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We construct a non-perturbative method to calculate the effective potential of the >"cP4

theory at finite temperature. We express the derivative of the effective potential with respect
to the mass squared in terms of the full propagator. We reduce this equation to a partial
differential equation for the effective potential using an approximation. We numerically solve
this equation and obtain the effective potential non-perturbatively. We find that the phase
transition is second order, as it should be. We determine several critical exponents.

§l. Introduction

It is often expected that broken symmetries are restored at high temperature. 1)
The temperature-induced phase transition should be observed in relativistic heavy
ion collisions, the interior of neutron stars, and the early stage of the universe. We
may study new physics through phase transitions at high temperature.

It is, however, very difficult to examine such phase transitions. For example,
perturbation theory often breaks down at high temperature. As is well-known in
finite temperature field theories, higher order contributions of the loop expansion
are enhanced for Bose fields by many interactions in the thermal bath. 2), 3) In the
Ar/>4 theory, physical quantities are expanded in terms of AT2/m2 and ATlm at finite
temperature. The ordinary loop expansion is improved by resumming the daisy
diagram, which includes all the higher order contributions of 0 ( (AT21m2 ) n). 4) -13)

The loop expansion parameter is AT1m after the resummation. This implies that the
perturbation theory breaks down at T ;::: mlA. 9) Around the critical temperature,
the ratio miT is always of O(A), so a non-perturbative analysis is necessary to study
the phase transition in Ar/>4 theory. 5)

A variety of methods are used to investigate the phase transition, for example,
lattice simulations, 14)-19) the C.J.T. method,20),21) c-expansion,22) effective three
dimensional theory, 23) - 27) the gap equation method,28) non-perturbative renormal­
ization group methods, 29) - 33) and so on. Dispite these numerous methods, we need
additional methods to study the phase transition, since those which exist at present
are applicable to only limited situations.
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(1)

In Ref. 34) a new non-perturbative approach was suggested to avoid the infrared
divergence which appears in the pressure. 35) The authors of that work differentiated
the generating functional with respect to the mass squared and found an infrared
finite expression for the pressure in thermal equilibrium.

In the present paper we employ the idea of Ref. 34) and develop a new method to
calculate the effective potential. Differentiating the effective potential with respect
to the mass squared, we express the derivative in terms of the full propagator. We
construct a partial differential equation for the effective potential by approximating
the full propagator. We calculate the effective potential beyond perturbation theory
by solving this equation.

In §2 we consider the A4>4 theory at finite temperature and find an exact ex­
pression for the derivative of the effective potential oVjom2. We approximate this
expression and obtain a partial differential equation for the effective potential. We
determine reasonable initial conditions to solve this equation. In §3 we solve this
equation and obtain an effective potential numerically. We obtain the susceptibility,
field expectation value, and specific heat from this potential. We determine several
critical exponents by observing the T dependence of several quantities. Section 4 is
devoted to the concluding remarks.

§2. Evolution equation for the effective potential

As mentioned in §1, the loop expansion loses its validity at high temperature.
We thus need a non-perturbative method to calculate the effective potential. The
effective potential, in general, satisfies the relation

V(m2) = /;2 (::2) dm2+ V(M2).

Once we know oVjom2 and V(M2), we can calculate the effective potential for
arbitrary m 2• Following this idea, we construct an evolution equation for the effective
potential of the A4>4 theory at finite temperature. In the following we determine
oVjom2 and an appropriate initial condition V(M2).

Following the standard procedure of dealing with the Matsubara Green func­
tion,36) we introduce a temperature into the theory. The generating functional at
finite temperature is given by

(2)

(3)

Here LE is Euclidean Lagrangian density. We consider the A4>4 theory which is
defined by the Lagrangian density

1 (04)) 2 1 2 1 2 2 A 4
LE = -2 aT - 2(V4» - 2m 4> - 4!4> + Let + J4>,

where Let represents the counter term, and J is an external source function. If m 2

is negative, the scalar field 4> develops a non-vanishing field expectation value at



(8)
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T = O. It is expected that the field expectation value decreases as T increases and
that a phase transition takes place at the critical temperature Te . We can explore
the properties of this phase transition by studying the effective potential at finite
temperature.

