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We show that the evolution equation of the effective potential in the auxiliary mass
method corresponds to a leading approximation of a certain series. This series is derived
from an evolution equation of an effective action using a derivative expansion. We derive
an expression of the next-to-leading approximation of the evolution equation, which is a
simultaneous partial differential equation.

§1. Introduction

Finite temperature field theory, which is based only on a statistical mechanism,
adequately describes many physical phenomena, such as phase transitions and mass
spectra in a thermal bath. 1) - 3) The corresponding perturbation theory, however,
breaks down at a high finite temperature. This happens because the mass squared
becomes negative even in a vacuum at finite temperature. This problem is solved
using the ring resummation, which adds thermal mass to the zero temperature mass
beforehand. 4), 5) This procedure, however, is still insufficient to make the perturba-
tive expansion reliable, especially around the critical temperature. For example, the
perturbation theory incorrectly indicates that the phase transition of the Z2-invariant
scalar theory is first order. 6) As another example, different properties are suggested
by the perturbation theory and lattice simulations in investigations of the Abelian
Higgs model 4), 7) - 15) and the Standard Model 16) - 24) in the large Higgs boson mass
range.

These failures of the perturbation theory are caused by bad infrared behavior
around the critical temperature. 25), 26) The loop expansion parameter becomes λT/m
even after the ring resummation, due to this infrared effect. Here, λ is a small
coupling constant and m is the mass at the temperature T . The perturbation theory
is, therefore, unreliable at high temperature and small mass. This situation arises
around the critical temperature of second order phase transitions or weakly first
order phase transitions. The auxiliary mass method controls this infrared behavior
by introducing an “auxiliary mass”. 27) - 32) We first calculate an effective potential
with large auxiliary mass, M ∼ T . This effective potential is reliable because the loop
expansion parameter is small, thanks to the auxiliary mass. We next calculate the
effective potential at the true mass from this effective potential through an evolution
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equation. We solve the evolution equation of the effective potential with respect to
the variation of the mass squared.

We used a certain approximation to derive the evolution equation in Refs. 28)
and 29). Though we obtained quite good results using this approximation, we did
not have a method to improve the approximation. In the present paper, we show that
the evolution equation obtained previously is a leading approximation of a certain se-
ries. We then derive the next-to-leading evolution equation, which is a simultaneous
partial differential equation. Though it is difficult to solve this evolution equation
at arbitrary temperature due to numerical problems, we can, in principle, improve
the approximation systematically.

§2. Evolution equation

In this section, we explain the idea pursued in this paper and derive the evolution
equation for the Z2-invariant scalar theory using the auxiliary mass method.∗) Let
us consider the following Euclidean Lagrangian density with mass squared m2:

LE(φ;m2) = −1
2

(
∂φ

∂τ

)2

− 1
2
(∇φ)2 − 1

2
m2φ2 − λ

4!
(φ2)2 + Jmφ+ c.t. (2.1)

Here, Jm(x) is an external source function which gives

〈φ(x)〉 = φc(x), (2.2)

and hence depends on m2. We set the true mass squared to a negative value, m2 =
−µ2, since we investigate the phase transition of this theory. We assume that the
coupling constant λ is small, so that the perturbation theory be reliable at a low
temperature (T � m).

Our idea is the following. The effective action for the theory, Γ [φc;m2), satisfies
the following identity,

Γ [φc;−µ2) =
∫ −µ2

M2

(
∂Γ [φc;m2)

∂m2

)
dm2 + Γ [φc;M2). (2.3)

We choose M2 so large (∼ T 2) that we can calculate the initial condition, Γ [φc;M2),
reliably using the perturbation theory. If we can evaluate the derivative ∂Γ (φc)/∂m2

correctly, we can calculate the effective action accurately.∗∗)

2.1. Derivative of the effective action with respect to the mass squared

In this subsection we calculate the derivative ∂Γ [φc]
∂m2 .∗∗∗) This is formally given

by 28), 29)

∂Γ [φc]
∂m2

= −1
2

∫
d4x〈φ(x)2〉

∗) Those for the other theories can be derived similarly.
∗∗) Hereafter, we omit the argument m2.

