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Abstract

We show that the large mixing between νµ and ντ observed by the
SuperKamiokande collaboration is a quite natural prediction in a large
class of seesaw models. This large mixing is basically due to the unparallel
family structure suggested from the observed mass hierarchies in quark
and lepton mass matrices. We show that the unparallel family structure is
automatically realized in “coset-space family unification” model based on
E7/SU(5)×U(1)3. This model also suggests the small angle MSW solution
to the solar neutrino problem.

1 Introduction

T. Kajita from the SuperKamiokande collaboration has reported, in this con-
ference, very convincing evidence of neutrino oscillation in their atmospheric
neutrino data[1]. It is now clear that the long-standing puzzle of muon neu-
trino deficit in underground detectors[2] is due to the neutrino oscillation. A
remarkable feature of the oscillation is almost maximal mixing between νµ and
ντ (sin2 θ23 ≥ 0.8), in sharp contrast to the quark sector for which mixing angles
among different generations are all small. At first glance the rule governs the
lepton mass matrices seems significantly different from the one relevant for the
quark sector. We first show, in this talk, that the large mixing between νµ and
ντ is quite naturally understood in a large class of seesaw models[3].

2 General Consideration in Seesaw Models

We adopt the SU(5) grand unification (GUT) as an example to make our point
clearer, in which the lepton doublets belong to 5

∗ of SU(5) GUT. We also assume
supersymmetry(SUSY).

∗Talk is given by T. Yanagida
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Let us discuss first the up-type quark mass matrix that is given by the
following superpotential:

W = hij10i10j < H(5) > . (1)

The most natural explanation of the mass hierarchy is given by the Froggatt-
Nielsen mechanism[4]. We here assume a U(1) symmetry which is broken by a
condensation of a superfield φ. The observed mass hierarchy,

mt : mc : mu ≃ 1 : ǫ2 : ǫ4, (2)

suggests that ǫ =< φ > /MG ∼ 1/20 and the U(1) charges are 0, 1, 2 and -1 for
the third, second, first families of 10’s and the φ. Here MG is the gravitational
scale MG ≃ 2.4 × 1018GeV.

The down-type quark/charged lepton mass matrix is given by

W = fij10i5
∗

j < H(5∗) > . (3)

The observed mass hierarchy,

mb : ms : md = mτ : mµ : me ≃ 1 : ǫ : ǫ3, (4)

suggests that the third, second and first families of 5
∗ have the U(1) charges

A, A, and A+ 1, respectively. A crucial point is that the third and the second
families of 5

∗ have the same U(1) charge A. A could be 0 or 1. We take A = 0
for simplicity. We should stress here that the observed mass hierarchies in quark
and lepton mass matrices already suggest an unparallel family structure in Table
1.

U(1) charge
103 5

∗

3
5
∗

2
[0]

102 5
∗

1 [1]
101 [2]

Table 1: Unparallel Family Structure

Now, let us discuss the neutrino mass matrix. In a generic seesaw model it
is given by the following effective superpotential:

Weff =
κij

MνR

5
∗

i 5
∗

j < H(5)H(5) > (5)

The U(1) charge assignment for 5
∗

i leads to

κij ∼





1 1 ǫ
1 1 ǫ
ǫ ǫ ǫ2



 . (6)



SU(5) U(1)1 U(1)2 U(1)3
101 0 0 4
102 0 3 -1
103 2 -1 -1
5
∗

1
0 3 3

5
∗

2 2 -1 3
5
∗

3
2 2 -2

11 0 3 -5
12 2 -1 -5
13 2 -4 0
5 2 2 2

Table 2: U(1) charges of the NG multiplets. The U(1)1, U(1)2 and U(1)3
are the unbroken U(1)’s of coset-subspaces E7/E6×U(1), E6/SO(10)×U(1) and
SO(10)/SU(5)×U(1), respectively.

Notice that the U(1) charges for the superheavy right-handed neutrino νR are
canceled out in the effective neutrino mass matrix in eq.(5). From eq.(6) we eas-
ily see a large mixing close to the maximal between νµ and ντ . The appearance
of the large mixing is originated from the unparallel family structure discussed
above.1 On the contrary to the νµ-ντ mixing, we have small mixing between
νe and νµ or ντ . Thus, the small angle MSW solution [5] to the solar neutrino
problem [6] is also a quite natural expectation in a large class of seesaw models.

3 Coset-space Family Unification on E7/SU(5)×U(1)3

In this section we show that the unparallel family structure discussed in the
previous section is naturally obtained in the coset-space family unification[7]
based on E7.

