̄1MSs1

1

2
YSs

2. ~A4!

Then VEV’s are determined to

s52
MF

YFS
, ~A5!

ff̄5
MSMF

YFS
2
1

2
YSS MF

YFS
D 2. ~A6!

Though, as we mention below~A1!,M ’s are thought to be
of O(MU), we can give a VEV ofO(M nR

) to F if coupling

constants are fine tuned whiles is of O(MU).
Unfortunately, even after we add a singlet, the proble

~2! is not solved because the mass forY562 component is

MF1YSs50 ~A7!

according to theF-flat condition~83!. The reason why it is
still massless is that no multiplet couples toF which ac-
quires a VEV ofO(M nR

) and distinguishes the component

a SU(2)R triplet and hence all components ofF are still
degenerate after SU(2)R breaking.

6Note that only an NG mode can get a mass throughD term. In
general, such a component corresponds to a massive gaugino
7Because we consider an SO~10! GUT, there are several singlet

though naturally their masses are ofO(MU).
let
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r

y to

m

of

This means that to makeY562 component decouple
from the spectrum after SU(2)R breaking, we have to make a
multiplet couple toF which will get a VEV ofO(M nR

) and

distinguishes the component of an SU(2)R triplet, that is, a
nonsinglet. It is easy to find what nonsinglet can couple to
FF̄ . FromFF̄, we have three representations:

~1,1,1,0!,

~1,3,1,0!,

~1,5,1,0!. ~A8!

As SU(2)R nonsinglets are the latter two and~1,5,1,0! is
not contained in a relatively smaller representation of
SO~10!, we have to use~1,3,1,0!. SinceT3R50 component
of a triplet is an SM singlet, it can get a VEV.

Since~1,3,1,0! is not a singlet underG2231, its VEV is at
most ofO(M nR

), while because~1,3,1,0! gives a mass of

O(M nR
) to Y562 component ofF, even if there are many

~1,3,1,0!, one of their VEV’s must be ofO(M nR
). This im-

plies that at least one of~1,3,1,0! must have a mass of
O(M nR

). In the following, we will see it explicitly.

First, when there are also~1,3,1,0! multiplets ([Bi), the
superpotential takes the form

W5MFFF̄1YFSSFF̄1(
i
YiBiFF̄1

1

2
MSS

21
1

3!
YSS

3

1
1

2(i , j ~Mi j1Yi jS!BiBj1
1

3!(i , j ,k Yi jkBiBjBk ~A9!

andF-flat conditions are (̂Bi&[b i)

]W

]F
5SMF1YFSs1(

i
Yib i D F̄50, ~A10!

]W

]S
5YFSff̄1MSs1

1

2
YSs

21(
i , j

YSi jb ib j50,

~A11!

]W

]Bi
5Yiff̄1(

i , j
~Mi j1Yi j s!b i50. ~A12!

Note that there is no three-point coupling ofT350 com-
ponent of SU~2! triplet and hence there is no affect of
Yi jk .

From ~A12!, b i is calculated to

b i52~M̃21! i j ajff̄,

M̃ i j[~Mi j1Yi j s!. ~A13!

By assumption,f5O(M nR
) and as we mentioned one of

b i also must be ofO(M nR
). These facts imply that in the

above equation,M̃ must have at least one eigenvalue of
O(M nR

). BecauseM̃ is a mass matrix for~1,3,1,0! @see
~A9!#, it means that at least one of~1,3,1,0! must be massless
at the GUT scale.

.
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In this case mass forY562 is calculated

SMF1YFSs2(
i
aib i D 522(

i
aib i5O~M nR

!, ~A14!

where~A10! is used. Apparently, this component decoupl
atM nR

, namely, the problem~2! is solved.

APPENDIX B: CONSTRUCTION OF REPRESENTATIONS

In this section we briefly review how we construct repr
sentations of subgroups contained in SO~10! representations
and give the rule for calculating CG coefficients appearing
three-point couplings. However, we do not mention about
SO~10! spinor 16 because it is impossible to understand
meaning of the indices for a spinor in the same way as
derstanding an SO~10! vector 10 and essentially we do no
need to handle them directly in this paper. To see how
handle an SO~10! spinor, see Ref.@12#. When calculating CG
coefficient relevant to a spinor the gamma matrices
SO~10! constructed explicitly in the reference are used.

1. Meanings of subscripts

For SO~10!, the fundamental representation8 is a ten-
dimensional real vector

H5~Hi !, i51, . . . ,10.

It means when we construct a fundamental representa
for SO~10!, we can use the basis for it

H5hiei , ~B1!

where

hi5ei
†H,ei[S 0

A

0

1

0

A

0

D % i th component. ~B2!

Hereafter in this appendix, repeated subscripts are assu
to be contracted.

