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Critical exponents and critical amplitude ratio of the scalar model
from finite-temperature field theory
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The critical exponents and the critical amplitude ratio of the scalar model are determined using finite-
temperature field theory with an auxiliary mass. A new numerical method is developed to solve an evolution
equation. The results are discussed in comparison with values obtained from the other methods.
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I. INTRODUCTION

The phase transition is an important phenomenon in p
ticle physics, cosmology, and condensed matter physics.
quark gluon plasma should be present in heavy ion collisi
and will give us a lot of valuable information on partic
physics@1#. Investigation into the chiral phase transition su
gests that a number of flavors may be bounded from ab
@2,3#. In cosmology, the electroweak phase transition sho
be first order for electroweak baryogenesis@4,5# and has
been investigated attentively@6–14#. Needless to say, a va
riety of phase transitions has been observed and investig
precisely in condensed matter physics.

The field theoretical approach is essential in order to
vestigate these phase transitions: finite-temperatu
chemical-potential field theory@1,15#, perturbative and non
perturbative renormalization group@16–22#, field theory on
lattices@23#, and so on. Temperature can be naturally int
duced by statistical principles using finite-temperature fi
theory. Not all the phase transitions, however, can be inv
tigated by it; perturbation theory, which is the most power
method at zero temperature, often breaks down around
critical temperature because of many interactions in the t
mal bath@24,25#. Indeed, perturbation theory fails when it
applied to either a second-order or a weakly first-order ph
transition.

Drummondet al. @26# proposed a new method using a
auxiliary mass in order to avoid this difficulty. We utilize
their idea and developed a new method to calculate the
fective potential. We then investigated the phase transitio
the scalar model using theauxiliary-mass methodand
showed it is second order correctly@27#. It is a great advance
in finite-temperature field theory, because the phase tra
tion in the scalar model is indicated to be first order inc
rectly by perturbation theory with a daisy resummati
@7,28#. We note that the method was able to reproduce
result with a superdaisy approximation@29#.
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Since the equation we must solve in the auxiliary-ma
method is a nonlinear partial differential equation for t
effective potential, it cannot be solved analytically and m
be solved by a numerical method. It is, however, difficult
solve partial differential equations numerically because
numerical instability@30#. What is worse, the nonlinearity o
the equation prevents us from using methods establishe
the case of a linear equation. We could not, therefore, m
the mesh size arbitrary small; the investigation in Ref.@27#
was not accurate quantitatively. In the present paper, we
an improved numerical method given in the Append
which does not suffer from instability and obtains accur
universal quantities. Unlike the rough values in@27#, they are
beyond the values obtained from the Landau approximat

The present paper is organized as follows. In the n
section we review the auxiliary-mass method developed
@27#. In Sec. III the effective potential is shown as the te
perature varies. We then focus on the behavior of it arou
the critical temperature, and calculate the universal qua
ties. These values are compared with values obtained f
other methods. The summary and discussion are present
Sec. IV. In the Appendix we explain the numerical meth
we used.

II. REVIEW OF THE AUXILIARY-MASS METHOD

We review the method to calculate an effective poten
at the temperature where perturbation theory is not relia
@27#. We considerlf4 theory which is defined by the La
grangian density

LE52
1
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~1!

whereJ is an external source function. Ifm2 is negative, the
scalar fieldf develops the nonvanishing field expectati
value atT50. First, the effective potential is calculated wi
a positive mass squaredM2 which is as large as the temper
ture T2. This selection of the mass permits us to use per
bation theory without failure, because the loop expans
7460 © 1998 The American Physical Society
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parameter there islT/M;l @7,31,32#, which is small when
the coupling constantl is small. Using perturbation theory
the effective potential is calculated as follows:

V5
1

2
M2f̄21

l

4!
f̄41

T

2p2

3E
0

`

dr r 2logF12expS 2
1

T
Ar 21M21

l

2
f̄2D G .

~2!

Here, only the one-loop thermal correction is left and t
quantum correction is neglected, because it should be n
gible when the coupling constantl is sufficiently small.

We then extrapolate the effective potential~2! to the
negative mass squared1 m252m2 using the following evo-
lution equation:

]V

]m2
5
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f̄21

1

2p i
E

2 i`1e
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3E d3p

~2p!3
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21p21m21 ~l/2!f̄21P

1

ebp021
,

~3!

where f̄ is the expectation value of the field andP
5P(p2,2p0

2 ,f̄,m2,t) is the full self-energy. The therma
correction is left and the quantum correction is neglec
here, too. Of course,P cannot be calculated exactly; w
need an appropriate approximation in order to calculate
effective potential from Eq.~2!. Because the effective poten
tial is a generating function ofn-point functions with zero
external momentum, neglect of the momentum depende
in P allows us to make the following replacement:

m21
l

2
f̄21P~0,0,f̄,m2,t!→

]2V

]f̄2
. ~4!