The E7/SU(5)×U(1)3 model[8, 9] contains three families of 10i + 5
∗

i + 1i

(i = 1 − 3) and one 5 as NG multiplets. Here, the SU(5) is the usual GUT
gauge group. Their quantum numbers under the unbroken subgroup are given
in Table 2. Notice that the first family 101 has non-vanishing charge only for the
U(1)3 which means that the 101 is the NG multiplet for SO(10)/SU(5)×U(1).
Similarly, we find that 102, 5

∗

1
and 11 are NG multiplets for E6/SO(10)×U(1)

and the remaining fields are NG multiplets for E7/E6×U(1). Thus, it is now
clear that the unparallel family structure is an automatic prediction of this
coset-space family unification [10].

This model can not be quantized in the original form, since there is a
nonlinear-sigma model anomaly[11, 9]. However, this global obstruction is eas-
ily removed[9] by introducing a matter multiplet 5

∗ which is also needed for an

1This crucial point is emphasized by T. Yanagida and P. Ramond in this conference.



SU(5) gauge-anomaly cancellation[8]. We assume that some explicit breaking
induces an invariant mass for the NG 5 and this matter 5

∗ and we neglect them
in our discussion.

In addition to the NG multiplets we introduce a pair of Higgs multiplets 5H

and 5
∗

H . As long as the global E7 is exact these Higgs multiplets never have
Yukawa couplings to the NG quarks and leptons. Thus, the observed hierarchy
in quark-lepton mass matrices is regarded as a consequence of a hierarchy in the
explicit breaking of the global E7. This situation is very similar to that in the
QCD, where the mass hierarchy between NG pions and kaons (m2

K ≫ m2

π) is
originated from the hierarchy in quark masses (ms ≫ mu,d) which are explicit
breaking parameters of the chiral SU(3)L×SU(3)R.

We consider three steps for the explicit breaking:

E7 −→ E6 −→ SO(10) −→ SU(5),
ǫ0 ǫ1 ǫ2

(7)

which leads to the mass hierarchy

mt ≫ mc ≫ mu

mb ≫ ms ≫ md (8)

mτ ≫ mµ ≫ me.

To realize this hierarchy we assume that the global E7 is broken explicitly by
the fundamental representation of E7,56, which contains six breaking parame-
ters, ǫ0, ǭ0, ǫ1, ǭ1, ǫ2, ǭ2 that are all singlets of SU(5). They carry U(1) charges
as

ǫ0(−3, 0, 0), ǭ0(3, 0, 0)

ǫ1(−1,−4, 0), ǭ1(1, 4, 0) (9)

ǫ2(−1,−1,−5), ǭ2(1, 1, 5)

where the numbers in each parenthesis denote charges of U(1)1×U(1)2×U(1)3.
The desired hierarchy in eq.(7) is represented by

ǫ0 ≫ ǫ1 ≫ ǫ2. (10)

The structure of Yukawa couplings for the NG quarks and leptons depends
on U(1) charges of the Higgs 5H and 5

∗

H . To determine them, we consider that
the Higgs multiplets 5H and 5

∗

H belong to 27 of E6 in 133 of E7. Then, U(1)
charges for the 5H are given by

5H (2, 2, 2). (11)

The Higgs 5
∗

H is a linear combination of two 5
∗’s in 27 of E6

2 as

5
∗

H = sin θ5∗

16
+ cos θ5∗

10
(12)

2
27 of E6 is decomposed to 16 + 10 + 1 of SO(10). The 16 and 10 contain one 5 and

two 5
∗ of SU(5).



where U(1) charges for 5
∗

16
and 5

∗

10
are given by3

5
∗

16
(2,−1, 3) and 5

∗

10
(2, 2,−2). (13)

We now discuss Yukawa couplings for the quark and lepton multiplets. In
general, Yukawa couplings are given in a form anǫ

nψψH where ǫ, ψ and H stand
for the explicit breaking parameters, the NG multiplets and the Higgs multi-
plets, respectively. By our choice of the U(1) charges for the explicit breaking
parameters and Higgs multiplets, Yukawa couplings take the following form in
the leading order of the explicit breaking parameters, ǫ’s;

W = WU +WD +WE +Wν , (14)

WU =
∑

ij

aijYUij10i10j5H , (15)

WD = WE =
∑

ij

bijYD/Eij5
∗

i 10j5
∗

H , (16)

Wν =
∑

ij

cijYνij5
∗

i 1j5H , (17)

where WU , WD, WE and Wν represent superpotentials of Yukawa couplings
for up-type quarks, down-type quarks, charged leptons and neutrinos. In these
expressions Y ’s are given by,4, 5