In this case, indexi means nothing but SO~10! vector.
For our convenience, we can attach an additional mean

to it. SO~10! includes SU~5! ^ U~1! and SO~6! ^ SO~4!
. SU~4! ^ SU~2! ^ SU~2!. Under them, the fundamenta
representation10 is decomposed into@11#

8Exactly in a mathematical term what fundamental representa
means is identity representation.
es

e-

in
an
the
un-
t
to

for

tion

med

ing

l

105H 5~2!15̄~22! under SU~5! ^U~1!

~6,1!1~1,4! under SO~6! ^SO~4!

~6,1,1!1~2,2,1! under SU~4! ^SU~2! ^SU~2!

Then we can add a meaning of, for example, SO~6! vector
to indices 1 to 6 and SO~4! vector to 7 to 10.9 Hereafter, 0
stands for10. In other words, SO~6!, an SO~10! subgroup,
acts on the indices 1–6 and SO~4! acts on 7–0.

We can add more meaning to indices of an SO~10! vector
by giving a meaning5(2) representation under SU~5! ^

U~1! to (112i ,314i ,516i ,718i ,910i ) and its complex
conjugate to (122i ,324i ,526i ,728i ,920i ).

What 112i means is as follows. When we construct a
vector representation, we can use a basisEa1bi and its com-
plex conjugateĒa2bi[Ea1bi, whereb5a11 anda is an
odd number other thanei which is introduced at the top of
this section:

Ea1bi5
1

A2 S 01i
0

D %ath

%bth
5

1

A2
ea1

i

A2
eb , ~B3!

where 1/A2 is a normalization factor to achieve
Ea1bi
† Ea1bi51.
Then,

H5hiei5ha1biEa1bi1ha2biĒa2bi ,

where

ha1bi5Ea1bi
† H5

1

A2
~ha2hbi !, ~B4!

ha1bi is a component of an SU~5! vector and its U~1! charge
is two. As it is easily seen, the component for an SO~10!
vector depends on a basis.

Because both SU~5! and SO~6! . SU~4! contain
SU(3)C , we can add the meaning of SU~3! 3 and 3̄ to the
SO~6! vector indices 1 to 6: (112i ,314i ,516i ) is an SU~3!
vector 3. By the same way, we can add the meaning of SU~2!
2 and 2̄ to the SO~4! . SU~2! ^ SU~2! vector indices 7–0:
(718i ,910i ) is an SU~2! vector2.

As we will see later, a higher representation is represente
as a tensor. By this construction when we consider wha
representations a higher representation contains under, f
example, SO~10! subgroup SU~4!, it is sufficient to deal with
indices 1 to 6. When considering SU~5! subgroup, we can
deal with combinations of SO~10! subscripts 112i and so
on.

2. SO„10… representations and representations of subgroups
contained in SO„10… representations

The representations45, 126 1 126 and 210 are formu-
lated from the fundamental representation as antisymmetr
tensors of 2nd, 5th, and 4th ranks, respectively. By the cha
acteristic of SO~10!, 5th rank antisymmetric tensor is decom-

tion 9In the papers@7,9#, the authors give a meaning of SO~6! vector to
indices 5–10 and that of SO~4! to 1–4.
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posed into two parts,126and126. Using 10th rank antisym-
metric e tensor ([«abcdei jklm), it is decomposed into two
eigenstates@12#:

i

5!
«abcdei jklmF i jklm51Fabcde,

i

5!
«abcdei jklmF̄i jklm52F̄abcde. ~B5!

What has a plus eigenvalue is defined to be126and the other
is to be126.

In the same way as an SO~10! vector10, we can express
these representations using a component and a basis. To
press45 ([A), we can take a basisei j as

A5ai j ei j , ~B6!

where

ai j5trAei j ,ei j5@~ei j !ab#5
i

A2
~daidb j2da jdbi!. ~B7!

ai j corresponds to a component of45 representation. In our
notation, subscriptsi , j for a component and a basis satis
that i. j .

In a similar manner1261126 ([F1F̄) is written as

F~or F̄!5f i jklmei jklm , ~B8!

where ei jklm is an antisymmetric tensor and only when
combination of indices coincide with subscripts$ i jklm%, it
has a value 1/A5! or 21/A5! . The sign is defined to make
ei jklm antisymmetric. Here $ i jklm% satisfies
i. j.k. l.m. Exactly, forei jklm to be a basis of126 ~or
126), there is another constraint for it as we explained
~B5!, though we do not touch the detail here. Then a co
ponent of126 is given by

f i jklm5Fabcde~ei jklm!abcde. ~B9!

1/A5! is a necessary normalization factor to express a126
representation by~B8! and ~B9! similar to 1/A2 in ~B3!.