∗∗∗) See the Appendix for details.
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= −1
2

∫
d4xd4y〈φ(x)φ(y)〉δ(y − x)

= −1
2

∫
d4xφc(x)2 − 1

2

∫
d4xd4y

(
δ2(−Γ [φc])

δφc(x)δφc(y)

)−1

δ(y − x). (2.4)

Here
∫

d4x is as an abbreviated expression
∫ β
0 dτ

∫∞
−∞ d3x. We use this notation

hereafter.
Since Eq. (2.4) is a functional equation, it cannot be solved directly. We, there-

fore, limit the functional space and expand Γ [φc] in powers of derivatives 33), 34),∗)
as

Γ [φc] =
∫

d4x

[
−V (φ2

c)−
1
2
K0(φ2

c)(∂0φc)2 − 1
2
Ks(φ2

c)(∇φc)2 + · · ·
]
, (2.5)

where the dots represent terms with higher derivatives. Note that the coefficient
functional of (∂0φc)2 differs from that of (∇φc)2, due to the absence of 4-dimensional
Euclidean symmetry. We then expand both sides of Eq. (2.4) with respect to deriva-
tives, as Eq. (2.5), and match the coefficient functionals of all terms. In practice,
we have to truncate the series in Eq. (2.5). In the present paper, we leave the three
terms in Eq. (2.5). This is the next-to-leading order approximation of the derivative
expansion. We obtain the leading order approximation, which corresponds to the
evolution equation of Refs. 28) and 29), by setting K0 = 1 and Ks = 1.

From Eq. (2.5), the l.h.s of Eq. (2.4) becomes

− ∂Γ

∂m2
=
∫

d4x

[
∂V

∂m2
+

1
2

∂K0

∂m2
(∂0φc)2 +

1
2

∂Ks

∂m2
(∇φc)2

]
. (2.6)

From Eq. (2.5), up to second derivative terms,∗∗) we have

Myx ≡ − δ2Γ [φc]
δφc(x)δφc(y)

= δ(y − x)
[
V

′′
(φc(y))

−
{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)∂y0

+K
′
0(φc(y))∂2

0φc(y) + K0(φc(y))∂2
y0

}
−{K0 ↔ Ks, ∂y0 ↔ ∇y}

]
, (2.7)

= δ(y − x)(−K0∂
2
y0

− Ks∇2
y + V

′′)

+δ(y − x)
[
Ṽ

′′
(φc(y))

∗) There is a problem with a similar derivation in Refs. 33) and 34): There, exp iqx is treated

not as a distribution but as an ordinary function.
∗∗) Hereafter, we also use notation like V = V (φ̄) for values of functions in a constant configura-

tion, φc(x) = φ̄.
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−
{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)∂y0

+K
′
0(φc(y))∂2

0φc(y) + K̃0(φc(y))∂2
y0

}
−{K0 ↔ Ks, ∂y0 ↔ ∇y}

]
, (2.8)

= Ayx − Byx, (2.9)

Ayx ≡ δ(y − x)(−K0∂
2
y0

− Ks∇2
y + V

′′),
Byx ≡ Ayx − Myx,

Ṽ
′′
(φc(y)) ≡ V

′′
(φc(y))− V

′′
,

K̃0(φc(y)) ≡ K0(φc(y))− K0.

