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ABSTRACT 

Simultaneous measurement of the nanoprobe indentation force and the photoluminescence 

(PL) of In0.5Ga0.5As/GaAs quantum dots (QDs) is successfully achieved by introducing a 

specially designed loadcell into the nanoprobe indentation system. By using this improved 

system, the emission properties of self-assembled In0.5Ga0.5As/GaAs quantum dots (QDs) 

under nanoprobe indentation are investigated under low temperature and high vacuum 

conditions. Energy shifts as large as 90 meV induced by nanoprobe indentation are observed 

in the QDs. Further, the increase in the emission energy of the QDs varies from peak to peak 

under the same indentation force. In order to clarify this mechanism, simulations are carried 

out based on a three-dimensional finite element and six-band strain-dependent k·p 

Hamiltonian. The simulation results are in good agreement with the experimental ones. The 

results of the nanoprobe indentation experiments show that the change in the position of the 

QD relative to the nanoprobe results in a variation in its energy shift rate. This dependence of 

the energy shift rate of a QD on its position is also validated by repeated indentation with 

horizontal scan experiment. 
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1. INTRODUCTION 

Self-assembled quantum dots (QDs), owing to their zero-dimensional confinements and 

consequently discrete energy spectra with δ-like densities of states, have promising 

applications in electronic and optoelectronic devices [1, 2], such as semiconductor lasers [3-5], 

light emitting diodes [6, 7], single electron transistors [8, 9], and infrared detectors [10, 11].  

One of the material pairs, InxGa1-xAs/GaAs QDs with various composition x, is an intense 

research topic since the InxGa1-xAs remains a direct-gap material over its entire composition 

range, suitable for laser diodes use based on double heterojunctions. By using InGaAs/GaAs 

QDs, Laser diodes with a lasing wavelength from 1100 nm to 1300 nm have been realized 

with particularly small threshold current densities and high temperature stability [12, 13]. 

In order to improve the performance of QD-based devices, it is important to control the 

discrete energy levels of QDs. The discrete energy levels of QDs can be tuned by 

external/internal strain; the shift in the emission wavelength produced by a strain-release 

capping layer has been reported for applications in telecommunication [14, 15], and the 

decrease in the splitting of fine structures by thermal annealing has been examined for 

potential implementation in quantum information systems [16]. A promising method for 

examining the effects of strain on the emission properties of QDs is to apply an external strain 

field by nanoprobe indentation. In recent experimental works, the application of nanoprobe 

indentation was found to produce large energy shifts in QDs [17-21]. Simulations suggested 

that these energy shifts were induced by the local strain field produced by nanoprobe 

indentation [19-21]. As compared with the strain-release capping layer and thermal annealing 
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techniques, the modulation of the discrete energy levels by nanoprobe indentation is more 

controllable and reproducible and can thus contribute significantly to the investigation and 

application of the optical and electronic properties of QDs [18, 19]. Unfortunately, in these 

works related to nanoprobe indentation [17-21], the quantitative understanding of the 

dependence of the energy level shifts of QDs on the external strain has been insufficient to 

realize the precise tuning of the energy levels of QDs. This is because the shapes of the tips of 

the probes were not fabricated precisely [17, 22, 23] or the three-dimensional 

shape/strain-field of the QDs was not reflected in two-dimensional analysis [19-21]. 

Additionally, the indentation force in these experiments was not measured directly, but 

estimated from the displacements of the nanoprobes and samples. A direct measurement of 

the indentation force with simultaneous observation of the discrete energy levels of the QDs is 

required for a high-accuracy strain/energy-level analysis, which can be used for strain design 

in device applications. For this purpose, a combined study of the precise fabrication of the 

apex of the nanoprobe, direct measurement of the indentation force, and quantitative analysis 

of the energy levels of QDs is essential. 

In the present paper, we describe the simultaneous measurement of the indentation force 

and PL of In0.5Ga0.5As/GaAs QDs, together with experimental improvements on the precise 

fabrication of the nanoprobe. The simultaneous measurement of the indentation force and PL 

of QDs is achieved by introducing a sensitive loadcell into our previous nanoprobe 

indentation system [20, 21]. The nanoprobe is milled by FIB to obtain a flat apex aperture. 

