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Critical properties of the O(N) invariant scalar model using the auxiliary-mass method
at finite temperature
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Using the auxiliary-mass method, thé€N) invariant scalar model is investigated at finite temperature. This
mass and an evolution equation allow us to calculate an effective potential without an infrared divergence. A
second order phase transition is indicated by the effective potential. The critical exponents are determined
numerically.[ S0556-282(198)09418-1]

PACS numbs(s): 11.10.Wx, 05.70.Fh, 11.15.Tk, 11.30.Qc

Symmetry restoration of the (@) scalar model at high where the subscripE refers to Euclidean, the indexa™
temperature is very important since many physical systemeuns from 1 to N,J, is an external source function acd.
belong to the same universality class: the polymer phasi the abbreviation o€ounterterms First the effective po-
transition (N—0), critical liquid-vapor phase transitioN(  tentialV is calculated by the perturbation theory within one-
=1), alloy (e.g. B8 bras$ phase transitionN=1), uniaxial loop order at large mass?’=M?=0(T?). We choose field

ferromagnet phase transitiofN € 1), superfluid phase tran- expectation valuesp,= ¢35,, without a loss of generality
sition (N=2), ferromagnet phase transitioN€3), and  pecause of QN) invariance:

N )]

chiral phase transition with two flavor massless quarks
(N_I__h4e) []Hz] . . . S V= EMZEZ‘F l 544_ T xdrrZ
phase transition should be investigated by finite 2 41 272 o
temperature field theory, which is based on the statistical
principle only. Perturbation theory, however, breaks down 1 N
around the critical temperature when the phase transition is Xlog l—ex;{ T \/ 12+ M2+ 5 ¢2”
second or weakly first ordef3], even if daisy diagrams
(ring-diagramy [4—6] are resumed. Investigation into phase T (=
transitions at finite-temperature has long been hampered by +(N-1) 22 f drr?
this failure. Many methods to avoid the failure were pro- 0
posed: Cornwall-Jackiw-Tombouli€JT) method[7], renor- 1 N
malization improvemenfi8], novel summatio9], Padeim- X log l—exp( T \/r2+M2+ 3 ¢2)
provement [10], exact renormalization group with
temperatur;{_ll], and auxmary-mass me_thc[d2—14]. We note that the daisy-resummation is not necessary because
The auxmgry-mass method is u_seo! In the_ present papep; o large mass and one-loop zero-temperature effect is
The method is based on the following idea. First an effective,q qjiginie if the coupling is weak. Next this effective poten-
potential can be calculated at large mass by the perturbati ial is extrapolated to smaller mass using the following evo-
theory since it is reliable there. Second the effective potentiq tion equatior| 13]:
is extrapolated to the small mass range, where the perturba-

tion theory is not reliable, using an evolution equation. Fi- N 1 1 [+iete

nally various quantitiee.g. critical exponenjsare deter- T2 ¢+ el dpo
mined from the effective potential. The method is applied to Tlete

O(N) scalar model in three spatial dimensions concretely in d%p 1
the following; the phase transition of the model is investi- xf 27

gated and the critical exponents are determined.

N —
_ _ _ : —po+ PP+ S G2+ I
We consider the following Lagrangian density: 2

1(da|? 1 1, ., L N=L frmre
EE:_E( 0',7.) _E(V¢a)2_§m2¢’a ><epo T—1+ 2w ) jwte Po
N " dp 1
_m((ﬁa) +Jaatc.t., N em® , , , A,
—potp+m +§ ¢+ 1y
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FIG. 1. The effective potential obtained by the auxiliary-mass metihbd4, N=1). The dashed curves represent the effective poten-
tials above the critical temperature and the solid line shows it at the critical temperature. Second-order phase transition occurs at the critical
temperature. Similar behavior are observed for the dthand\.

Here I, =1II,(m? ¢2,p2,p2T) and s , A, — 2V
=TIyo(M?,¢%,p2,p3T) are the full self-energies for m +E¢ +11,4(0,04,m 'T)HE

“Higgs mode” and “Nambu-Goldstone mode,” that is, ¢

massive and massless modes in the broken phase respec- 19V

tively. This equation is modified from that of¢* theory m2+ lgsz HNG(O,OE,mZ,T)H—&—. (4)
[13] straightforwardly through a diagonalization of the 6 b Ip

propagator. Though this equation is exact, it cannot be

solved without an approximation; because it includes the fullThis replacement corresponds to setting an external momen-
propagator which is not known exactly. We then replace it asum of the full self-energy to zerblt allows us to convert
follows: Eqg. (3) to the following partial differential equation:

6.5 T T T y T T T

auxiliary-mass method o
perturbation theory —
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FIG. 2. Critical temperature as a functionMfatA =1 (< ). This resembles a result of the perturbation theory at leading ¢rdiebut
has a slight difference quantitatively.

