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We study the endpoint of the electroweak phase transition using the auxiliary mass
method. The endpoint is mH ∼ 40 GeV in the case mt = 0 GeV and strongly depends
on the top quark mass. The first-order phase transition disappears at mt ∼ 160 GeV. The
renormalization effect of the top quark is significant.

The electroweak phase transition is one of the most important phase transitions
in the early universe, since it may account for the baryon number of the present
universe. 1) This phase transition was first investigated using the perturbation theory
of finite-temperature field theory. In this theory, a first-order phase transition is
predicted with an effective potential. 2), 3) The perturbation theory, however, has a
difficulty due to an infrared divergence caused by light bosons and cannot give reliable
results in the case that the Higgs boson mass mH is comparable to or greater than
the weak boson mass. For this reason, lattice Monte Carlo simulations represent the
most powerful method at present and are still used to investigate details of the phase
transition. 4) - 8) According to their results, the electroweak phase transition is of first
order if mH is less than an endpoint mH,c ∼ 70 GeV. It becomes second order just
at the endpoint. Beyond the endpoint, we have no phase transition. This implies
that no observable quantities have discontinuities. As far as we know, three other
non-perturbative methods predict the existence of the endpoint. 9) - 11) The endpoint
is found to be below 100 GeV by all three of these methods.

The auxiliary-mass method is a new method to avoid the infrared divergence at
a finite temperature T. 12) - 15) This method is based on a simple idea as follows. We
first add a large auxiliary mass to light bosons, which cause the infrared divergence,
and calculate an effective potential at the finite temperature. Due to the auxiliary
mass, the effective potential is reliable at any temperature. We next extrapolate this
effective potential to the true mass by integrating an evolution equation. This is
carried out below. We applied this method to the Z2-invariant scalar model and the
O(N)-invariant scalar model and obtained satisfactory results. 13) - 15)

We apply the method to the Standard Model and investigate the electroweak
phase transition in the present paper. We add an auxiliary mass M>∼T only to the
Higgs boson, which becomes very light owing to a cancellation between its negative
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tree mass and positive thermal mass for small field expectation values around the
critical temperature. We note that the infrared divergence from the Higgs boson is
always serious if the phase transition is second order or weakly first order. 3) In the
Standard Model, transverse modes of the gauge fields also have small masses at small
field expectation values, since they do not have thermal mass at one loop order. We
give discussion summarizing the influence of these modes.

An effective potential is calculated as follows in the Landau gauge: 2), 3)
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In the above equations, λ, g2, g1 and gY are coupling constants for the Higgs boson,
SU(2) gauge field, U(1) gauge field, and top Yukawa, respectively. The matrix T is
orthogonal and diagonalizes the mass matrix for the Z boson and photon at finite
temperature. We renormalized the effective potential using the MS scheme with a
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renormalization scale µ̄. A zero-temperature contribution from the Higgs boson is
neglected because it is small in the mass region we consider. The ring diagrams are
added only to the weak bosons and the Z-boson, since the Higgs bosons have large
auxiliary mass and do not require resummation. We then extrapolate this effective
potential at the auxiliary mass squared M2 to that of the true mass squared −ν2

using an evolution equation. Since we add the auxiliary mass only to the Higgs boson,
the evolution equation is the same as that for the O(4)-invariant scalar model, which
was constructed in∗) Ref. 15):
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A non-perturbative effective potential free from infrared divergence can be obtained
by solving the evolution equation (2) with the initial conditions given in Eq. (1)
numerically.

Before giving our numerical results, we relate the parameters ν2, λ, g2, g1 and
gY to physical quantities at zero-temperature. 3) We have
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Radiative corrections at the one-loop order are included in the equations for ν2 and
λ since they are large, especially in the case that the Higgs boson mass is small. The
effective potential Eq. (1) does not depend on µ̄ using λ in Eq. (3) at this order.
Below, we fix the masses of the weak bosons and the Z-boson as MW0 = 80 GeV
and MZ0 = 92 GeV.