1Hereafter we use the unitm51. All dimensionful quantities are
measured in this unit.

FIG. 1. Real part of the effective potential (l51). The values
of the origin are set to zero. A stable point comes to be z
smoothly as the temperature increases.
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The evolution equation~3! can be converted to a partial dif
ferential equation using this replacement as follows:
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]m2
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f̄21

1

4p2
E
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`

dr r 2
1

Ar 21 ~]2V/]f̄2!

3
1

exp@~1/T!Ar 21 ~]2V/]f̄2!#21
. ~5!

The effective potential can be calculated by solving t
partial differential equation~5! with the initial condition~2!.
The effective potential has an imaginary part below the cr
cal temperature and an analytic continuation is done so
this imaginary part is negative@27#. Since the evolution
equation~5! is a complicated nonlinear partial differentia
equation, it can be solved only by numerical methods.

III. RESULTS

We calculate the effective potential numerically using t
method in the Appendix. The real part of the effective p
tential as the temperature varies is shown in Fig. 1. A sta

o
FIG. 2. Imaginary part of the effective potential (l51). The

magnitude, which shows the instability of the state, increases as
field expectation value decreases.

FIG. 3. Phase diagram oflf4 theory. A second-order phas
transition is observed on the boundary. The dots represent va
calculated using the auxiliary-mass method. The dotted line re
sents the leading result of perturbation theory@35#.
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TABLE I. Critical exponents and critical amplitude obtained from various methods. Since a first-
phase transition is indicated, the critical exponents cannot be determined using finite-temperature field
~FT! within one-loop order. We note that there are many nonperturbative methods based on the ren
ization group~RG! idea which we do not refer to here. The central values of them are shown. Values
parentheses are determined using scaling relations.

g n b a d h x1 /x2

Auxiliary-mass method 1.37 0.385 0.12 4.0 3.4
FT Perturbation One-loop * * * * * * *

theory Two-loop 1.0 0.5 0.5 0.0 3.0 0.0 2.0
Perturbation Fixed dim. 1.24 0.630 0.325 0.11 4.82 0.317 4.8
theory @36# e exp. 1.24 0.631 0.327 0.11 4.79 0.349 4.70

RG Nonperturbative Sharp cutoff@19# ~1.38! 0.690 ~0.345! ~20.07! ~5.0! 0.0 *
Smooth ]0 ~1.32! 0.660 ~0.33! ~0.02! ~5.0! 0.00 *
cutoff @17# ]2 ~1.20! 0.618 ~0.327! ~0.146! ~4.67! 0.054 *

Lattice Monte Carlo@37# 1.24 0.629 0.324 0.113 4.83 0.027
Binary fluids 1.236 0.625 0.325 0.112 4.3

Experiment@36# Liquid vapor 1.24 0.625 0.316 0.107 5.0
Antiferromagnets 1.25 0.64 0.328 0.112 4.9

Landau approximation 1.0 0.5 0.5 0.0 3.0 0.0 2.0
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field expectation valuef̄c , where the effective potential ha
its minimum, comes to be zero smoothly as the tempera
increases. This indicates that a second-order phase trans
takes place in this model correctly@33,34#. The imaginary
part of the effective potential below the critical temperatu
is shown in Fig. 2. One can observe that the magnitude o
increases as the field expectation value decreases; this
trates that a state with a smaller field expectation value is
stable below the critical temperature. The critical tempe
ture as a function of the coupling constantl is shown in Fig.
3. This shows a similar behavior to the leading result o
tained in Ref.@35#, but has a slight difference (;2%). In the
remainder of this section we determine some critical ex
nentsb, d, g1/2, anda. The amplitude ratiox1 /x2 is also
determined. The results are summarized in Table I.

First, we observe the stable pointf̄c carefully. Figure 4
showsf̄c as a function of temperature. It decreases mo
tonically and vanishes smoothly as the temperature
creases. We then focus on its behavior near the critical t
perature Tc and determine b, which relates the
magnetization to the temperature nearTc . This is defined as
follows:

fc}~2t!b ~t;0,T,Tc!, ~6!

wheret5(T2Tc)/Tc . We plot log(f̄c) against log(2t) in
Fig. 5; we fit the data to a linear function and draw it in F
5. We determineb from the gradient of it. We findb
50.385.

