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Critical exponents and critical amplitude ratio of the scalar model
from finite-temperature field theory
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The critical exponents and the critical amplitude ratio of the scalar model are determined using finite-
temperature field theory with an auxiliary mass. A new numerical method is developed to solve an evolution
equation. The results are discussed in comparison with values obtained from the other methods.
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I. INTRODUCTION Since the equation we must solve in the auxiliary-mass
method is a nonlinear partial differential equation for the
The phase transition is an important phenomenon in pareffective potential, it cannot be solved analytically and must
ticle physics, cosmology, and condensed matter physics. THee solved by a numerical method. It is, however, difficult to
quark gluon plasma should be present in heavy ion collisionsolve partial differential equations numerically because of
and will give us a lot of valuable information on particle Numerical instabilityf 30]. What is worse, the nonlinearity of
physics[1]. Investigation into the chiral phase transition sug-the equation prevents us from using methods established in
gests that a number of flavors may be bounded from abovi&'€ case of a linear equation. We could not, therefore, make
[2,3]. In cosmology, the electroweak phase transition shouldN® Mesh size arbitrary small; the investigation in Ref]
be first order for electroweak baryogenefis5| and has was not accurate que}ntltatlvely. In the present paper, we use
been investigated attentive[$—14]. Needless to say, a va- an improved numerical method given in the Appendix,

riety of phase transitions has been observed and investigatéNJ].ICh does not §uﬁer fr_om instability and obtains accurate
. . . universal quantities. Unlike the rough valueg 27|, they are
precisely in condensed matter physics.

The field th tical hi tial i der 1o i beyond the values obtained from the Landau approximation.
ene eoretical approach Is essential in order 10 in- =, present paper is organized as follows. In the next

vestigate these ~phase transitions: finite-temperaturegetion we review the auxiliary-mass method developed in
chemical-potential field theoryd, 15|, perturbative and non- 57 |, sec. 11l the effective potential is shown as the tem-
perturbative renormalization group6-232, field theory on  perature varies. We then focus on the behavior of it around
lattices[23], and so on. Temperature can be naturally intro-the critical temperature, and calculate the universal quanti-
duced by statistical principles using finite-temperature fieldjes, These values are compared with values obtained from
theory. Not all the phase transitions, however, can be invessther methods. The summary and discussion are presented in

tigated by it; perturbation theory, which is the most powerfulSec. IV. In the Appendix we explain the numerical method
method at zero temperature, often breaks down around thge used.

critical temperature because of many interactions in the ther-

mal bath[24,25. Indeed, perturbation theory fails when it is Il. REVIEW OF THE AUXILIARY-MASS METHOD
applied to either a second-order or a weakly first-order phase
transition. We review the method to calculate an effective potential

Drummondet al. [26] proposed a new method using an at the temperature where perturbation theory is not reliable
auxiliary mass in order to avoid this difficulty. We utilized [27]. We considen ¢* theory which is defined by the La-
their idea and developed a new method to calculate the efrangian density
fective potential. We then investigated the phase transition of
the scalar model using thauxiliary-mass methodand 1/94\2 1 1 A
showed it is second order correcfB7]. It is a great advance  Lg=— E(a_) - E(V¢)2_ §m2¢2— 4—|¢4+J¢+ c.t.,
in finite-temperature field theory, because the phase transi- T '
tion in the scalar model is indicated to be first order incor- @)
rectly by perturbation theory with a daisy resummation
[7,28]. We note that the method was able to reproduce thisvhereJ is an external source function. ii® is negative, the
result with a superdaisy approximatip29]. scalar field¢ develops the nonvanishing field expectation

value atT=0. First, the effective potential is calculated with

a positive mass squaréd? which is as large as the tempera-
*Email address: ogure@icrhp3.icrr.u-tokyo.ac.jp ture T2. This selection of the mass permits us to use pertur-
"Email address: joe@hep-th.phys.s.u-tokyo.ac.jp bation theory without failure, because the loop expansion
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FIG. 1. Real part of the effective potential £1). The values FIG. 2. Imaginary part of the effective potential £1). The
of the origin are set to zero. A stable point comes to be zerqnagnitude, which shows the instability of the state, increases as the
smoothly as the temperature increases. field expectation value decreases.

parameter there iIsT/M~\ [7,31,33, which is small when
the coupling constant is small. Using perturbation theory, The evolution equatiofi3) can be converted to a partial dif-

the effective potential is calculated as follows: ferential equation using this replacement as follows:
1 — N— T
V=_M2p%+ —p*+ — ov 1 1 (= 1
2 n? o —=—¢>+—| drr? —
om? 2 4g?Jo Vr2+ (82V1ag?)