Based on the quantitative relation between the nanoprobe indentation force and the discrete 
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energy levels of the QDs, which is determined experimentally, a theoretical analysis is 

performed based on a three-dimensional finite element calculation and six-band 

strain-dependent Hamiltonian. The distribution of biaxial strain under the central part of the 

nanoprobe and the contributions of the strain components to the energy shifts of the QDs are 

discussed from the analytical results. 

2. EXPERIMENT 

The In0.5Ga0.5As QDs studied in the present work were prepared on GaAs(001) by 

chemical beam epitaxy [24, 25] and embedded in a 50 nm thick capping layer of GaAs. The 

configuration used for the nanoprobe PL measurement (Unisoku, USM-100R) was described 

previously, where a nanoprobe (Au-coated optical fiber) with a spherical apex rather than a 

flat apex was adopted [20, 21]. In the present experiment, however, the nanoprobe was milled 

by FIB to obtain a flat apex aperture with a radius of 425 nm (shown in the insert of Fig. 1). 

Then, the nanoprobe was installed to apply indentation force on the QD sample, and the PL of 

the sample was recorded through its aperture. A small cylindrical loadcell (aluminum alloy, 

Tokyo Sokki Kenkyujo) of the resistance-bridge type was specially designed for high 

sensitivity and for installation in the small sample holder of the nanoprobe PL system. With 

this loadcell below the QD sample, an indentation force as low as 200 μN can be measured 

with good reproducibility. The experiments were carried out at a low temperature (10 K) and 

in an ultra-high vacuum (<1.4 × 10–9 Pa). 

After the abovementioned indentation experiments, the following unloading indentation 

experiments were performed in order to check for reversibility in our experiments. The 
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symmetry of the PL spectrum shifts of the QDs due to loading and unloading in our 

experiments indicated elastic deformation. 

3. EXPERIMENTAL RESULTS 

Fig. 1 shows the dependence of the indentation force on the nominal distance of the 

piezo-driven nanoprobe, as measured by the loadcell in a direction perpendicular to the 

sample surface. The nominal distance is estimated from the voltage applied to the 

probe-driving piezo-unit. The negative values of the nominal distance in Fig. 1 indicate the 

gap between the top surface of the QD sample and the flat apex of the nanoprobe, while 

positive values indicate the further downward displacement of the piezo-driven nanoprobe 

after the contact of the nanoprobe apex with the sample surface. The positive values comprise 

the deformation/displacement of the nanoprobe, the QD sample, and the loadcell. The zero 

point corresponds to the onset of the contact between the nanoprobe and the sample surface, 

determined by the emergence of the first sharp peak in the spectrum. From the linear fit in Fig. 

1, we obtain the dependence of the PL spectrum shifts on the indentation force, as shown in 

Fig. 2(a). A vertical slice of this figure contains the PL spectrum for a given indentation force 

[18], and 58 spectra of this type comprise Fig. 2(a). The step-wise discontinuity in the 

diagram is a result of the enlargement of the indentation force axis, which is done to improve 

the visualization. The brightness in Fig. 2(a) corresponds to the PL peak intensity. The bright 

streaks show the shift of the emission energy of a single QD due to the nanoprobe 

indentation-induced strain. By tracing the typical bright streaks in Fig. 2(a), the shifts of the 

emission energy of the representative QDs are obtained as shown in Fig. 2(b). An energy shift 
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as large as 90 meV and its linear dependence on the indentation force are observed in Fig. 

2(b). In order to present the difference in the shifts quantitatively, we define the shift rate of 

the emission energy as s
ER
F

Δ
=
Δ

, where EΔ  is the shift of the emission energy of the QD 

and  is the change of the indentation force. The value of FΔ sR  in Fig. 2(b) varies from 99 

to 146 meV/mN.  

The relatively large variation of Rs obtained can be clarified in a repeated indentation 

with the horizontal step-wise movement of the nanoprobe. In this repeated indentation 

experiment, the nanoprobe is gradually pressed downward onto the QD sample, and then 

lifted up and moved horizontally by 6.6 nm. This sequence is repeated eight times. The shifts 

of the emission energy of the QDs obtained in this experiment are shown in Fig. 3. Some of 

the bright streaks in Fig. 3 gradually change in shift rate according to the horizontal position 

of the nanoprobe. One streak of the emission energy, which is selected because of its strong 

dependence on the horizontal position of the nanoprobe, is traced by the dashed white lines in 

Fig. 3. As compared with this streak, the other bright streaks in Fig. 3 exhibit a weak 

dependence on the horizontal position of the nanoprobe. This difference in the dependence 

can be attributed to the variation in the local strain distribution, i.e., the relative position of the 

QDs and the nanoprobe, which will be discussed in Sec. 6. 