Next, we determine the exponentd which is defined as
follows:

f̄}J1/d5S ]V

]f̄
D 1/d

~T5Tc!. ~7!

One can derive the following relation from this:

V}f̄d11 ~T5Tc!. ~8!
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We show the effective potential atTc in Fig. 6. We plot
log(V) against log(f̄) in Fig. 7; we fit the data to a linea
function and draw it in Fig. 7. We determined from the
gradient of it. The result isd54.0.

Then, we determineg1/2 andx1 /x2 . They are defined
as follows through the susceptibility:

x[
]f̄

]J
U

J50

;x1t2g1
~t;0,T.Tc!, ~9!

x[
]f̄

]J
U

J50

;x2t2g2
~t;0,T,Tc!. ~10!

To calculatex, we relatex to the curvature using the fol
lowing identity derived from the definition of the effectiv
potential:

FIG. 4. Stable field expectation value as a function of tempe
ture (l51). It decreases monotonically and vanishes smoothly
the temperature increases.
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FIG. 5. Plot of log(f̄)-log(2t) (l51). The data points are fit to
a linear function. Using its gradient,b is determined.

FIG. 6. Effective potential at the critical temperature (l51).

FIG. 7. Plot of log(V)-log(f̄) (l51). The data points are fit to
a linear function. Using its gradient,d is determined.
FIG. 8. Curvature at minimum point]2V/]f̄2 as the tempera-
ture varies (l51).

FIG. 9. Plots of log(]2V/]f2)-log(utu) (l51). The data points
are fit to linear functions. Using their gradients,g1/2 andx1 /x2

are determined.

FIG. 10. Second derivative of the effective potential with r
spect to temperature (l51).
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]f̄

]J
U

J50

5S ]2V

]f2D 21U
f̄5fc

. ~11!

We show (]2V/]f2)21uf̄5fc
as a function of temperature i

Fig. 8. We also plot log(]2V/]f2) against log(utu) in Fig. 9;
we fit the data to linear functions and draw them in Fig.
We determineg1/2 from the gradient of it andx1 /x2 from
the intercepts. We findg[g15g251.37,x1 /x253.4.

Finally, we pay attention to the second derivative of t
effective potential with respect to the temperature, which
proportional to the specific heatC. The exponenta is de-
fined as follows:2

C}
]2V

]t2
}t2a ~t;0!. ~12!

This derivative is shown in Fig. 10 as a function of tempe
ture. We focus on its behavior aroundTc in Fig. 11 and
observe that it blows up there. One of the critical expone
a, is determined using this. The result isa50.12.

The results are summarized in Table I and compared w
results obtained by various methods. A discussion is p
sented in the next section.

IV. SUMMARY AND DISCUSSION

The critical exponents and the amplitude ratio were de
mined using the auxiliary-mass method developed in R
@27# by the improved numerical method in the Append
The results are summarized in Table I. We found thatlf4

theory shows a second-order phase transition as it sho
Though the critical exponents calculated here do not sat
the scaling relations, they satisfy the inequalities of criti
exponents. For example, the inequalities given by Griffi
@38#,

2Though the amplitude ratio of the specific heat can also be
fined, it is not determined because of numerical reasons.

FIG. 11. Specific heatC as a function oft around the critical
temperature. One can observe that it blows up around the cri
temperature. One of the critical exponents,a, is determined from
this.
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g2>b~d21!, ~13!

g1~d11!>~22a!~d21!, ~14!

are satisfied. In the following we compare our results w
others’.

First, the results are compared with the values obtained
perturbative finite-temperature field theory with a daisy
summation. Since a first-order phase transition is indicate
one-loop order@7,28#, the critical exponents cannot be dete
mined by perturbation theory. At two-loop order, a secon
order phase transition is observed and the critical expon
are the same as those obtained by the Lan
approximation.3 In comparison with these values, the resu
obtained in the present paper are considerably good.

Second, they are compared with the values obtained
the renormalization group and by lattice simulation, whi
they agree with greatly. In comparison with these accur
values, our results are not very good. These errors are p
ably caused by the replacement~4!. Since this replacement i
based on the neglect of momentum dependence inP, we
have to take into account the momentum dependence in
der to improve our results@39#.

As mentioned in Sec. I, finite-temperature field theory
an optimum theory to investigate phase transitions; it
based on statistical principles and can be applied to b
first-order and second-order phase transitions. Perturba
theory, however, often breaks down and it prevents us fr
using finite-temperature field theory. The auxiliary-ma
method enables finite-temperature field theory to be use
various situations.
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APPENDIX: NUMERICAL METHOD

The numerical method, which we use to solve Eq.~5!, is
explained in this Appendix. The partial differential equatio
~5! is written as follows:

]V

]m2
5

1

2
f̄21 f S ]2V

]f̄2D . ~A1!