) 1 )\_
XJ drr2logl 1—exp — =\/r2+ M2+ =¢?||.
0 T 2

®

1
X — .
2) ex (UT)Vr2+ (0?VIdg?)]—1

Here, only the one-loop thermal correction is left and the  The effective potential can be calculated by solving the
quantum correction is neglected, because it should be neglsartial differential equatioris) with the initial condition(2).
gible when the coupling constantis sufficiently small. The effective potential has an imaginary part below the criti-
We then extrapolatezthe e;‘fect_we potenti@ to the  ca| temperature and an analytic continuation is done so that
negative mass squareth’= — u? using the following evo-  ths imaginary part is negativg27]. Since the evolution
lution equation: equation(5) is a complicated nonlinear partial differential

equation, it can be solved only by numerical methods.
N 1, 1 [Fiere

+— d
o2 27 2] i PO lll. RESULTS
J dp 1 1 We calculate the effective potential numerically using the
32, .2 > 5 Bro_ 1’ method in the Appendix. The real part of the effective po-
(2m)" =potp~+m=+ (M2) 711 o1 tential as the temperature varies is shown in Fig. 1. A stable
()
where ¢ is the expectation value of the field arid mi sl massmeied o |
=II(p?,— p3,¢,m?,7) is the full self-energy. The thermal ol

correction is left and the quantum correction is neglected
here, too. Of coursell cannot be calculated exactly; we

need an appropriate approximation in order to calculate the .
effective potential from Eq(2). Because the effective poten- 7c =} |

35

tial is a generating function afi-point functions with zero w0l
external momentum, neglect of the momentum dependence sl e
in IT allows us to make the following replacement: S
10 | .
24 X 11(0,07,mr) - o @ |
m - 7 b Im IT He' L i3 1 1 1 1 1 e 1
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FIG. 3. Phase diagram of¢* theory. A second-order phase
transition is observed on the boundary. The dots represent values
'Hereafter we use the unjit=1. All dimensionful quantities are calculated using the auxiliary-mass method. The dotted line repre-
measured in this unit. sents the leading result of perturbation the[3§].
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TABLE I. Critical exponents and critical amplitude obtained from various methods. Since a first-order
phase transition is indicated, the critical exponents cannot be determined using finite-temperature field theory
(FT) within one-loop order. We note that there are many nonperturbative methods based on the renormal-
ization group(RG) idea which we do not refer to here. The central values of them are shown. Values in the
parentheses are determined using scaling relations.

Y v B @ ) 7 x+/x-
Auxiliary-mass method 1.37 0.385 0.12 4.0 3.4
FT Perturbation One-loop * * * * * * *
theory Two-loop 1.0 0.5 0.5 0.0 3.0 0.0 2.0
Perturbation Fixed dim. 1.24 0.630 0.325 0.11 482 0317 4.82
theory[36] € exp. 124 0.631 0.327 0.11 479 0349 470
RG Nonperturbative Sharp cutdff9] (1.3 0.690 (0.345 (-0.09» (5.0 0.0 *
Smooth ® (1.32 0.660 (0.33 (0.02 (5.0 o0.00 *
cutoff [17] # (1.20 0.618 (0.327 (0.146 (4.67) 0.054 *
Lattice Monte Carld 37] 1.24 0.629 0.324 0.113 4.83 0.027
Binary fluids 1.236 0.625 0.325 0.112 43
Experiment 36] Liquid vapor 1.24 0.625 0.316 0.107 5.0
Antiferromagnets 125 0.64 0.328 0.112 4.9
Landau approximation 1.0 0.5 0.5 0.0 3.0 0.0 2.0

field expectation value,, where the effective potential has We show the effective potential & in Fig. 6. We plot
its minimum, comes to be zero smoothly as the temperaturlvg(V) against log$) in Fig. 7; we fit the data to a linear
increases. This indicates that a second-order phase transitifunction and draw it in Fig. 7. We determing from the
takes place in this model correctl33,34. The imaginary gradient of it. The result i$=4.0.