Here, we divide Myx into two parts, Ayx, which remains finite, and Byx, which
vanishes at φc(x) = φ̄. Details of the following calculation are explained in the
Appendix. The right-hand side of Eq. (2.4) can now be expanded around φc(x) = φ̄
up to second derivative terms as∫

d4xd4y

(
δ2(−Γ [φc])

δφc(x)δφc(y)

)−1

δ(y − x)

=
∫

d4x(A−1)xx

+
∫

d4xd4yd4z(A−1)xyByz(A−1)zx

+
∫

d4xd4yd4zd4ud4v(A−1)xyByz(A−1)zuBuv(A−1)vx

+ · · ·
=
∫

px

1
ν

+
∫

px

1
ν2

[
−1
2

{
K

′′
0(∂0φc)2 + K

′′
s(∇φc)2

}]
+
∫

px

1
ν3

[ {
K

′
0p0(∂0φc) + K

′
spi(∂iφc)

}2

+ 2
{
K

′
0(∂0φc)2 + K

′
s(∇φc)2

}
ν ′
]

+
∫

px

1
ν4

[
− 2

{
K

′
0p0∂0φc + K

′
spi∂iφc

}{
K0p0∂0φc + Kspi∂iφc

}
ν ′

−1
2
{
ν ′}2

{
K0(∂0φc)2 + Ks(∇φc)2

} ]
+ · · ·+ (terms which vanish at φc(x) = φ̄ like Ṽ × (something)), (2.10)

where ν = K0p
2
0+Ksp

2+V
′′, ν ′ = K

′
0p

2
0+K

′
sp

2+V
′′′ [with p0 = 2πnT (n = 0,±1, · · ·)

and p2 ≡∑3
i=1 p2

i ], and
∫
px is used as an abbreviation of T

∑∞
n=−∞

∫
d3p/(2π)3

∫
d4x.

We match both sides of Eq. (2.4) using Eqs. (2.6) and (2.10) and equate the
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coefficient functionals of (∂φc). After the matching, we set φc(x) = φ̄ and obtain the
following simultaneous partial differential equation:

∂V

∂m2
=

1
2
φ̄2 +

1
2

∫
p

1
ν
, (2.11)

∂K0

∂m2
= −1

2
K

′′
0

∫
p

1
ν2

+K
2
0

∫
p

p2
0

ν3
+ 2K ′

0

∫
p

ν ′

ν3

−2K ′
0K0

∫
p
p2
0

ν ′

ν4
− 1

2
K0

∫
p

{ν ′}2

ν4
, (2.12)

∂Ks

∂m2
= −1

2
K

′′
s

∫
p

1
ν2

+
K

2
s

3

∫
p

p2

ν3
+ 2K ′

s

∫
p

ν ′

ν3

−2
3
K

′
sKs

∫
p
p2 ν ′

ν4
− 1

2
Ks

∫
p

{ν ′}2

ν4
. (2.13)

Here,
∫
p is used as an abbreviated expression of T

∑∞
n=−∞

∫
d3p/(2π)3. Since we set

φc(x) = φ̄ finally, there is no contribution from the terms in Eq. (2.10) that vanish at
φc(x) = φ̄. This is the evolution equation of the next-to-leading order approximation
of the derivative expansion.

2.2. Initial condition

We can calculate the initial condition Γ [φ̄;M2) using the perturbation theory
to the one-loop level, thanks to the large auxiliary mass, M ∼ T . The effective
potential, V (φ̄;M2), is calculated within the one-loop approximation as

V (φ̄;M2) =
1
2
M2φ̄ +

λ

24
φ̄4 +

1
2

∫
p
log
(
p2
0 + p2 + M2 +

λ

2
φ̄2
)

. (2.14)

The loop correction to K0(φ̄;M2) and Ks(φ̄;M2) comes from the self-energy
graph depicted in Fig. 1 at one-loop level,

Π(q2
0, q

2) =
λ2φ̄2

2

∫
p

1

p2
0 + p2 + M2 + λφ̄2

2

1

(q0 − p0)2 + (q − p)2 + M2 + λφ̄2

2

.