4. STRAIN ANALYSIS 

The strain field in and around the discussed QDs that is produced by the lattice mismatch 

and indentation force is analyzed by the finite element (FE) method. In the FE model, elastic 

anisotropy is adopted, and the material parameters of GaAs and In0.5Ga0.5As listed in Table 1 
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are used in the calculation [20, 26]. Here, we assume that the chemical composition of the 

QDs is uniform (In0.5Ga0.5As) and the shape is pyramidal, with the (110) facets as a typical 

and ideal case, although the composition and shape of QDs depends on the growth conditions, 

including the growth temperature, growth rate, and capping process [27-30]. Some literatures 

also discussed the electronic structure consequences of nonuniformity of indium composition 

in self-assembled InGaAs/GaAs QDs through simulations [31-33]. The simulation work in 

Ref. 32 showed that the assumption of uniform indium distribution resulted in an approximate 

1.4% overestimation of the ground state emission energy compared with the 

distribution-model for a truncated pyramidal In0.5Ga0.5As/GaAs QD, which indicated that the 

effect of In-distribution was adequately small compared with the ground-state emission 

energy discussed in this report. We also calculated the energy shift rates of QDs with a linear 

indium distribution of 74% at top and 44% at the base. The calculated energy shift rates along 

x axis were about 1 meV/mN smaller than those of the uniform In-distribution cases (shown 

in solid triangles in Fig.9). Therefore, we can reasonably neglect in our calculation the effects 

of nonuniform In-distribution by assuming the compositional uniformity for In0.5Ga0.5As 

QDs. 

From microscopic observations [34], the base (2l) and height (h) of the pyramid-shaped 

QD are taken as 20 nm and 7 nm, respectively, as shown in Fig. 4. The thickness of the 

capping layer (t) is 50 nm, and the diameter of the nanoprobe (2R) is 850 nm. Due to the large 

size difference between the QD and the nanoprobe, the submodeling technique is used in the 

strain analysis. In the global indentation model, the QD sample is assumed to be 
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homogeneous GaAs since the size of the QD is considerably small when compared with the 

global model, whose dimensions are four times the radius of the nanoprobe (R). Our 

calculations show that the dimensions of the global model are sufficiently large such that the 

influence of the surrounding traction-free boundary conditions in the indentation calculation 

can be neglected. A quarter of the nanoprobe indenter and the sample of GaAs are modeled 

based on the symmetry of the global model shown in Fig. 5(a). With respect to the coordinates 

shown in Fig. 4, the dimensions of the submodels used to simulate the QDs arraying along the 

x direction of the global model are 60 nm in the x direction, 30 nm in the y direction with 

respect to the symmetry plane x-z, and 66 nm in the z direction, as shown in Fig. 5(b). Half of 

the QD is modeled in each submodel with respect to the symmetry plane x-z, and its mesh is 

shown in the insert of Fig. 5(b). The size of the submodel is large enough to suppress the 

influences of the surrounding traction-free boundary conditions in the strain calculation, 

which are induced by lattice mismatch. 

The indentation effects between the nanoprobe flat apex and top surface of the QD 

sample are calculated by using a small-sliding contact with no friction in the global model. 

Next, the results obtained using the global model are used to derive the surrounding 

displacement boundary conditions of the submodel. By using this submodeling technique, we 

obtain the indentation-induced strain field in and around the QD at any position along the x 

axis of the global model. The lattice-mismatched strain between the In0.5Ga0.5As QD and the 

GaAs matrix is calculated in the submodel according to Mura’s theory on eigenstrain [35]. 

The lattice-mismatched QDs within the matrix can be assumed to be one type of inclusion for 
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a given eigenstrain, and the total strain  is given by the sum of the eigenstrain ije *
ijε  and the 

elastic strain ijε , 

*
ij ij ije ε ε= + ,                                              (1) 

where i and j take x, y, or z. The eigenstrain due to the lattice mismatch, * *
ij ijε ε δ= , can be 

calculated as 

0.5 0.5* 0.0358In Ga As GaAs

GaAs

a a
a

ε
−

= = ,                               (2) 

where 1ijδ =  when  and i = j 0ijδ = when i j≠ . In the FE calculation, the thermal 

expansion coefficients of the QD and the matrix are set as *ε  and 0, respectively, and the 

temperature of the submodel is raised by 1 K. Finally, the strain field in and around the QD, 

which is produced by the combination of the indentation force and lattice mismatch, is 

obtained by the summation of the indentation-induced strain and lattice-mismatch-induced 

strain. 

