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Critical properties of the O„N… invariant scalar model using the auxiliary-mass method
at finite temperature
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Using the auxiliary-mass method, the O~N! invariant scalar model is investigated at finite temperature. This
mass and an evolution equation allow us to calculate an effective potential without an infrared divergence. A
second order phase transition is indicated by the effective potential. The critical exponents are determined
numerically.@S0556-2821~98!09418-1#

PACS number~s!: 11.10.Wx, 05.70.Fh, 11.15.Tk, 11.30.Qc
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Symmetry restoration of the O~N! scalar model at high
temperature is very important since many physical syste
belong to the same universality class: the polymer ph
transition (N→0), critical liquid-vapor phase transition (N
51), alloy ~e.g. b brass! phase transition (N51), uniaxial
ferromagnet phase transition (N51), superfluid phase tran
sition (N52), ferromagnet phase transition (N53), and
chiral phase transition with two flavor massless qua
(N54) @1,2#.

The phase transition should be investigated by fin
temperature field theory, which is based on the statist
principle only. Perturbation theory, however, breaks do
around the critical temperature when the phase transitio
second or weakly first order@3#, even if daisy diagrams
~ring-diagrams! @4–6# are resumed. Investigation into pha
transitions at finite-temperature has long been hampere
this failure. Many methods to avoid the failure were pr
posed: Cornwall-Jackiw-Tomboulis~CJT! method@7#, renor-
malization improvement@8#, novel summation@9#, Pade´ im-
provement @10#, exact renormalization group with
temperature@11#, and auxiliary-mass method@12–14#.

The auxiliary-mass method is used in the present pa
The method is based on the following idea. First an effect
potential can be calculated at large mass by the perturba
theory since it is reliable there. Second the effective poten
is extrapolated to the small mass range, where the pertu
tion theory is not reliable, using an evolution equation.
nally various quantities~e.g. critical exponents! are deter-
mined from the effective potential. The method is applied
O~N! scalar model in three spatial dimensions concretely
the following; the phase transition of the model is inves
gated and the critical exponents are determined.

We consider the following Lagrangian density:
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where the subscriptE refers to Euclidean, the index ‘‘a’’
runs from 1 to N,Ja is an external source function andc.t.
is the abbreviation ofcounterterms. First the effective po-
tentialV is calculated by the perturbation theory within on
loop order at large massm25M25O(T2). We choose field
expectation valuesf̄a5f̄d1a without a loss of generality
because of O~N! invariance:
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We note that the daisy-resummation is not necessary bec
of the large mass and one-loop zero-temperature effec
negligible if the coupling is weak. Next this effective pote
tial is extrapolated to smaller mass using the following ev
lution equation@13#:
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FIG. 1. The effective potential obtained by the auxiliary-mass method (N54, l51). The dashed curves represent the effective pot
tials above the critical temperature and the solid line shows it at the critical temperature. Second-order phase transition occurs at
temperature. Similar behavior are observed for the otherN andl.
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Here PH5PH(m2,f̄2,p0
2 ,p2,T) and PNG

5PNG(m2,f̄2,p0
2 ,p2,T) are the full self-energies fo

‘‘Higgs mode’’ and ‘‘Nambu-Goldstone mode,’’ that is
massive and massless modes in the broken phase re
tively. This equation is modified from that oflf4 theory
@13# straightforwardly through a diagonalization of th
propagator. Though this equation is exact, it cannot
solved without an approximation; because it includes the
propagator which is not known exactly. We then replace i
follows:
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This replacement corresponds to setting an external mom
tum of the full self-energy to zero.1 It allows us to convert
Eq. ~3! to the following partial differential equation:
FIG. 2. Critical temperature as a function ofN at l51 ~L!. This resembles a result of the perturbation theory at leading order~—! but
has a slight difference quantitatively.