(2.15)
The initial conditions of K0(φ̄;M2) and Ks(φ̄;M2) are given by the coefficients of
−q2

0 and −q2, respectively. We, therefore, obtain∗)

K0(φ̄;M2) = 1− dΠ(q2
0, q

2)
dq2

0

∣∣∣∣∣
qi=0,q0=0

∗) Strictly speaking, we first set qi = 0 and then set q0 = 0 in taking the limits qi → 0 and

q0 → 0. For the function K0 to be defined, this order is essential, while for Ks the order of the

limits is irrelevant (see Ref. 35)).
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= 1− λ2φ̄2

2

∫
p

 1

(p2
0 + p2 + M2 + λφ̄2

2 )3
− M2 + λφ̄2

2

(p2
0 + p2 +M2 + λφ̄2

2 )4

 ,

(2.16)

Ks(φ̄;M2) = 1− dΠ(q2
0, q

2)
dq2

∣∣∣∣∣
q0=0,qi=0

= 1 +
λφ̄2

6

∫
p

1

(p2
0 + p2 + M2 + λ2φ̄2

2 )3
. (2.17)

<φ>p

q-p
<φ>

q

Fig. 1. Diagram of the external-momentum

dependent self-energy at one loop.

We have calculated the evolution
equation in §2.1 and the initial condition
in §2.2. Since some of them, e.g. the one-
loop effective potential, have an ultravi-
olet divergence, we have to renormalize
it using the counter terms. Instead of
considering this contribution, we simply
assume that the renormalization effect is
small and discard it. This contribution
is, actually, small compared with the fi-
nite temperature contribution around a
critical temperature in most cases. We

thus need only to deal with the temperature dependent pieces in the integrals of
∂Γ

∂m2 and the initial condition. To do so, we carry out the following replacement in
Eqs. (2.11) – (2.14), (2.16) and (2.17):∫

p
−→ 2

∫
d4p

(2π)4i
1

exp(p0/T )− 1
.

We note that under the local potential approximation, in which K0 = Ks = 1,
the evolution equation of the effective potential reproduces to our previous equa-
tion. 28), 29)

§3. Results and summary

We solved the simultaneous evolution equations (2.11) – (2.13) with the initial
conditions (2.14), (2.16) and (2.17) numerically. In this computation, we used an
extended Crank-Nicholson method, which is explained in the Appendix of Ref. 29),
to solve the partial differential equation. We were able to solve this equation at most
temperatures above the critical temperature.∗) Unfortunately, however, we cannot
solve the equation at temperatures very close to the critical temperature due to
numerical problems. We tried several improvements of the numerical method, but
these all failed. In the present paper, we give the results we were able to obtain. This

∗) We define the critical temperature as the temperature at which the curvature of the effective

potential at origin is zero for a second order phase transition. For a first order phase transition, we

define it as the temperature at which the effective potential has two degenerate minima.
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equation could be solved at arbitrary temperature if sufficiently effective numerical
methods for solving partial differential equations are developed or if the computing
power of computers progresses to the point that we can calculate with sufficiently
high precision using present numerical method. In our computation, we use mass
units such that µ = 1.

We display the effective potential above the critical temperature in Fig. 2 for
λ = 1. We observe behavior of a second order phase transition up to this temper-
ature. This effective potential seems to be cone shaped. This shape indicates that
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Fig. 2. Effective potential near the critical temperature (λ = 1).
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Fig. 3. The coefficient functions of the second derivative terms in the effective action, K0 and Ks

(λ = 1).
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the effective potential becomes convex due to non-perturbative effects for any tem-
perature. We, however, believe that the effective potential becomes non-convex at
slightly smaller temperature. Actually, the effective potential is non-convex at zero
temperature, because it is merely the tree level effective potential in our approxi-
mation. The critical temperature is estimated to be lower than that of the local
potential approximation by 2%.∗)

We show K0 and Ks in Fig. 3 for λ = 1. We see that they are very similar, in
spite of the violation of the Lorenz invariance in this case, while the initial condition
is quite different.