Here,f (x) is the integral in Eq.~5!. First, we make the lattice
shown in Fig. 12. The partial differential equation~5! is,
then, differenced as follows@30#:

e-

3We used the two-loop order effective potential calculated in@7#.
We determined the critical exponents from this both numerica
and analytically.

al
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Vi , j 112Vi, j

Dm2
5

1

2
f i

21 f XaS Vi 11,j 1122Vi , j 111Vi 21,j 11

~Df!2 D
1~12a!S Vi 11,j22Vi , j1Vi 21,j

~Df!2 D C. ~A2!

The parametera decides where the Laplacian]2V/]f̄2 is
evaluated. Ifa50 is selected, the Laplacian is evaluated
~a! in Fig. 12. The method of this selection is called t
explicit method, which we used in@27#. This method is
simple, becauseVx, j 11 is determined only by substitutin
Vx, j into the right-hand side. It, however, suffers from a n
merical instability, when a smaller meshDf is chosen@30#;
therefore, we could not make the mesh small in@27#. If a51
is selected, the Laplacian is evaluated at~b! in Fig. 12. The
method of this selection is called the implicit method, whi
does not suffer from numerical instability at least iff (x) is a
linear function@30#—as far as we know, whenf (x) is not a
linear function as in our case, not many things are known
a51/2 is selected, the Laplacian is evaluated at~c! in Fig.
12. The method of this selection is called the Cran
Nicholson method, which also does not suffer from nume
cal instability at least iff (x) is a linear function. What is
more, the result converges more rapidly with decreas
Dm2 using this method@30#. Both the implicit and the
Crank-Nicholson methods, however, require us to solve
coupled nonlinear equation~A2!; this prevents us from using
an established method in the casef (x)}x.

We developed two methods in order to overcome t
difficulty. The first method is based on a Taylor expansion
f (x). Equation~A2! is rewritten as follows:

Vi , j 112Vi , j

Dm2
5

1

2
f i

21 f XVi 11,j22Vi , j1Vi 21,j

~Df!2

1aS Vi 11,j 1122Vi , j 111Vi 21,j 11

~Df!2

2
Vi 11,j22Vi , j1Vi 21,j

~Df!2 D C. ~A3!

FIG. 12. Lattice used to difference Eq.~5!.
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Since the quantity in the parentheses behinda is the varia-
tion of the Laplacian per one step, it is small ifDm2 is
sufficiently small. We then expandf (x) around (Vi 11,j
22Vi , j1Vi 21,j /(Df)2):

Vi , j 112Vi , j

Dm2
5

1

2
f i

21 f S Vi 11,j22Vi , j1Vi 21,j

~Df!2 D
1aS Vi 11,j 1122Vi , j 111Vi 21,j 11

~Df!2

2
Vi 11,j22Vi , j1Vi 21,j

~Df!2 D
3 f 8S Vi 11,j22Vi , j1Vi 21,j

~Df!2 D
1higher order terms. ~A4!

This coupled equation is linear with respect toVx, j 11 and
can be solved easily@30#.

The second method is based on an iteration. In orde
solve Eq. ~A2!, we iterate as follows until a solution i
found:

Vi , j 11
n11 2Vi , j

Dm2
5

1

2
f i

21 fXaS Vi 11,j 11
n11 22Vi , j 11

n 1Vi 21,j 11
n

~Df!2 D
1~12a!S Vi 11,j22Vi , j1Vi 21,j

~Df!2 D C. ~A5!

Here,n is the number of the iteration. Note that we cann
replaceVi , j 11

n with Vi , j 11
n11 unlike the Gauss-Seidel method

which is a powerful method iff (x) is a linear function@30#.
Next, the relaxation method is used in order to improve
convergence@30#. Since this procedure is identical to th
linear case, we only write down the iteration equation wi
out an explanation:

Vi , j 11
n11 2Vi , j

Dm2

5vF1

2
f i

21 fXaS Vi 11,j 11
n11 22Vi , j 11

n 1Vi 21,j 11
n

~Df!2 D
1~12a!S Vi 11,j22Vi , j1Vi 21,j

~Df!2 D CG1~12v!Vi , j
n .

~A6!

Here, the relaxation parameterv is determined only by ex-
perience. The results of the two methods agree greatly. In
present paper, the latter method is used in order to determ
the universal quantities.
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