In the >.¢4 theory, the derivative of the effective potential 8V/8m2 is expressed
by the full propagator of the scalar field (see Appendix A),

8V 8vtree 8Vi 8V2 8Vct
8m2 = 8m2 + 8m2 + 8m2 + 8m2' (4)

where vtree is the tree part:
8vtree = !;;"2 (5)
8m2 - 2'1-' .

Here ¢ is the vacuum expectation value of ¢ with the external source J. The non­
perturbative effects are contained in VI and V2:

8Vi 1 j+iOO+€ Jd3p 1 1
8m2 == 27ri -ioo+€ dpo (27r)3 -P5 + p2 + m2 + ~¢2 + II ePo/T _ l' (6)

8V2 1 j+iOO Jd3p 1
8m2 == 47ri -ioo dpo (27r)3 -P5 + p2 + m2 + ~¢2 + II' (7)

The quantity "Vc:t in Eq. (4) is the counter term part,

~~~ == (Zm Z¢ - 1) [~¢2
1 j+iOO+€ Jd3p 1 1+- dpo -----------;------=--

27ri -ioo+€ (27r)3 -P5 + p2 + m2+ ~¢2 + II ePo /
T

- 1

+_1 j+iOO dPo J_d
3
_p 1 ].

47ri -ioo (27r)3 -P5 + p2 + m2+ ~¢2 + II

Here, II = II(p2, -P5, ¢, m 2,T) describes the full self-energy, and Zm and Z¢ are
renormalization constants defined in the Appendix (Eq. (24)). The third term,
8V/8m2, on the right-hand side of Eq. (4) is divergent. This divergence is removed
by the counter term (8) after the usual renormalization procedure is adopted at
T = 0.*) The counter term which is determined at T = 0 removes the ultra-violet
divergence even at finite temperature. 7), 12),37)

We give the initial condition at M 2 ,...., O(T2 ), where the loop expansion is valid,
(>.T/M,...., >. « 1). We calculate V(M2 ) within perturbation theory up to one-loop
order. After renormalization with the MS scheme at the renormalization scale j]"

the one-loop effective potential becomes

(9)

.) In the perturbation theory, we expand II, Zm and Z", with respect to the loop number h :
II = 1I"(I)h + 1I"(2)h2 + "', Zm = 1 + z~)h + Z~)h2 + "', Z", = 1 + z~l)h + z~2)h2 + .... We
determine Zm and Z", to subtract the divergences at each order. At leading order, the divergence
on the right-hand side of Eq. (7) with II = 0 is canceled by ~ z~) z~l) <f>2.
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(10)

(11)

(12)

(15)

Note that we need not re-sum the daisy diagram, which has only a negligible con­
tribution of 0(>') for M 2

rv 0(T2). In Eq. (12), V2(M2) is actually divergent, and
Vct (M2 ) subtract the divergence.

In order to investigate the temperature-induced phase transition, we consider
the theory with non-vanishing field expectation value at T = 0 (i.e., m2 takes a
negative value, m2 = _J.t2). We calculate V( _J.t2) with the effective potential (9) by

V( 2) _ r-!J.2

(8vtree 8VI 8V2 81fct ) d 2
-J.t - 1M 2 8m2 + 8m2 + 8m2 + 8m2 m

+vtree(M2
) + Vi (M2) + V2(M2) + 1fct(M2). (13)

For m 2 « T 2 the contribution from 8Vi/8m2 is enhanced by the Bose factor. The
contribution from VI can be the same order as that from the tree part around the
critical temperature.

The quantity V2 + 1fct will have a negligible contribution:

r-jJ.2 ( 8V2 81fct) 2 2 21
M

2 8m2 + 8m2 dm + V2(M ) + 1fct(M )

= V2( _J.t2) + Vct ( _J.t2). (14)

We can show that V2( _J.t2) + 1fct(_J.t2) is actually small at the leading order of the
loop expansion. At the one-loop level with daisy diagram resummation we find

V2( _J.t2) + 1fct(-t-t2)

= (-J.t
2

+ ~¢2 + 17)2 [ (-t-t2 + ~¢2 + 17) _~]
647r2 log Jl2 2 .

The self-energy satisfies 17 rv J.t2 around the critical temperature for a second-order
or weakly first-order phase transition. 5) Because we are interested in the effective
potential in the region of small ¢ only to investigate the phase structure, we neglect
(14) in the following calculations.

Because the effective potential is a generating function of n-point functions with
zero external momentum, neglect of momentum dependence in 17 allows us to replace
as follows in Eq. (4):

(16)



(17)
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We can take into account the super-daisy diagrams correctly in this approximation
because they are produced by momentum-independent parts of II.*) We obtain a
