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We investigate the infrared fixed point structure in asymptotically free and asymptoti­
cally non-free theory. We find that the ratios of couplings converge strongly to their infrared
fixed points in the asymptotically non-free theory.

§l. Introduction

The manner in which the Yukawa couplings reproduce the masses of quarks and
leptons is one of the unsolved problems in particle physics. These masses may be
constrained by requiring some symmetry or by imposing grand unified theory and/or
they may be related to gauge couplings. The latter is strongly indicated by the top
quark mass. About 3 years ago, Lanzagorta and Ross 1) attempted to determine the
relation between Yukawa couplings and gauge couplings through the infrared fixed
point structure. This method in which the infrared fixed points may determine the
heavy fermion masses was first proposed by Pendleton and Ross. 2) However, such
an infrared fixed point has rarely been reached in usual asymptotically free (AF)
standard models because of the infrared divergent character. 3) Furthermore, since
the coupling constants become very large in the low energy region, the perturbative
treatment is no more guaranteed in the infrared region.

More than 40 years ago, Landau proposed an attractive idea that low energy
physics may be determined with an asymptotically non-free (ANF) theory. He il­
lustrated this idea by showing the possibility to obtain a very small fine structure
constant. This idea was applied to determine the ratio of gauge couplings. 4) In
particular, it was pointed out by Moroi et al. 5) that the minimal supersymmetric
standard model (MSSM) with 1 extra vector-like family (EVF) gives the observed
ratio of the gauge couplings (Weinberg angle).

In a previous paper, 6) we investigated a possible scenario of the standard gauge
symmetry with ANF character and showed that due to the ANF gauge couplings the
top Yukawa coupling is quite insensitive to their initial values fixed at GUT scale
Me. We would like to stress that such strong convergence of Yukawa couplings to
their infrared fixed points is a common feature appearing in ANF theories.

In this paper we investigate how strongly the couplings are focused into their in­
frared points in ANF theories and demonstrate the structure of the renormalization­
group flow. As illustrations we take the supersymmetric standard models with AF
and ANF gauge couplings and compare them by concentrating on their infrared



170

structure.
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§2. Infrared structure of AF and ANF theories

Before studying realistic (AF and ANF) models we first consider a simple gauged
Yukawa system which has one gauge coupling 9 and one Yukawa coupling y, whose
I-loop ,B-functions are

where

da b 2
-=-·-a
dt 211"'

(2·1)

(2·2)

t = In (~). (2·3)

The system is asymptotically free (asymptotically non-free) for b > 0 (b < 0) and
always a > 0, c ~ O. From these, we obtain

dR = ~aR(R - R*)
dt 211" '

R*=c-b.
a

(2·4)

(2·5)

Since we would like to see the manner in which couplings reach infrared fixed points
from their values at the GUT scale M a , we take J.Lo = M a and a(O) = a(Ma ).
Then we obtain from (2.4) 6)

R(t) - R* = ( a(t) )B (R(Ma ) - R*)
R(t) a(Ma ) R(Ma )

c
B == 1- b'

(2·6)

(2·7)

Here, R* is an infrared fixed point if R* > O. This is equivalent to what Lanzagorta
and Ross derived in Ref. 1). From this equation, we see that the suppression factor

~ == (o:(l:~») B provides the criterion on rate at which R approaches the infrared fixed
point value R*. Note that this factor is independent of the detailed information of
the system and is determined from gauge coupling alone. The b-dependence of the
suppression factor ~ is shown in Fig. 1, from which we find a large difference between
AF (b > 0) and ANF (b < 0) cases. In the AF case the point b = c at which B
becomes 0 corresponds to ~ = 1. If we dare to extrapolate our formula above this
critical point, ~ becomes larger than 1, but R* becomes negative and is no more an
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Fig. 1. Typical behavior of the suppression
factor ~ by taking a::::: a3. (a3(Mz ) ::::: 0.12,
c:::::.1f)

Fig. 2. Typical t/--dependence of al (t/-) , a2 (t/-) ,
a3(t/-) in the MSSM (dashed lines) and the
MSSM + 1 EVF (solid lines).

infrared fixed point. From (2·6) we see that ~ blows up and R(t) tends to zero in the
low energy limit. 7) On the other hand, in the ANF case there is always a non-trivial
infrared fixed point R*(> 0), and convergence to R* becomes much better.

Now we illustrate the difference in behavior of the AF and ANF theories by
applying this formula to two models, the minimal supersymmetric standard model
and the MSSM with one extra vector-like family (EVF). 4) - 6) Typical behavior of
the running gauge couplings is shown in Fig. 2. They are unified at the same scale
in the two cases, but with different unified couplings.

Let us first exhibit typical values for the AF and ANF cases, taking a = a3 , a y
= at with a realistic value of a3 (see §3 for details),

MSSM : b = 3, c = 1
3
6 ::::} B = -~

(
a3(Mz)) B ,...., (0.12) -7/9 ,...., 0.43, (2.8)
a3(Ma ) 0.04

MSSM + 1 EVF : b == -1 , c = 16 ::::} B = 19
3 3

(
a3 (Mz))B ,...., (°.12)19/

3 ,...., 10-6 . (2.9)
a3(Ma ) 1.0

The suppression factors can be read off Fig. 1 (indicated by arrows). We can see the
situation more clearly by comparing the JL-dependence of at!a3 in the AF and ANF
cases. In the MSSM + 1 EVF, the convergence to the infrared fixed point is much
better than that in the MSSM, and its fixed point value depends very weakly on
the initial value at M a (Fig. 4). This is because gauge couplings are asymptotically
non-free and their unified coupling is very large at M a (Fig. 2).
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Fig. 3. Rt in the MSSM. (Ma = 1.6 x 1016 GeV, 00 = 0.04)
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Fig. 4. Rt in the MSSM + 1 EVF. (Ma = 7.0 x 1016 GeV 1 00 = 1.0)

Next we investigate the RG flow in the (a3' at) plane. The RG flow behaves
quite differently according to the regions separated by the fixed line at!a3 = R;
(Figs. 5 and 6).