We first investigate a SU(2) × U(1) gauge-plus-Higgs theory, corresponding to
the case mt = 0. We give only the results obtained by setting M = T , since similar

∗) We neglected the momentum dependence of the full self-energy in Ref. 14). This corresponds

to the local potential approximation of the systematic derivative expansion of the effective action.
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Fig. 1. The real parts of the effective potentials at the critical temperature for mH =15, 30 and 45

GeV. The first-order phase transition becomes weaker for smaller values of the Higgs mass, and

finally disappears.

results were obtained by setting M = T
2 and M = 2T , as in the case of Ref. 13).

This is quite natural, since the restriction on M is M>∼T . The real parts of the
effective potentials at the critical temperature are shown in Fig. 1 for mH =15, 30
and 45 GeV. The first order phase transition becomes weaker for smaller values of the
Higgs mass, and finally disappears. The imaginary part of the effective potential,
which represents the instability of the vacuum, as in Ref. 13), also exists for the
range of φ, where the curvature of the real part of the effective potential is negative.
We do not show this imaginary part, since it has nothing to do with our main
focus, the existence of the endpoint. They are compared to effective potentials
obtained using the ring resumed perturbation theory at the one-loop order without
the high-temperature expansion in Fig. 2. We find clearly that they are similar
for smaller values of mH and different for larger values of mH . This is consistent
with the fact that the ring-resumed perturbation theory is reliable only for smaller
values of the Higgs mass, i.e., for mH � MW . 3) We plot the ratio of the critical
field expectation value to the critical temperature, φc/Tc, as a function of mH in
Fig. 3. This quantity indicates the strength of the first-order phase transition and
is important in estimating the sphaleron rate, which plays a very important role in
electroweak baryogenesis. 16), 17) The endpoint is determined as mH,c = 38 GeV from
Fig. 3. This figure also shows that the results obtained using the auxiliary mass
method and the perturbation theory are similar for smaller values of mH but differ
for larger values, i.e., for mH>∼30 GeV.

We next investigate more realistic cases in which the top quark mass is finite.
The same ratios are displayed in Fig. 4 for various values of mt. This figure shows
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Fig. 2. The real parts of the effective potentials at the critical temperature obtained using the

auxiliary mass method and the perturbation theory for mH =15, 30 and 45 GeV. These results

are similar for smaller values of mH and different for larger values of mH .
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results obtained using the auxiliary mass method and the perturbation theory are similar for
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Fig. 5. The endpoint of the Higgs boson as a function of the top quark mass. The graph labeled

“tree” was obtained using only the first terms in Eq. (3) for ν2 and λ. This corresponds

to matching the parameters with physical observable quantities at the tree level. The graph

labeled “1-loop” was obtained using all terms in Eq. (3) for ν2 and λ. This corresponds to

matching the parameters with physical observable quantities at the one-loop level.

that the strengths of the first-order phase transition are almost the same for mt<∼100
GeV and become weaker for mt>∼100 GeV rapidly. The endpoints are shown in Fig. 5
as functions of mt. The graph labeled “1-loop” was obtained using Eqs. (1) and (3),
which take into account the zero-temperature radiative corrections from the top
quark and gauge fields. The contribution from the top quark is much larger than
that from the gauge fields. On the other hand, the graph labeled “tree” was obtained
without the zero-temperature radiative correction, omitting the contributions from
fG0 and fF0 from Eq. (1) and leaving only the first terms of Eq. (3) for λ and ν2.
These graphs do not differ greatly for smaller values of the top quark mass, mt<∼100
GeV. Their behavior, however, differs drastically for larger values of the top quark
mass, mt>∼100 GeV. Surprisingly, the endpoint vanishes for mt>∼160 GeV in the “1-
loop” results, though it increases in the “tree” results. These results tell us that
fermionic degrees of freedom play significant roles in the phase transition through
the renormalization effects at zero temperature. We also conclude that there are no
first-order phase transitions for mt = 175 GeV, no matter how small the Higgs boson
mass.