The elastic strain components xxε  and zzε  in the QD sample due to the lattice 

mismatch and indentation force (F = 1.0 mN) are shown in Fig. 6. In Fig. 6, the QD is 

located at x = 36 nm, which is close to the center of the nanoprobe. In our calculation, the 

top surface of the sample is set at z = 0 nm, as shown in Fig. 4; thus, the QD lies between z 

= 43 and 50 nm (height 7 nm). In Fig. 6(a), a tensile strain is observed along the x direction 

( xxε ) in GaAs for z < 43 nm or z > 50 nm due to lattice mismatch. The compressive strain 

along the x direction in the QD is relaxed to approximately –0.029 from the perfectly 

constrained mismatched strain of –0.0358 because of the deformation of the GaAs matrix. 
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Compared with the influence exerted by indentation, the lattice mismatch has a 

predominant effect on the distribution of xxε  in the QD. However, the influence of the 

indentation on zzε  is comparable with the influence of the lattice mismatch, as shown in 

Fig. 6(b). Our calculation also suggests that the indentation force results in an approximate 

biaxial strain state under the center of the nanoprobe. 

As in the general case for a biaxial strain state [36], the biaxial strain state can be divided 

into two parts, namely, the isotropic (hydrostatic) component hydro xx yy zzε ε ε ε= + +  and the 

average of the principal shear strain components in the x-z and y-z planes, 

( )1
2shear zz yyxxε ε ε ε= − + . The former only gives rise to a volume change without affecting the 

crystal symmetry; however, the latter usually decreases the symmetry of a strain-free crystal. 

In an indentation-induced compressive biaxial strain state, the hydrostatic component is 

primarily responsible for the upward shifting of the energy, especially in the conduction band. 

The average of the principal shear strain components, in the current ground state emission, 

produces a downward shift in the heavy-hole band and an upward shift in the light-hole band 

[18]. In addition, when the shear strain components exist in the coordinates of the crystal axes 

( 0,ij i jε ≠ ≠ ), they also contribute significantly to the shifting and splitting of the valence 

bands [37]. 

We examine the influence of the QD position on the strain field in and around the QD for 

x = 36 nm (QD-A) and x = 414 nm (QD-B). The former is almost under the center, while the 

latter is nearly below the edge of the nanoprobe. The components of the hydrostatic elastic 

strains ( hydroε ) of QD-A and QD-B due to indentation are plotted in Fig. 7(a) and Fig. 7(b), 
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respectively. The hydrostatic strain under the center of the nanoprobe (QD-A in Fig. 7(a)) is 

almost homogeneous. On the contrary, the strain is distributed with a 20% change in 

magnitude when the QD is below the edge of the nanoprobe (QD-B in Fig. 7(b)). This is 

ascribed to the large gradient of the hydrostatic strain distribution below the edge of the 

contact area of the nanoprobe. The absolute value of the hydrostatic strain ( hydroε ) in QD-A is 

larger than that in QD-B due to the strong constraint under the center of the contact area. Figs. 

8(a) and 8(b) show the indentation-induced shear strain components ( xzε ) of QD-A and QD-B, 

respectively. A large strain of 0.01 is obtained for xzε  in QD-B; this value is close to zero in 

QD-A. As compared with hydroε , xzε  shows a considerable increase with a change in the 

position of the QD from the center to the edge of the nanoprobe. From the analysis, we also 

obtain the other strain components of QD-A and QD-B; however, their changes are not as 

large as those of the hydrostatic strain and shear strain of xzε . 

The strain distribution obtained here suggests that the strain components of the QD are 

dependent on the relative position of the QD with respect to the nanoprobe. When the position 

of the QD shifts from the center to the edge of the nanoprobe, the compressive hydrostatic 

strain in the QD decreases by 0.005, while the shear strain of xzε  increases by 0.01. This 

change in the strain field in and around the QD results in a change in the potential field in QD, 

as discussed in the following section. 