In summary, we derived an evolution equation of the effective action with respect
to the mass squared in the Z2-invariant scalar theory. We then approximated the
effective action as a derivative expansion. We showed that the previous evolution
equation of the effective potential can be derived as the leading order approximation
in this expansion, the local potential approximation. We next derived the evolution
equation of the next-to-leading order approximation, which is a simultaneous partial
differential equation. We finally solved this equation numerically. Though we could
solve it at most temperatures above the critical temperature, we were not able to
do so below a certain temperature very close to the critical temperature. In any
case, we constructed a systematic method to improve the auxiliary mass method in
principle.
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Appendix

In this appendix, we give the derivation of ∂Γ/∂m2 in detail. Part of the notation
used here is given in §2. The effective action Γ [φc] for the Lagrangian Eq. (2.1) is
defined as usual,

Γ [φc] ≡ W [Jm]−
∫

d4xJm(x)φc(x),

W [Jm] ≡ log(Z[Jm]),

Z[Jm] ≡
∫

D[φ] exp
(∫

d4xLE

)
. (A.1)

Equation (2.4) is, then, derived as

∂Γ [φc]
∂m2

=
1

Z[Jm]

∫
D[φ]

[∫ {
d4x

1
2
(−φ(x)2) +

∂Jm(x)
∂m2

φ(x)
}
exp

{∫
d4xLE

}]
−
∫

d4x
∂Jm(x)
∂m2

φc(x)

∗) We estimated the critical temperature by extrapolating the curvature of the origin as a func-

tion of the temperature and determining the temperature at which the curvature becomes zero.
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= −1
2

∫
d4x〈φ(x)2〉

= −1
2

∫
d4x φc(x)2 − 1

2

∫
d4x(M)−1

xx . (A.2)

Since Eq. (2.4) is a functional equation, it cannot be solved directly. We, there-
fore, limit functional space and expand Γ [φc] in powers of derivatives 33), 34) (see
Eq. (2.5)) as

Γ [φc] =
∫

d4x

[
−V (φ2

c)−
1
2
K0(φ2

c)(∂0φc)2 − 1
2
Ks(φ2

c)(∇φc)2 + · · ·
]
,

where the dots represent terms of higher order derivatives, which are omitted here,
and equating the coefficient functionals of (∂φc) on both sides of Eq. (2.4).

The left-hand side of Eq. (A.2) is found to be given by Eq. (2.6) by simply
differentiating Γ with respect to m2. We have

− ∂Γ

∂m2
=
∫

d4x

[
∂V

∂m2
+

1
2

∂K0

∂m2
(∂0φc)2 +

1
2

∂Ks

∂m2
(∇φc)2

]
.

It is very complicated to calculate the rihgt-hand side of Eq. (A.2). First, we
calculate Myx. The derivative of the effective action Γ [φc] with respect to φc(x) is,

δΓ [φc]
δφc(x)

=− V
′
(φc(x))

+
1
2
K

′
0(φc(x))(∂0φc(x))2 + K0(φc(x))(∂2

0φc(x))

+ {K0 ↔ Ks, ∂0 ↔ ∇} . (A.3)

Here, we have assumed that we can carry out a partial integral freely, without a
surface term.

We define the operator Mxy in the following manner. An operator Oxy defined
through functional derivative with respect to φ(x), say δF (φ(y))/δφ(x), acts on any
appropriate test function, say T (y), as

OT (x) ≡
∫

d4y

{
δ

δφ(x)
F (φ(y))

}
T (y).

In particular, if F (φ(y)) contains the derivative of φ(y), say F (φ(y)) = G(φ(y))∂φ(y),
we have

OT (x) ≡
∫

d4y

{
δ

δφ(x)
G(φ(y))∂φ(y)

}
T (y).

≡
∫

d4yδ(y − x)
[
G

′
(φ(y))∂φ(y)T (y)− ∂ {G(φ(y))T (y)}

]
. (A.4)

In order to obtain Eq. (2.7) and to determine the inverse of Myx near φ̄, we
divide Eq. (2.7) into two pieces (Eq. (2.9)) as

Myx = Ayx − Byx,
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Ayx = δ(y − x)(−K0∂
2
0 − Ks∇2 + V

′′),

Byx = −δ(y − x)
[
Ṽ

′′
(φc(y))

−
{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)∂y0

+K
′
0(φc(y))∂2

0φc(y) + K̃0(φc(y))∂2
y0

}
−{K0 ↔ Ks, ∂y0 ↔ ∇y}

]
.