partial differential equation for the effective potential by integrating over Po and the
angle variables in Eq. (4). We obtain

8V 1 -2 1 roo 2 1 1
8m2 = 2tjJ + 471"2 Jo drr -r==8=2V=---(-;-I---;:==8=2V~)--

r
2 + 8;[>2 exp T r

2 + 8;[>2 - 1

§3. Numerical results

We calculated the effective potential by solving the partial differential equation
(17) with the initial condition for vtree + VI in Eq. (9). We solved the equation
numerically and thus determined the phase structure of the >..tjJ4 theory.

3.1. Analytic continuation

The integral in (17) is well defined in the region where 82V/8;j} is real and
positive. The effective potential V(¢) is, however, complex for small ¢ below the
critical temperature, T < Te . We must determine the analytic continuation in order
to calculate the effective potential in that region.

To make the analytic continuation, we change the variable of integration r to z
through the identification

z = Jr
2

+ Z2 - Z
T2 '

and rewrite the differential equation (17) as

8V = !¢2 + T2 roo dz .jz(z + 2Z).
8m2 2 471"2 Jo eZ+Z - 1

(18)

(19)

Here Z is a double-valued function which is given by Z = V(I/T2)(82V/8¢2).
The imaginary part of the effective potential is interpreted as the decay rate

of the unstable state. 39) It is natural that we assume such an imaginary part to
be negative. The imaginary part of aV/8m2 should be positive, in order to make
the imaginary part of the effective potential negative. We must select the branch

of Z = V(I/T2)(82V/8¢2) for which the imaginary part of 8V/8m2 is positive.
We calculate the effective potential in this branch, and its imaginary part is always
negative, as we will see in the next subsection.

3.2. Numerical results

Fixing the initial condition for vtree + Vi in Eq. (9) by setting M 2 = T 2
, we

numerically solved Eq. (19) and obtained the effective potential at m2 = _j.t2. We use
the explicit differencing method. 40) In this subsection we give the effective potential
and calculate critical exponents.

•) This is the first approximation of a systematic calculation. 38)
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Fig. 1. The behaviour of the effective potential V is shown for fixed A(= 1) as the function of the
temperature. We find no qualitative change for other values A(= 0.5,0.1,0.05). We normalize
that V(O) = O. Perturbative results (b), (b') and (c) are calculated with MS scheme.

We illustrate the behaviour of the effective potential at oX = 1 in Fig. l(a). The
field expectation value ¢Jc is the minimum point of the effective potential. It seems
to disappear smoothly at the critical temperature. We thus find that the phase
transition is second order, as it should be.

For comparison, in Figs. l(b), (b') and (c) we display the effective potential
calculated using the perturbation theory at one- and two-loop orders with daisy
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(a) (b)
Fig. 2. Two loop diagrams that contribute to the effective potential.

diagram resummation.*) At one loop order, an extremely small gap appears at the
critical temperature, as is clearly seen in Fig. l(b'). The phase transition is thus
seen to be first order at one loop order.

This situation is modified at two loop order. Here, we observe no gap, and find
that the phase transition is second order, as shown in Fig. l(c). Though Figs. l(a)
and (c) show similar behaviour, this is purely accidental. The effective potential
calculated up to two loop order includes contributions from the graphs shown in
Figs. 2(a) and (b), with daisy resummation. On the other hand, we can automatically
take into account the contributions from all other graphs within the approximation
(16) by solving Eq. (19). Figure l(a) accidentally coincides with Fig. l(c).

For T < Tc the effective potential develops a non-vanishing imaginary part for