part of the effective potential below the critical temperature  Then, we determine™'~ and y, /x_ . They are defined

is shown in Fig. 2. One can observe that the magnitude of iais follows through the susceptibility:
increases as the field expectation value decreases; this illus-
trates that a state with a smaller field expectation value is less

stable below the critical temperature. The critical tempera- ag N

ture as a function of the coupling constanis shown in Fig. x=—=| ~x+7 7 (r~0T>T,), 9)

3. This shows a similar behavior to the leading result ob- 3150

tained in Ref[35], but has a slight difference{2%). In the

remainder of this section we determine some critical expo-

nentsB, 8, y"/~, anda. The amplitude ratigy,. /x_ is also i

determined. The results are summarized in Table I. XEE ~x_77  (7~0T<T,). (10
J=0

First, we observe the stable poiatC carefully. Figure 4

shows ¢ as a function of temperature. It decreases mono-
tonically and vanishes smoothly as the temperature in-
creases. We then focus on its behavior near the critical te
perature T. and determine B8, which relates the
magnetization to the temperature n@ar This is defined as
follows:
b= (—7F  (7~0T<Ty), (6)

where 7=(T—T.)/T.. We plot log(.) against log{-7) in
Fig. 5; we fit the data to a linear function and draw it in Fig.
5. We determineB from the gradient of it. We find3
=0.385.

Next, we determine the expone#fitwhich is defined as
follows:

To calculatey, we relatey to the curvature using the fol-
owing identity derived from the definition of the effective
potential:

0.35
03

026

¢, ot

. gv\ e ,
oI o= —| (T=T,). (7
a(f) '0’950,004 -o.(;os -o,<.)02 -o.&m 0 O.l;DI 0002 T
One can derive the following relation from this: FIG. 4. Stable field expectation value as a function of tempera-
_ ture \=1). It decreases monotonically and vanishes smoothly as
Vo™l (T=T,). (8)  the temperature increases.
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FIG. 5. Plot of Iog@)-log(— 7) (A=1). The data points are fit to

a linear function. Using its gradieng is determined. FIG. 8. Curvature at minimum point?V/d$? as the tempera-
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FIG. 9. Plots of logi?V/d¢?d)-log(|7) (\=1). The data points
are fit to linear functions. Using their gradients’’~ and y . /x_

FIG. 6. Effective potential at the critical temperatu 1). .
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s game Yy =B(5-1), (13)
' Y8+ 1)=(2-a)(5-1), (14)
_az—v 34z l"@\?\o
art il "%?Q ] are satisfied. In the following we compare our results with
S others’.
* e ] First, the results are compared with the values obtained by
08 e, perturbative finite-temperature field theory with a daisy re-
00000080, 3 . . . . .. .
s s0sat00, summation. Since a first-order phase transition is indicated at

one-loop ordef7,28], the critical exponents cannot be deter-
mined by perturbation theory. At two-loop order, a second-
order phase transition is observed and the critical exponents
are the same as those obtained by the Landau

temperature. One can observe that it blows up around the Criticﬁpproxmatlorﬁ In comparison with these values, the results

temperature. One of the critical exponens,is determined from obtained in the present paper are_conS|derany QOOdZ
this. Second, they are compared with the values obtained by

the renormalization group and by lattice simulation, which
they agree with greatly. In comparison with these accurate
. (11) values, our results are not very good. These errors are prob-
— ably caused by the replacemed}. Since this replacement is
9= based on the neglect of momentum dependencH ,irwe
have to take into account the momentum dependence in or-
We show ¢*V/3$?) ~*[,,_as a function of temperature in der to improve our result39].
Fig. 8. We also plot log@V/a4?) against log) in Fig. 9: As mentloned in Sec._ I, f|n|_te-temperature f|elq. theory is
we fit the data to linear functions and draw them in Fig. 9.2" optimum thepry to investigate phase transitions; it Is
We determiney*/~ from the gradient of it angt, /x_ from t_)ased on statistical principles and can b_e_: applied to bqth
the intercepts. We fing=y* =y~ =1.37,x, /x_=3.4. first-order and second-order phase trans_|t|0ns. Perturbation
Finally, we pay attention to the second derivative of thetN€0ry, however, often breaks down and it prevents us from
effective potential with respect to the temperature, which i&/Sing finite-temperature field theory. The auxiliary-mass
proportional to the specific he&. The exponent is de- method enables finite-temperature field theory to be used in

fined as follows? various situations.
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FIG. 11. Specific hea€ as a function ofr around the critical
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observe that it blows up there. One of the critical exponents,
a, is determined using this. The resultds=0.12.
The results are summarized in Table | and compared with APPENDIX: NUMERICAL METHOD

results obtained by various methods. A discussion is pre- The numerical method. which we use to solve ), is

sented in the next section. explained in this Appendix. The partial differential equation
(5) is written as follows:
IV. SUMMARY AND DISCUSSION

The critical exponents and the amplitude ratio were deter- N1
mined using the auxiliary-mass method developed in Ref. 2 T2
[27] by the improved numerical method in the Appendix. om? 2
The results are summarized in Table |. We found thef
theory shows a second-order phase transition as it should.