1This is the first approximation of a systematic calculation@15#.
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FIG. 3. Second derivative of the effective potential with respect tof. The gradients are steeper for largerN.
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The effective potentialV is numerically evolved fromm2

5M2 down tom252m2, where O~N! symmetry is broken
at zero-temperature, under the initial condition Eq.~2!. We
solve it above the critical temperature only and can get s
ficient information about the critical phenomenon.

The effective potentials are calculated using numer
methods in Ref.@14#. They are shown in Fig. 1. We canno
observe a second minimum which is a hallmark of a fi
order phase transition. Instead, the curvature of the or
decreases and vanishes smoothly as temperature decre
one can, therefore, observe that the phase transition of
model is second order as it should be.

The critical temperature is shown as a function ofN in
Fig. 2. Though they resemble to a result of the perturba
theory at leading order@16#, Tc56A2/l(N12), which is
determined from the condition that mass with the daisy d
gram vanishes, they have a slight difference quantitative
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Finally the critical exponents,g and d, are determined
using this potential. We determineg from a second deriva-
tive of the effective potential with respect tof̄ at the mini-
mum. The critical exponentg is defined as follows:

x[
]f̄

]J1
U

Ja50

;t2g @t5~T2Tc!/Tc#. ~6!

The following identity then relates the second derivative
the susceptibility:
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. ~7!

Herefc is determined from the condition,]V/]f̄uf̄5fc
50.

The second derivative are shown in log-scale in Fig. 3.
then determine the gradients, which is the veryg we want.
One can observe that they become steeper asN increases;
then, g become larger. The results areg51.13 (N→0),
1.37 (N51), 1.47 (N52), 1.60 (N53), 1.66 (N54).
These results are summarized in Table I, compared with
Landau approximation and world best values.

TABLE I. The critical exponents,g and d, obtained in the
present paper. Those of Landau approximation~LA ! and world best
values ~WBV! are also summarized. We used lattice results
WBV.

g ~LA,WBV ! d ~LA,WBV !

N→0 @1# 1.13 ~1, 1.16! 3.8 ~3, 4.77!
N51 @1# 1.37 ~1, 1.24! 4.0 ~3, 4.76!
N52 @1# 1.47 ~1, 1.32! 4.2 ~3, 4.78!
N53 @1# 1.60 ~1, 1.40! 4.4 ~3, 4.78!
N54 @18# 1.66 ~1, 1.48! 4.4 ~3, 4.85!
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We determined using the effective potential at the critica
temperature. The critical exponentd is defined as follows:

f̄}J1
1/d5S ]V

]f̄
D 1/d

~T5Tc!. ~8!

The following relation, which derived from Eq.~8!, enables
us to determined from the effective potential at the critica
temperature:

V}f̄d11 ~T5Tc!. ~9!

The effective potential at the critical temperature is shown
Fig. 1. We determined from it. The results ared53.8 (N
→0), 4.0 (N51), 4.2 (N52), 4.4 (N53), 4.4 (N54).

In the present paper, we showed that the phase trans
of O~N! scalar model is second order using auxiliary-ma
method at finite temperature. This is great progress bec
we cannot show it using the perturbation theory with da
resummation—the traditional method to calculate the eff
tive potential at finite temperature@3#.
a
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Since the phase transition turned out to be second or
we determined the critical exponents of the phase transit
Though the results are not as accurate as world best va
they are much better than that obtained in the Landau
proximation. The error would be due to the replacement~4!.
We must improve the approximation in order to get mo
accurate values@15#.

In conclusion, the auxiliary-mass method turns out to
reliable not only qualitatively but also in rough quantitativ
estimation in O~N! invariant scalar model. This metho
would be reliable in the other models. What is more, we c
investigate not only second-order phase transition but a
first-order phase transition without any modifications@17#.
This method, therefore, enables us to investigate the ph
transition of various models: the cubic anisotropy model,
Abelian Higgs model, and the standard model.

We finally express our thanks to T. Inagaki for valuab
discussions and communications. J.S. was supported
JSPS.
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