The inverse of Myx is, then, expanded as

(M−1)xy =

{
(A−1)

(
n=∞∑
n=0

(BA−1)n
)}

xy

. (A.5)

Here, the multiplication of the “matrices” A and B is defined as

(AB)xy =
∫

d4zAxzBzy.

The inverse of Axy is easily calculated to be

(A−1)xy =
∫

p

1
νp

exp {ip(x − y)} , (A.6)

where νp = K0p
2
0 +Ksp

2 + V
′′.

We need terms with (∂φc)n (n = 0, 2) to evaluate right-hand side of Eq. (A.2).
Such terms are contained only in the first three terms of Eq. (A.5),

(M−1)xy = (A−1)xy

+(A−1BA−1)xy

+(A−1BA−1BA−1)xy. (A.7)

The relevant terms in Eq. (A.2) are, therefore, the following:∫
d4x(M−1)xx =

∫
d4x(A−1)xx (A.8)

+
∫

d4x(A−1BA−1)xx (A.9)

+
∫

d4x(A−1BA−1BA−1)xx. (A.10)

We next calculate the quantities in Eqs. (A.8) – (A.10) up to terms containing second
derivatives of φc(x). From Eq. (A.6) the first term, (A.8), is easy to calculate:∫

d4x(A−1)xx =
∫

d4x

∫
p

1
νp

. (A.11)
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The second term, Eq. (A.9), is∫
d4x(A−1BA−1)xx

=
∫

d4x

∫
d4y

∫
d4z

∫
p

1
νp

exp {ip(x − y)}

×δ(y − z)
[
− Ṽ

′′
(φc(y)) +

{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)∂y0

+K
′
0(φc(y))∂2

0φc(y) + K̃0(φc(y))∂2
y0

}
+ {K0 ↔ Ks, ∂y0 ↔ ∇y}

]
×
∫

q

1
νq

exp {iq(z − x)}
(integrating over z)

=
∫

d4x

∫
d4y

∫
p

∫
q

1
νp

1
νq

exp {ip(x − y)} exp {iq(y − x)}

×
[
− Ṽ

′′
(φc(y)) +

{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)iq0

+K
′
0(φc(y))∂2

0φc(y)− K̃0(φc(y))q2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, q0 ↔ q}

]
(integrating over x and q and then replacing y by x)

=
∫

d4x

∫
p

1
ν2

p

×
[
− Ṽ

′′
(φc(x)) +

{
1
2
K

′′
0 (φc(x))(∂0φ(x))2 +K

′
0(φc(x))∂0φ(x)ip0

+K
′
0(φc(x))∂2

0φ(x)− K̃0(φc(x))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p}

]
(partially integrating the fourth term)

=
∫

d4x

∫
p

1
ν2

p

[
− Ṽ

′′
(φc(x))−

{
1
2
K

′′
0 (φc(x))(∂0φc(x))2 + K̃0(φc(x))p2

0

}
−{K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p}

]
.

=
∫

d4x

∫
p

1
ν2

p

[
−
{
1
2
K

′′
0(∂0φc)2 +

1
2
K

′′
s(∇φc)2

}]
+(terms which vanish at φc(x) = φ̄ , like Ṽ ′′ × (something)). (A.12)

Since we set φc(x) = φ̄, after the matching of Eq. (2.4), we have no contribution to
the evolution equation from the terms which vanish at φc(x) = φ̄. We thus keep only
terms which remain finite at φc(x) = φ̄ from this point. The third term, (A.10), is
very complicated to evaluate. We find∫