small ¢. We show this in Fig. 3. It should be noted that the sign of the imaginary part
is always negative. This is consistent with the discussion in the previous subsection.

Evaluating the effective potential by varying the temperature T and the coupling
constant >., we obtain the critical temperature as a function of >., where the field
expectation value disappears. We display the phase boundary in the T->' plane in
Fig. 4.

The critical exponents are defined for a second-order phase transition. Around

the critical temperature we expect that the susceptibility X == ~ IJ=o = (f<t>\,)-II1i=<t>c'

the expectation value <Pc, and the specific heat C == ~X 11i=<t>c behave as 41)

(20)

where t = (T - Tc)jT. Analysing the effective potential more precisely we can
calculate the critical exponents" (3 and Q.

*) We have used the equations in Ref. 5) to construct them.
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Fig. 3. Imaginary part of the effective potential near the critical temperature.
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Fig. 4. Phase boundary.

The susceptibility X satisfies the relation

(21)

where p is the curvature of the effective potential at 1>c.
Since the specific heat C is given by the second derivative of the effective poten-
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(a) Field expectation value <Pc (b) curvature p at the minimum
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TIp,

5.1 5.2

(c) Minimum of the effective potential V(<Pc)

Fig. 5. Critical behaviour of <Pc, p and V(<Pc).

tial around the critical temperature, the effective potential V(¢c) behaves as

(22)

We examined the behaviour of p, ¢c and V(¢c) around the critical temperature
and determined the critical exponents 'Y, j3 and a numerically. In Fig. 5 the critical
behaviour of each p, ¢c and V(¢c) is shown as a function of the temperature.We
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Table I. Critical exponents.

our results Landau theory experimental results 4:.lJ

f3 '" 0.5 0.5 0.33

"Y ",1 1 1.24
Q ",0 0 0.11

numerically calculated the critical exponents from these functions. Our numerical
results are presented in Table 1.*) The critical exponents within our approximation
are independent of the coupling constant..\. We note that the results described in the
present subsection remain unchanged when the initial mass scale is set to M 2 = T 2 / 4
or M 2 = 4T2 .

§4. Conclusion

We constructed a non-perturbative method to investigate the phase structure
of the ..\1>4 theory. An exact expression for the derivative of the effective potential
with respect to mass squared was found in terms of the full propagator at finite
temperature. We found a partial differential equation for the effective potential
with the replacement (16). We determined suitable initial conditions using the one­
loop effective potential in the range where the perturbation theory is reliable. We
numerically solved the partial differential equation and thereby obtained an effective
potential.

Though we made the approximation (16), we were able to determine that the
phase transition of the ..\1>4 theory is second order, as it should be. Our method is
very interesting because it correctly determined the order of the phase transition.
We believe that the approximation (16) may be fairy good.

We determined several critical exponents which roughly agree with those found
using the Landau approximation. They are, however, rough values because it is very
difficult to solve the nonlinear partial differential equation (17) numerically. We need
a more elaborate numerical study to obtain more accurate critical exponents.

The main problem we must address with regard to our non-perturbative method
is determining how to improve the approximation of the full propagator. We cannot
estimate the error from the approximation (16). We need to improve the approxi­