In the case of210 a basis for it becomes 4th rank ant
symmetric tensor and its normalization is 1/A4!. Besides it,
210 ([D) is represented in the same way:

D5d i jkl ei jkl ,

where

d i jkl5Dabcd~ei jkl !abcd

and i. j.k. l .
To construct a representation under subgroups, we us

linear combination of these bases in the same way as w
we extract a5~2! of the subgroup SU~5! ^ U~1! from an
SO~10! vector we use a basisEa1bi .

For example, let us considerG231 singlets contained in
126and126. They are SU~5! singlets. Then it is sufficient to
deal with SU~5! subscripts 112i and so on. By the
quintality of SU~5!, the form of the basis of SU~5!
ex-

fy

a

in
m-

i-

e a
hen

singlets in 126 and 126 are determined to be
e122i ,324i ,526i ,728i ,920i ,e112i ,314i ,516i ,718i ,910i . They are
understood in the same way asE112i ~B3!:

e122i ,324i ,526i ,728i ,920i5
1

A10
~e135792 ie235791 . . . !,

where 1/A10 is an extra normalization factor to achieve

~e122i ,324i ,526i ,728i ,920i !abcde* ~e122i ,324i ,526i ,728i ,920i !abcde

51

similar to 1/A2 in ~B3!.
It is easily seen that the former is a basis of126 and the

latter is that of126by making«abcdei jklmacting on them or
by counting U~1! charge@11#. All other representations of
subgroups contained in SO~10! representations are con-
structed in a similar way.

3. CG coefficient

Using 10, 45, 126, 126, and 210, we have following
SO~10! singlets@11#:

HFD,HF̄D,D3,F̄DF,F̄AF,A2D,AD2.

We can get singlets by contracting all indices of tensors:

HFD[HaFabcdeDbcde,

HF̄D[HaF̄abcdeDbcde,

D3[DabcdDcde fDe fab,

F̄DF[F̄abi jkDabcdFcdi jk ,

F̄AF[F̄ai jklAabFbi jkl ,

A2D[AabAcdDabcd,

AD2[«abcde fghi jAabDcde fDghi j .

In terms of components of the representations

HFD5
1

A5
hafabcdedbcde,

HF̄D5
1

A5
haf̄abcdedbcde,
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D35
1

6A6
dabcddcde fde fab,

F̄DF5
1

10A6
f̄abi jkdabcdfcdi jk ,

F̄AF5
i

5A2
F̄ai jklAabFbi jkl ,

A2D52
1

A6
aabacddabcd,

AD2524A2iaabdcde fdghi j ,

where repeated subscripts are not summed and in the
equation,abcde fghi jare different from each other.

Then, we rewrite the superpotential~5! in terms of com-
ponents, for example,

YDD35
YD

6A6
dabcddcde fde fab

and so on. Therefore, for components that as an expan
parameter for the perturbation Yukawa coupling5 1, means
YD56A6 and so on.

Of course, since a component of an irreducible repres
tation is a linear combination of these components, CG
efficient for an irreducible representation is different from
for example, 1/6A6 in the case ofD3.
last

sion

en-
co-
,

For example, let us calculate a CG coefficient for the
singlet b contained in45 and a contained in210 @see the
Table ~3!#. They are contained in the form
A781905be78190 andD78905ae7890, respectively. Then

AabAcdDabcd5b2a~e78190!ab~e78190!cd~e7890!abcd

5b2aS i2D
2 1

A4!
2!2!32

52
1

A6
b2a.

In the second line,i /2 comes from an element ofe78190 and
1/A4! comes from an element ofe7890. 2! comes from a
summation between$ab% and $cd%. $ab% and $cd% are
$78% or $90%. The last factor 2 comes from an exchange of
$78% and$90%.

APPENDIX C: MASS MATRICES UNDER G2231 AND
THEIR EIGENVALUE EQUATIONS

Under G2231, the multiplets of our model have mass
terms as follows. They are listed following the order of the
list ~23!. Full mass matrices are given with contributions
from c,b,f, and afterG2231breaks down toG231. But these
contributions are of orderM nR

;MUe and hence if the mass

eigenvalue is ofO(MU), they are negligible and we do not
need to consider them.
~2,2,1,0! multiplet:

M ~2,2,1,0!5S MH , 2
YHFDb

A10
,

YHF̄Db

A10

2
YHFDb

A10
, 0,

YFDb

15A2
1MF

YHF̄Db

A10
,

YFDb

15A2
1MF , 0

D .

~1,1,3,22! 1 H.c. multiplet:

M ~1,1,3,2!5S MH ,
YHFD~A3a2b!

A30
,

YHF̄D~A3a1b!

A30

YHFD~A3a2b!

A30
, 0

YFAa

5A6
1MF

YHF̄D~A3a1b!