d4x(A−1BA−1BA−1)xx

=
∫

d4x

∫
d4y

∫
d4z

∫
d4u

∫
d4v

∫
p

1
νp

exp {ip(x − y)}



142 K. Ogure and J. Sato

×δ(y − z)
[
− Ṽ

′′
(φc(y)) +

{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 +K

′
0(φc(y))∂0φc(y)∂y0

+K
′
0(φc(y))∂2

0φc(y) + K̃0(φc(y))∂2
y0

}
+ {K0 ↔ Ks, ∂y0 ↔ ∇y}

]
×
∫

q

1
νq

exp {iq(z − u)}

×δ(u − v)
[
− Ṽ

′′
(φc(u)) +

{
1
2
K

′′
0 (φc(u))(∂0φc(u))2 + K

′
0(φc(u))∂0φc(u)∂u0

+K
′
0(φc(u))∂2

0φc(u) + K̃0(φc(u))∂2
u0

}
+ {K0 ↔ Ks, ∂u0 ↔ ∇u}

]
×
∫

r

1
νr

exp {ir(v − x)}
(integrating over x, z, v, r, and replacing u with x)

=
∫

d4x

∫
d4y

∫
p

∫
q

1
ν2

p

1
νq

exp {i(p − q)(x − y)}

×
[
− Ṽ

′′
(φc(x)) +

{
1
2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

+K
′
0(φc(x))∂2

0φc(x)− K̃0(φc(x))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p}

]
×
[
− Ṽ

′′
(φc(y)) +

{
1
2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)iq0

+K
′
0(φc(y))∂2

0φc(y)− K̃0(φc(y))q2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, q0 ↔ q}

]
.

(partially integrating the term with ∂2
0φ)

=
∫

d4x

∫
d4y

∫
p

∫
q

1
ν2

p

1
νq

exp {i(p − q)(x − y)}

×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)iq0

−K̃0(φc(x))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)ip0

−K̃0(φc(y))q2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
.

By the variable exchange {
p −→ p + q,
q −→ p,

we obtain

=
∫

d4x

∫
d4y

∫
p

∫
q

1
ν2

p+q

1
νp

exp {iq(x − y)}
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×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p+ q)0

−K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
=
∫

d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
1−

{
K0(4p0q0 + 2q2

0) + Ks(4pq + 2q2
}

νp
+

12
{
K0p0q0 + Kspq

}2

ν2
p

+ · · ·


×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p+ q)0

−K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
, (A.13)

where we keep the terms up to those proportional to q2, since we will replace q with
a derivative, and we need terms up to those with second derivatives. Similarly, by
the exchange of the variables {

p −→ p,
q −→ p + q,

we have

=
∫

d4x

∫
d4y

∫
p

∫
q

1
νp+q

1
ν2

p

exp {iq(x − y)}

×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p+ q)0

−K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
=
∫

d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p
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×
1−

{
K0(2p0q0 + q2

0) + Ks(2pq + q2)
}

νp
+

4
{
K0p0q0 + Kspq

}2

ν2
p

+ · · ·


×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p+ q)0

−K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
. (A.14)

By comparing Eq. (A.13) with Eq. (A.14), we have the following “identity”:

0 =
∫

d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
−

{
K0(2p0q0 + q2

0) +Ks(2pq + q2)
}

νp
+

8
{
K0p0q0 + Kspq

}2

ν2
p

+ · · ·


×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 + K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p+ q)0

K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
. (A.15)

Indeed, this identity holds exactly for the coefficient functions of (∇φc)2, although
it does not for those of (∂0φc)2. In any case, we use this identity and rewrite (or
define) the third term, (A.10), as follows:

∫
d4x(A−1BA−1BA−1)xx

=
∫

d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
1− 1

2

{
K0(2p0q0 + q2

0) +Ks(2pq + q2)
}

νp
+ · · ·


×
[
− Ṽ

′′
(φc(x)) +

{
− 1

2
K

′′
0 (φc(x))(∂0φc(x))2 +K

′
0(φc(x))∂0φc(x)ip0

−K̃0(φc(x))(p + q)20

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
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×
[
− Ṽ

′′
(φc(y)) +

{
− 1

2
K

′′
0 (φc(y))(∂0φc(y))2 + K

′
0(φc(y))∂0φc(y)i(p + q)0

−K̃0(φc(y))p2
0

}
+ {K0 ↔ Ks, ∂0 ↔ ∇, p0 ↔ p, q0 ↔ q}

]
. (A.16)

Note that there is no contribution from Eq. (A.16) to the evolution equation for the
effective potential V , since the constant terms always include K̃ and Ṽ ′′, which are
zero at φc(x) = φ̄ by definition.