mation of the full propagator in order to determine the corrections to the present
result.

Our method is very promising since it can probe the region where the traditional
perturbation theory breaks down.

•J Due to the instability of the explicit differencing method, we could not observe the fine
structure of the effective potential, and we could only obtain rough values of the critical exponents.
We need further numerical study to obtain more precise values.
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Appendix A
The Derivative of the Effective Potential

in Terms of the Full Propagator--

The derivative of the effective potential, 8V/ 8m2 , can be represented by the full
propagator. In this appendix we present details of the calculation of 8V/8m2 given
in Eq. (4).

We consider the Lagrangian density,

1 (8cPo) 2 1 2 1 2 2 Ao 4£E = -- - - -(VcPo) - -mocPo - -cPo + JocPo
2 8T 2 2 4! '

(23)

where the suffix 0 denotes the bare quantities.
We adopt a mass-independent renormalization procedure and represent the effec­

tive potential as a function of renormalized quantities. The renormalization constants
Z and renormalized quantities are introduced through the transformations

1/2
cPo = Z</> cP,

m = ZI/2mOm'

Ao = Z>.A,
T _ Z-I/2 J"'0 - </> . (24)

Using these renormalization constants and renormalized quantities, we separate the
Lagrangian density (23) into the tree part £1 and the counter term part £et as 41),43)

(25)

where Jl + Jet == J. The Lagrangian densities £1 and £et are given by

(26)

Here we separate the external source J into J1 and Jet. These satisfy the following
equations:

{
8~11</>=4> + Jl =~'

(cP)J = cP = const.
(27)
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Here (¢)J is the field expectation value with the existence of J. We expand the field
¢(x) around the classical background ¢ as

¢(x) = ¢ + 1](x),

and then 1](x) satisfies
(1])J = O.

In terms of ¢ and 1](x), Eq. (26) can be rewritten as

(28)

(29)

and

where K is defined by

(32)

Using ZT (Eq. (2)), the generating functional WT[J] for connected Green func­
tions is given by

WT[J] = log ZT[J]. (33)

The effective action rT(¢) is defined as the Legendre transformation of WT[J]. In a
spacetime with translational invariance, the effective potential V(¢) is proportional
to the effective action. The effective potential V (¢) is

n - - n-
- T V(¢) = TT(¢) = WT[J] - T¢J,

where n = Jd3x, and the new variable ¢ is given by

8 --
8J(y) WT[J] = ¢(y) = ¢ = const.

(34)

(35)
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Substituting Eqs. (30) and (31) into Eq. (25), we rewrite the generating functional
ZT as a functional of renormalized quantities:

ZT = exp {~ [£1(¢) + £ct(¢) + (Jl + Jct )¢] }

x f D[11] exp 1o
11T

dr f d3x (£~[111 + £~t[111 + K11)

== exp {~ [£1(¢) + £ct(¢) + (h + Jct )¢] } Z'(K). (36)

Taking into account Eqs. (33) and (34), we obtain the effective potential from
Eq. (36):

- - - T
V (r/» = - [£1(r/» + £ct (r/>)] - .a log Z'(K) . (37)

In the mass-independent renormalization procedure, the renormalization constants
Z are independent of the mass m. We easily differentiate the effective potential V
by the mass square m 2 and obtain

For Ar/>4 theory, the two-point function (112 (0)) in Eq. (38) is rewritten as

where Wn = 2rrnT = ipo due to the periodic boundary condition for Bose fields, and
II = II(p2, -P5, ¢, m 2,T) is the full self-energy. Substituting Eq. (39) into Eq. (38),
we express the derivative of the effective potential in terms of the full propagator,

(40)
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Using the residue theorem, we convert the frequency sum T~~=-oo to contour
integrals. As long as II has no singularity along the imaginary Po axis, Eq. (40)
naturally separates into a piece which contains a Bose factor and a piece which does
not: 12),37)
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