This is the first approximation of a systematic calculafib].

085010-2



CRITICAL PROPERTIES OF THE Q) INVARIANT ...

PHYSICAL REVIEW D 58 085010

0.01 T

N> ©
N=1 +
N=2 o
N=3 x
0.001 | N=4 a
0.0001
o’V
log[(—é,j;g)/ﬂ ] ey
1e-06 |
1607 |-
1e-08 L
1e-06 1e-05

0.0001 0.001 ]og 70.01

FIG. 3. Second derivative of the effective potential with respecp.tdhe gradients are steeper for larger
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The effective potentiaV is numerically evolved fronm?
=M?2 down tom?= — 2, where QN) symmetry is broken
at zero-temperature, under the initial condition E2). We
solve it above the critical temperature only and can get su
ficient information about the critical phenomenon.

The effective potentials are calculated using numerical

methods in Ref[14]. They are shown in Fig. 1. We cannot

observe a second minimum which is a hallmark of a firs
order phase transition. Instead, the curvature of the origin
decreases and vanishes smoothly as temperature decreases;

one can, therefore, observe that the phase transition of t
model is second order as it should be.
The critical temperature is shown as a functionNofn

Fig. 2. Though they resemble to a result of the perturbatiomnn=2 [1]

theory at leading ordef16], T.=6+v2/\(N+2), which is

determined from the condition that mass with the daisy dian=4 [18]

gram vanishes, they have a slight difference quantitatively

Finally the critical exponentsy and 6, are determined
using this potential. We determingfrom a second deriva-
tive of the effective potential with respect th at the mini-
mum. The critical exponeny is defined as follows:

Iz
0,

J,=0

[r=(T=T)/T]. (6)

The following identity then relates the second derivative to
the susceptibility:

FEVAR

122 v
P>

93,

(7)

Ja=0 b=d¢

Here ¢ is determined from the conditiom,\//aag: #.= 0.

The second derivative are shown in log-scale in Fig. 3. We
then determine the gradients, which is the verwe want.
One can observe that they become steepel &screases;
then, y become larger. The results are=1.13 (N—0),
1.37 (N=1), 1.47 \N=2), 1.60 (N=3), 1.66 (N=4).
These results are summarized in Table I, compared with the
Landau approximation and world best values.

TABLE I. The critical exponents;y and 8, obtained in the
present paper. Those of Landau approximatloh) and world best
values (WBV) are also summarized. We used lattice results as

be y (LA\WBV) 5 (LAWBV)
N—0 [1] 1.13(1, 1.16 3.8(3, 4.77
N=1[1] 1.37(1, 1.2 4.0(3, 4.76
1.47(1, 1.32 4.2(3,4.79
N=3[1] 1.60(1, 1.40 4.4(3, 4.79
1.66(1, 1.49 4.4(3, 4.85
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We determine’ using the effective potential at the critical

temperature. The critical exponeéits defined as follows:

1/6
E«Ji’5=(%) (T=T,). ®)
d

The following relation, which derived from E@8), enables
us to determine’ from the effective potential at the critical

temperature:

Vo p?™l (T=T,). 9)
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Since the phase transition turned out to be second order,
we determined the critical exponents of the phase transition.
Though the results are not as accurate as world best values,
they are much better than that obtained in the Landau ap-
proximation. The error would be due to the replacenidnt
We must improve the approximation in order to get more
accurate valuegl5].

In conclusion, the auxiliary-mass method turns out to be
reliable not only qualitatively but also in rough quantitative
estimation in @N) invariant scalar model. This method
would be reliable in the other models. What is more, we can

The effective potential at the critical temperature is shown ifnvestigate not only second-order phase transition but also

Fig. 1. We determine from it. The results are5=3.8 (N
—0), 40 N=1), 4.2 N=2), 4.4 N=3), 4.4 N=4).

first-order phase transition without any modificatidds].
This method, therefore, enables us to investigate the phase

In the present paper, we showed that the phase transitidf@nsition of various models: the cubic anisotropy model, the
of O(N) scalar model is second order using auxiliary-masgiPelian Higgs model, and the standard model.
method at finite temperature. This is great progress because
we cannot show it using the perturbation theory with daisy We finally express our thanks to T. Inagaki for valuable
resummation—the traditional method to calculate the effecdiscussions and communications. J.S. was supported by

tive potential at finite temperatuf&].
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