YU ≃





ǫ2
2

ǫ1ǫ2 ǫ0ǫ2
ǫ1ǫ2 ǫ2

1
ǫ0ǫ1

ǫ0ǫ2 ǫ0ǫ1 ǫ20



 , (18)

YD/E ≃





ǫ1ǫ2 cos θ ǫ2
1
cos θ ǫ0ǫ1 cos θ

ǫ0ǫ2 cos θ ǫ0ǫ1 cos θ ǫ20 cos θ
ǫ0ǫ2 sin θ ǫ0ǫ1 sin θ ǫ2

0
sin θ



 , (19)

Yν ≃





ǫ2
1

ǫ0ǫ1 ǫ0ǫ2
ǫ0ǫ1 ǫ20 0
0 0 ǫ20



 (20)

3 The orthogonal combination of the 5
∗

16
and 5

∗

10
is assumed to have a GUT scale mass. We

also assume that color triplets in 5H and 5
∗

H receive a GUT scale mass after the spontaneous
breakdown of the SU(5) GUT. This requires a fine tuning. We do not, however, discuss this
fine tuning problem here, since it is beyond the scope of this talk.

4 One may wonder that in eq.(19) the (3,1) element of YD/E , has a term of ǫ0ǫ1. We do not
think that such a term appears there, since in the limit ǫ2 → 0, the global SO(10) symmetry
becomes exact and the 101 is the true NG multiplet which has no Yukawa interaction in the
superpotential.

5Precisely speaking, our coset-space E7/SU(5)×U(1)3 contains three dimensional param-
eters f0, f1 and f2. We assume f0 ∼ f1 ∼ f2 here, for simplicity. However, even if it is
not the case, one obtains the same form of Yukawa couplings as in eqs.(18), (19) and (20) by
redefining ǫ’s as ǫi = ǫ̃i/fi (i =0,1,2) where ǫ̃i are original dimensional parameters for the
explicit E7 breakings.



We have assumed the E7 representations for ǫi, 5H and 5
∗

H to determine
their U(1) charges. However, we consider that this assumption is over statement
since the E7 is already spontaneously broken. What is relevant to our analysis
is only their charges of the unbroken subgroup SU(5)×U(1)3. With this general
consideration it is impossible to estimate the coefficients aij , bij and cij in
eqs.(15), (16) and (17) and hence we assume that they are of O(1).

From the above Yukawa couplings in eqs.(18) and (19) we easily derive the
following mass relations;

mu

mc
∼
ǫ2
2

ǫ2
1

,

mc

mt
∼
ǫ2
1

ǫ2
0

,

me

mµ
=
md

ms
∼
ǫ2
ǫ0

sin−1 θ, (21)

mµ

mτ
=
ms

mb
∼
ǫ1
ǫ0

sin θ cos θ.

These relations describe very well the observed mass relations provided that

ǫ1
ǫ0

∼ 0.05,
ǫ2
ǫ1

∼ 0.05 and tan θ ∼ 1. (22)

We see that the Cabibbo-Kobayashi-Maskawa mixing angles for quarks be-
tween the 1st and the 2nd, the 2nd and the 3rd, and the 3rd and the 1st
family are of the order ǫ2/ǫ1, ǫ1/ǫ0, and ǫ2/ǫ0, respectively. It also describes
the observed mixing angles very well provided that the relations in eq.(22) are
satisfied.

We do not further mention details of the mass relations since there should be
corrections to the mass matrices in eqs.(18) and (19) from some higher dimen-
sional operators which may affect masses for lighter particles significantly. Oth-
erwise, we have a SU(5) GUT relation, md = me, which seems unrealistic[12].

So far, we have discussed the mass matrices for quarks and charged leptons
and found that the qualitative global structure of the obtained matrices fits very
well the observed mass spectrum for quarks and charged leptons (except for
md = me) and mixing angles for quarks if the relations in eq.(22) are satisfied6.

We are now at the point to discuss neutrino masses and lepton mixings. We
assume that Mayorana masses for right-handed neutrinos Ni are induced by
SU(5) singlet Higgs multiplets s̄i(1). We introduce two singlets s̄1(1) and s̄2(1)
whose U(1) charges7 are given by

s̄1(1, 4, 0) and s̄2(1, 1, 5). (23)

Their vacuum expectation values, 〈s̄1〉 and 〈s̄2〉 are expected to be of order of
the SU(5) GUT scale ∼ 1016 GeV.