In the lower region of the AF case, the Yukawa coupling, as well as the gauge
coupling, is found to be asymptotically free, and we have a non-trivial continuum
limit. 7) Although the ratio finally approaches the infrared fixed point, in the infrared
region both of the couplings become very large, and the one-loop approximation is
no longer reliable.

For the other situations, either or both couplings are divergent at high energy.
In the lower region of the ANF case the gauge coupling governs the Yukawa coupling
very strongly. The gauge coupling diverges at some high energy scale. In the upper
region for both cases, on the other hand at diverges at some high energy scale.
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Fig. 5. RG flow diagram in the MSSM. The
arrows denote the flow directiond toward
the infrared region and the bold lines indi­
cate the fixed lines.

Fig. 6. RG flow diagram in the MSSM+l
EVF. The arrows and the bold lines rep­
resent the same as in Fig. 5.

Then the theory becomes trivial in the continuum limit and we should make use of
cutoff theory. The former corresponds to dynamical gauge boson 8) and the latter,
dynamical Higgs boson. 9)

It is noted that the ANF case is in strong contrast with the AF case. In both
the upper and lower regions, the ratio evidently has an infrared fixed point where
the one-loop approximation becomes more and more valid. This can be clearly seen
in Fig. 6. This infrared stability is very attractive and may make the determination
of Yukawa coupling constants feasible.

§3. Infrared solutions of MSSM + 1 EVF

Keeping the above attractive features in mind, we further undertake an analysis
of the infrared fixed point solutions of MSSM + 1 EVF, which includes three gauge
and Yukawa couplings. We suppose that the superpotential takes the form

W = W3 + W4 + W4 ,

W3 = Yt3Q3 Ht3+Yb3Q3Hb3 + YT3L3Hf3,

W4 = Yt4 Q4 Ht4 + Yb4 Q4Hb4 +YT4L4Hf4 ,

W4 = YfQHt4 + y,/,JHb4 + YrLHTJ.,

and the Yukawa couplings satisfy*)

Yf = Yb = Yr = 0 .

•) The relations are always satisfied once we put these relations at Mo.

(3·1)

(3·2)

(3·3)

(3·4)

(3·5)

(3·6)
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With these assumptions, there exist parameter regions where both the low-energy
experimental values and the high energy GUT-like boundary conditions are consis­
tently described. 6) Then the I-loop ,B-functions for the ratio of the couplings to
a3 (R == ai/(3) are

(3·7)

(3·8)

(3·9)

(3·10)

(3·11)

First we comment with regard to the infrared structure of R r • The naive infrared
fixed point solution from all these ,8-functions should not be interpreted as the true
fixed point, since this solution of Rr is negative (R~ rv -0.66). In this case, as was
mentioned above, Rr does not reach the non-trivial infrared fixed point, but rather
zero, in the low energy limit (Fig. 7).

R; = 0.702, R~ = 0.697. (3·12)

(Rr r-v 0.0)

R~ = 0.0943 , R; = 0.2 ,
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Fig. 7. Rr in the MSSM + 1 EVF. (Me
= 7.0 x 1016 GeV, Cie = 1.0)

In order to obtain the correct in­
frared fixed point solutions, we first set
Rr r-v 0 and use the four remaining ,8­
functions [(3·7) r-v (3,10)]. The results
are as follows:*)

From Figs. 4 and 8, we find that
these quantities indeed reach their fixed
points. As we mentioned before, these
values are affected little by the initial

values at Me because of the asymptotically non-free gauge couplings. We are con­
fident that the infrared fixed points obtained from these solutions are physically
significant and provide us with reliable low-energy parameters.

*) Strictly speaking, Rl and R2 do not converge to their fixed point values. However, the
differences R,;(1 TeV) - Ri (i = 1,2) are small enough for us to use the result (3·12).
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Fig. 8. Rb in the MSSM + 1 EVF. (Ma = 7.0 x 1016 GeV, Oa = 1.0)

In the case at hand, by using these fixed point solutions and the experimental
value of (}:3(1 TeV) '" 0.093 , we obtain, for example,·)

mt(Mz ) '" 178 GeV, mb(Mz ) '" 3.2 GeV.

( tan,B '" 58 )

These values are certainly consistent with the experimental values 10)

mt(Mz ) '" 180 ± 10 GeV, mb(Mz ) '" 3.1 ± 0.4 GeV.

§4. Conclusion

(3·13)

(3·14)

We found interesting infrared structure which is commonly seen in ANF theories.
This is an important difference between AF and ANF theories. This possibility has
long been observed but has never been taken serious.

The existence of extra fermions has been discussed from various points of view:
in deriving CP violation, dynamical SUSY breaking, hierarchical mass matrix, and
so on. In particular, GUT models beyond standard models, including string models
and supergravity models, predict additional fermions quite naturally. We can expect
that at low energy, the theory is asymptotically non-free.

We would like to stress that since ANF theories have strong predictive powers
because of the strong convergence of couplings (ratio of couplings) to infrared fixed
points, their study is considered important.
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