We now evaluate the coefficient functions of (∂φc(x))2. First we calculate the
first term of Eq. (A.16). There are three contributions from this term,∫

d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
{
K

′
0(φc(x))∂0φc(x)ip0 + K

′
s(φc(x))∇φc(x)ip

}
×
{
K

′
0(φc(y))∂0φc(y)ip0 + K

′
s(φc(y))∇φc(y)ip

}
(integrating over q and y)

=
∫

d4x

∫
p

−1
ν3

p

{
K

′
0(∂0φc)p0 + K

′
s(∇φc)p

}2
, (A.17)

∫
d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
[{

K
′
0(φc(x))∂0φc(x)iq0 + K

′
s(φc(x))∇φc(x)iq

}
×
{
−K̃0(φc(y))p2

0 − K̃s(φc(y))p2 − V ′′(φc(y))
}

+ 2
{
K

′
0(φc(x))∂0φc(x)ip0 + K

′
s(φc(x))∇φc(x)ip

}
×
{
−K̃0(φc(y))p0q0 − K̃s(φc(y))pq

}]
=
∫

d4x

∫
d4y

∫
p

∫
q

1
ν3

p

×
[{

K
′
0(φc(x))∂0φc(x)∂x0 + K

′
s(φc(x))∇φc(x)∇x

}
×
{
−K̃0(φc(y))p2

0 − K̃s(φc(y))p2 − V ′′(φc(y)
}

+ 2
{
K

′
0(φc(x))∂0φc(x)ip0 + K

′
s(φc(x))∇φc(x)ip

}
×
{
K̃0(φc(y))ip0∂x0 + K̃s(φc(y))ip∇x

}]
× exp {iq(x − y)}
(partially integrating over x, and then integrating over q and y)

=
∫

d4x

∫
p

1
ν3

p

[ {
K

′
0(∂0φc)2 + K

′
s(∇φc)2

}{
K

′
0p

2
0 + K

′
sp

2 + V
′′′}

+2
{
K

′
0(∂0φc)p0 +K

′
s(∇φc)p

}2
]
, (A.18)
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and ∫
d4x

∫
d4y

∫
p

∫
q

exp {iq(x − y)}
ν3

p

×
[{

−K̃0(φc(x))q2
0 − K̃s(φc(x))q2

}
×
{
−K̃0(φc(y))p2

0 − K̃s(φc(y))p2 − V ′′(φc(y))
}]

=
∫

d4x

∫
p

1
ν3

p

{
K

′
0(∂0φc)2 + K

′
s(∇φc)2

}{
K

′
0p

2
0 + K

′
sp

2 + V
′′′}

. (A.19)

In total, we have the following contribution from the first term of Eq. (A.16)∫
d4x

∫
p

1
ν3

p

[
2
{
K

′
0(∂0φc)2 + K

′
s(∇φc)2

}
ν ′

p

+
{
K

′
0∂0φcp0 + K

′
s∇φcp

}2
]
. (A.20)

Similarly, we have the following contribution from the second term of Eq. (A.16):∫
d4x

∫
p

1
ν4

p

[
−1
2

{
K

′
0p

2
0 + K

′
sp

2 + V
′′′}2

+
{
K0(∂0φc)2 + Ks(∇φc)2

}
−2
{
K

′
0(∂0φc)p0 + K

′
s(∇φc)p

}{
K0(∂0φc)p0 + Ks(∇φc)p

}
ν ′

p

]
. (A.21)

Finally, combining Eqs. (A.11), (A.12), (A.20) and (A.21), we obtain the evolution
equation, Eq. (2.10).
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