6 The observed mass for the strange quark seems somewhat smaller than the SU(5) GUT
value[12].

7 These s̄i(1) are regarded as SU(5) singlet components of 56 of E7.



Majorana masses for Ni are induced from nonrenormalizable interactions of
a form;8

WN =
ǫ2

MG
NiNj s̄ks̄l. (24)

Here, MG is the gravitational scale MG ≃ 2.4 × 1018 GeV. Then, the matrix of
the Majorana masses takes the following form;9

MνR
=

1

MG





ǫ21s̄2
2 ǫ0ǫ1s̄2

2 ǫ0ǫ1s̄1s̄2
ǫ0ǫ1s̄2

2 ǫ2
0
s̄2

2 ǫ2
0
s̄1s̄2

ǫ0ǫ1s̄1s̄2 ǫ2
0
s̄1s̄2 ǫ2

0
s̄1

2



 , (25)

where all elements are multiplied by undetermined factors of O(1) like in the
case for quarks and leptons.

The neutrino masses are given by[3]

mν ≃ mνD
M−1

νR
mT

νD
, (26)

where
(mνD

)ij = cijYνij〈5H〉. (27)

Three eigenvalues of the matrix in eq.(26) are of order,mν1
∼ ǫ2

1
MG〈5H〉2/〈s̄2〉

2,
mν2

∼ ǫ20MG〈5H〉2/〈s̄2〉
2 and mν3

∼ ǫ20MG〈5H〉2/〈s̄1〉
2. It is remarkable that

for 〈5H〉 ∼ 100GeV, ǫ0 ∼ 1 and 〈s̄i〉 ∼ 1016GeV we get the desired mass for
neutrino mνi

∼ 0.1 eV.
From the Mikheev-Smirnov-Wolfenstein solution(MSW)[5] to the solar neu-

trino problem, we have[13, 14]

δm2

νeνµ
≃ 10−6 − 10−5eV2. (28)

We see that there are two choices
(

〈s̄1〉

〈s̄2〉

)2

∼ 10−2 − 10−1 or

(

〈s̄2〉

〈s̄1〉

)2

∼ 10−2 − 10−1 (29)

to account for atmospheric and solar neutrino anomalies, simultaneously. Thus,
all off-diagonal elements of the diagonalization matrix for the neutrino mass
matrix in eq.(26) are of O(0.1) in either cases.

However, it is very interesting that the mixing angle for lepton doublets
which mixes charged leptons in the second and the third family is of order tan θ
(see eq.(19)) and hence of the order 1. This means, together with the above
result, that the weak mixing angle relevant for νµ-ντ oscillation can be so large,
sin2 2θνµντ

≃ 1, as required for explaining the observed atmospheric neutrino
anomaly. On the other hand, the mixing angle for νµ − νe oscillation is very
small, θνµνe

∼ O(0.1), which may fit the small angle MSW solution[13, 14] to
the solar neutrino problem.

8Other mass terms such as ǫ2NiNj can be forbidden by some chiral symmetry.
9The mass term of the form ǫ4NiNj may produce a similar form to eq.(25) if ǭ0 = 0 and

ǭ1, ǭ2 6= 0.



4 Conclusion and Discussion

In this talk we have shown that the coset-space family unification on E7/SU(5)×U(1)3

naturally accommodates the large lepton mixing, sin2 2θνµντ
≃ 1, necessary for

explaining the atmospheric neutrino anomaly reported by the SuperKamiokande
collaboration[1]. The main reason why we have a large mixing of the SU(2)
lepton doublets in the second and the third family is the twisted structure of
family. Namely, the 5

∗’s in the second and the third family both live on the
same coset-subspace E7/E6×U(1). On the other hand the 10’s in the third, the
second and the first family live on the separate coset-subspaces, E7/E6×U(1),
E6/SO(10)×U(1) and SO(10)/SU(5)×U(1), respectively. This unparallel family
structure is an unique feature of the present coset-space family unification.

It is quite natural that the NG multiplets carry no U(1)R charge. Thus, the
dangerous lower (d = 4, 5) dimensional operators contributing to proton decays
are forbidden by imposing the R-invariance U(1)R. However, the R invariance is
broken at the gravitino scale at least and hence we may expect small R-violating
d = 4 operators.

The existence of approximate global E7 symmetry is the most crucial as-
sumption in our coset-space family unification. We hope that it is understood
by some underlying physics at the gravitational scale. The Horava and Witten
M theory[15] will be a hopeful example, since it is known[16] that there appear
enhanced global symmetries on the 10 dimensional boundary of 11 dimensional
space-time .
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