In the present paper, we have calculated the effective potentials of the Standard
Model using the auxiliary mass method at finite temperature. We first investigated
an SU(2) × U(1) gauge-plus-Higgs theory, corresponding to the case mt = 0. The
phase transition was found to be first order, and our results are similar to the results
obtained using the perturbation theory for smaller values of mH , i.e., mH ∼ 15
GeV. However, we found that the phase transition becomes weaker for larger values,
MH ∼ 30 GeV and finally disappears, in contrast to the results from perturbation
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theory. We found that the endpoint is at mH,c = 38 GeV in this case. This is
qualitatively consistent with the results of the Lattice Monte Carlo simulations 5) - 8)

and other non-perturbative methods. 9) - 11) The value we obtained for the endpoint,
however, is smaller than those obtained with these methods. We next investigated
the more realistic case in which the top quark mass is finite. In this case, we found
that the endpoint is strongly dependent on mt and disappears for mt>∼160 GeV. Also,
the renormalization effects from the top quark are significant. Lattice Monte Carlo
simulations, however, do not exhibit this behavior. 18) We can think of two possible
reasons for this: (1) Since our results differ from those of the lattice Monte Carlo
simulation by factors of 2 in a SU(2)×U(1) gauge-plus-Higgs theory quantitatively
(probably because of the higher loop effect of gauge fields and the approximation
that we used in obtaining Eq. (2)), the same behavior may be found at a larger top

(c1) (c3)(c2)

(b1) (b2)

(a1) (a2)

Fig. 6. Two-loop graphs with the Higgs bo-

son and the gauge boson. (a) Graphs with

only the Higgs boson. These have no in-

frared divergence, thanks to the auxiliary

mass. (b) Graphs with the Higgs boson

and the gauge field. Here, the infrared be-

havior is controlled by the auxiliary mass.

(c) Graphs with only gauge boson. These

have poor infrared behaviour.

quark mass in the lattice Monte Carlo
simulation. (2) Since the one-loop cor-
rection to the effective potential at zero
temperature is significant, the 3D effec-
tive theory, which has no fermionic de-
grees of freedom, may not reflect the ef-
fect appropriately.

We now discuss the higher-loop ef-
fect of gauge fields. Since we did not
introduce the auxiliary mass into gauge
fields, the loop expansion parameter for
the gauge fields was not improved. We,
therefore, controlled only the infrared
divergence of graphs involving the Higgs
boson field. In this sense, our method
improves the infrared divergence par-
tially. We thus consider a “hybrid”
method to improve the approximation.
In this method, we introduce the aux-
iliary mass for the Higgs boson and
use a perturbative expansion for the
gauge boson.∗) As an illustrative ex-
ample, we now explain how to evaluate
the two-loop effect. Using the auxiliary
mass method, we need not take into ac-
count Figs. 6(a1) and (a2), thanks to the
auxiliary mass. In addition, we need
not take into account Figs. 6(b1) and
(b2), which have large infrared effect
[∝ φ2T 2log(φ)] in the ordinary pertur-

∗) Perturbative expansion for non-Abelian gauge fields cannot be calculated to arbitrary order,

due to the infrared divergence. Our method cannot solve this problem.
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bation theory, since the auxiliary mass controls the infrared effect [∝ φ2T 2log(M)].
The only graphs we have to take into account are those in Figs. 6(c1), (c2) and (c3).
We need not take into account as many graphs as in the ordinary perturbation the-
ory because most graphs have good infrared behavior thanks to the auxiliary mass.
We expect that this two-loop effect reduces the qualitative gap between our results
and those of lattice simulations.∗)

Finally, the strongly first-order phase transition necessary for the electroweak
baryogenesis was not found in the Standard Model. We will apply this method to
extensions of the Standard Model.
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