A30
, 2

YFAa

5A6
1MF , 0

D .
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~3,1,1,0! 1 H.c. multiplet:

M ~3,1,1,0!5S MA1
YDA2a

A6
, 2

YDA2a

A6
224 iA2YD2Ab

2
YDA2a

A6
224 iA2YD2Ab,

2YDa

6A6
216 iA6YD2Aa1

YDb

9A2
1MD

D .
~1,3,1,0! multiplet:

M ~1,3,1,0!5S 2
YDA2a

A6
1MA , 2

YDA2a

A6
124 iA2YD2Ab

2
YDA2a

A6
124 iA2YD2Ab,

YDa

6A6
116 iA6YD2Aa1

YDb

9A2
1MD

D .
~1,1,3,24! multiplet:

M ~1,1,3,24!5S 2YDA2b

3A2
1MA , 24A2iYD2Aa2

YDA2a

3A2

24 iA2YD2Aa2
YDA2a

3A2
,

YDb

18A2
1MD

D .
~1,1,8,0! multiplet:

M ~1,1,8,0!5S YDA2b

3A2
1MA , 24 iA2YD2Aa2

YDA2a

3A2

24 iA2YD2Aa2
YDA2a

3A2
, 2

YDb

18A2
1MD

D .
~2,2,3,2! 1 H.c. multiplet:

M ~2,2,3,2!5S MA , 8A6iYD2Ab, 2
YDA2a

3

8A6iYD2Ab, MD , 16iA3YD2Aa

2
YDA2a

3
, 16A3iYD2Aa,

YDb

18A2
1MD

D .

~3,1,1,6! 1 H.c. multiplet:

M ~3,1,1,6!52
A6YFAa

10
2
YFDa

10A6
1
YFDb

10A2
1MF .

~3,1,3,2! 1 H.c. multiplet:

M ~3,1,3,2!52
YFAa

5A6
2
YFDa

10A6
1
YFDb

30A2
1MF .

~3,1,6,22! 1 H.c. multiplet:

M ~3,1,6,22!5
YFAa

5A6
2
YFDa

10A6
2
YFDb

30A2
1MF .

~1,3,1,26! 1 H.c. multiplet:

M ~1,3,1,26!5
A6YFAa

10
1
YFDa

10A6
1
YFDb

10A2
1MF .
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~1,3,3,22! 1 H.c. multiplet:

M ~1,3,3,22!5
YFAa

5A6
1
YFDa

10A6
1
YFDb

30A2
1MF .

~1,3,6,2! 1 H.c. multiplet:

M ~1,3,6,2!52
YFAa

5A6
1
YFDa

10A6
2
YFDb

30A2
1MF .

~2,2,3,24! 1 H.c. multiplet:

M ~2,2,3,24!5S A6YFAa

15
1
YFDb

30A2
1MF , 0

0, 2
A6YFAa

15
1
YFDb

30A2
1MF

D .
~2,2,8,0! multiplet:

M ~2,2,8,0!52
YFDb

30A2
1MF .

~3,1,3,24! 1 H.c. multiplet:

M ~3,1,3,24!52
YDa

6A6
28 iA6YD2Aa1

YDb

18A2
1MD .

~1,3,3,24! 1 H.c. multiplet:

M ~1,3,3,24!5
YDa

6A6
18 iA6YD2Aa1

YDb

18A2
1MD .

~3,1,8,0! multiplet:

M ~3,1,8,0!52
YDa

6A6
18 iA6YD2Aa2

YDb

18A2
1MD .

~1,3,8,0! multiplet:

M ~1,3,8,0!5
YDa

6A6
28 iA6YD2Aa2

YDb

18A2
1MD .

~2,2,1,6! 1 H.c. multiplet:

M ~2,2,1,6!5
YDb

6A2
1MD .

~2,2,6,22! 1 H.c. multiplet:

M ~2,2,6,22!52
YDb

18A2
1MD .
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~2,1,3,21! 1 H.c. multiplet:

M ~2,1,3,21!5S 0

2
1

A6
iYc2A

a

2
1

A6
iYc3A

a12Yc3D~A6a1A2b!

2
1

A6
iYc4A

a12Yc4D~A6a1A2b!1MC

D .

~1,2,3̄,1! 1 H.c. multiplet:

M ~1,2,3̄,1!5S 0

1

A6
iYCA2a

1

A6
iYCA3a12YCD3~2A6a1A2b!

1

A6
iYCA4a12YCD4~2A6a1A2b!1MC

D .

~2,1,1,3! 1 H.c. multiplet:

M ~2,1,1,3!5S 0

A6iYCA2a

A6iYCA3a12A6YCD3~a2A3b!

A6iYCA4a12A6YCD4~a2A3b!1MC

D .
~1,2,1,23! 1 H.c. multiplet:

M ~1,2,1,23!5S 0

2A6iYCA2a

2A6iYCA3a22A6YCD3~a1A3b!

2A6iYCA4a22A6YCD4~a1A3b!1MC

D .
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