Though the critical exponents calculated here do not satisfidere,f(x) is the integral in Eq(5). First, we make the lattice
the scaling relations, they satisfy the inequalities of criticalshown in Fig. 12. The partial differential equati@db) is,
exponents. For example, the inequalities given by Griffithshen, differenced as follow{30]:

[38],

Favs

Pyl (A1)

3We used the two-loop order effective potential calculatefi7in
>Though the amplitude ratio of the specific heat can also be deWe determined the critical exponents from this both numerically
fined, it is not determined because of numerical reasons. and analytically.
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Since the quantity in the parentheses behins the varia-
tion of the Laplacian per one step, it is small Aim? is
sufficiently small. We then expand(x) around ;4

—2Vi'j+Vi_1J/(Aq§)2):

Vij+1—Vij _
Am?

E¢i2+f Vig1j— 2V j+Vio

2 (Ag)?

(Vi+1,j+1—2Vi,j+1+Vi—1,j+1

@ 2

(Ad)

Vit1j—2VijtVioy
(Ag)?

Vis1j—2Vij+Vioy
(Ag)?

+ higher order terms.

!

X f

(A4)

This coupled equation is linear with respect\fg; ., and
can be solved easily30].
The second method is based on an iteration. In order to

evaluated. Ifa=0 is selected, the Laplacian is evaluated atsplye Eq.(A2), we iterate as follows until a solution is

(@ in Fig. 12. The method of this selection is called the
explicit method, which we used if27]. This method is
simple, becausé&/, ;. is determined only by substituting
V,,j into the right-hand side. It, however, suffers from a nu-
merical instability, when a smaller medhyp is choser30];
therefore, we could not make the mesh smallad]. If a=1

is selected, the Laplacian is evaluatedatin Fig. 12. The
method of this selection is called the implicit method, which
does not suffer from numerical instability at least (k) is a
linear function[30]—as far as we know, whef(x) is not a
linear function as in our case, not many things are known. |
a=1/2 is selected, the Laplacian is evaluatedatin Fig.

12. The method of this selection is called the Crank-

Nicholson method, which also does not suffer from numer
cal instability at least iff (x) is a linear function. What is
more, the result converges more rapidly with decreasin
Am? using this method30]. Both the implicit and the

Crank-Nicholson methods, however, require us to solve thg/

coupled nonlinear equatid2); this prevents us from using
an established method in the cdge)«x.

found:

M Vi =E¢-2+f(a e 2V Vg
Am? 2™ (Ag)?
Vii1 =2V +Vi_q;
+(1-a)| — J(A¢I>)JZ ' ’). (A5)

ere,n is the number of the iteration. Note that we cannot
eplaceV, ,; with V[, unlike the Gauss-Seidel method,
which is a powerful method if(x) is a linear functior{30].
Next, the relaxation method is used in order to improve the
convergencqg 30]. Since this procedure is identical to the

linear case, we only write down the iteration equation with-

%ut an explanation:

We developed two methods in order to overcome this

difficulty. The first method is based on a Taylor expansion of

f(x). Equation(A2) is rewritten as follows:

Vijra=Vij 1
Am?

¢2+f(vi+1,j_2Vi,j+Vi—l,j
I

2 (Ag)?

Vit1j+1= 2V j+1tVicgj
(Ag)?

Vig1j= 2V +Vi
(A¢)?

(A3)

N Vi
Am?
1, ?:11,j+1_2Vin,j+1+Vin—1,j+1

=w §¢i+f o >

(Ag)

Viiri—2Vi i+Vi_1:

+(l—a)( e e )+(1—w)v{1j.
(Ad)
(A6)

Here, the relaxation parameteris determined only by ex-
perience. The results of the two methods agree greatly. In the
present paper, the latter method is used in order to determine
the universal quantities.
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