5. ENERGY SHIFTS OF THE QDs 

Based on the strain field obtained from the FE analysis, the strain-induced shifts of the 

discrete energy levels of the QD are calculated using the Pikus-Bir theory [38]. In this theory, 
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the elastic strain field is coupled to the quantum mechanical behavior of the charge carriers in 

semiconductors through the deformation potentials of the materials. For the valence band, the 

six-band strain-dependent Hamiltonian can be written as 

1
2

3
2

3
2

1
2

1 3
2 2

3 1
2 2

*

* *

* * * *
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0

* *
0
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ε

−

−
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−

−

− − − −
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⎢ ⎥
− −⎢ ⎥

⎢ ⎥−⎢ ⎥= − ⎢ ⎥+
⎢ ⎥
⎢ ⎥+ Δ
⎢ ⎥

+ Δ⎢ ⎥⎣ ⎦

,        (3) 

( )v xx yy zzP a ε ε ε= + + ,   1
2[ (zz xx yyQ b )]ε ε ε= − + , 

3
2 ( )xx yy xyR b idε ε ε= − − ,  ( )xz yzS d iε ε= − − , 

where av, b, and d are the hydrostatic and two shear deformation potentials, respectively; Δ0 is 

the split-off energy gap [1, 39]. The elements indicated with an asterisk are the corresponding 

conjugate complexes. In principle, the Pikus-Bir strain Hamiltonian cannot be applied to 

non-uniformly distributed strain fields [40]. However, the strain distribution due to nanoprobe 

indentation discussed here is sufficiently small to support the applicability of the Pikus-Bir 

Hamiltonian. In In0.5Ga0.5As/GaAs QDs, the second conduction band has little effect on the 

first conduction band or valence band; therefore, the six-band, rather than the eight-band, 

strain-dependent Hamiltonian is adopted for simplicity. Thus, the shifts of the valence bands, 

, are calculated as eigenvalues of vEΔ VHε : 

0v
vH E Iε − Δ = ,                                          (4) 

where I is an identity matrix and  denotes the determinant. For the conduction band of 

III-V semiconductors, the effect of a strain is to produce a hydrostatic energy shift 
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proportional to the fractional volume change, which is given by 

(c c xx yy zzE a )ε ε εΔ = + + ,                                    (5) 

where ac is the deformation potential of the conduction band [1]. 

In the present nanoprobe indentation experiments and simulations, the 

indentation-induced shifts of the emission energy exhibit values of up to 140 meV for a 1.0 

mN indentation force. Since the size of the QD in the calculation is considerably smaller than 

the radius of the nanoprobe, the gradient of the indentation-induced strain field experienced 

by a single QD is considerably small (less than 20% in QD width). The GaAs surrounding the 

QD also exhibits a very similar energy shift behavior; consequently, the change in the 

confinement barrier is limited in our calculation. According to the results obtained by using 

the confinement energy with the approximation of a three-dimensional quantum box (not 

described in detail here), the indentation-induced energy shifts of the QDs are mainly 

determined by the indentation effects on the strain-induced potential change, and not by the 

strain-induced change in the confinement barrier (<2 meV). Thus, we can approximate the 

energy shifts of the QDs in these experiments as the difference between the shifts of the 

conduction band minimum (CBM) and the valence band maximum (VBM) of the QD, 

neglecting the quantum confinement effects. For the strain components at position (x, y, z), 

the energy band gap shift is 

( , , ) ( , , ) ( , , )c vE x y z E x y z E x y zΔ = Δ −Δ .                        (6) 

The energy band gap shift ( ) of a QD under indentation force ( ) is calculated based on 

the volume average assumption: 

EΔ F
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( )
00

1 , ,
V

E E x y z
V

Δ = Δ∫ dV ,                                 (7) 

where the volume integration is performed over the QD volume. This spatial averaging in our 

calculation is the same scheme adopted by Pryor et al [41], where they obtained reasonable 

results for the band-edge diagrams for strained III-V semiconductor quantum wells, wires and 

dots. 

We now discuss the energy band gap shift rate ( sR ), defined in Sec. 2, on the basis of the 

simulation of the emission energy shift of the QDs at different positions relative to the 

nanoprobe. Fig. 9 shows the simulated dependence of the energy shift rates on the positions of 

the QDs along the x direction. The Rs of the QD increases slightly from the center to the edge, 

and reaches its maximum of 139 meV/mN around the edge of the contact area 

( / 0.7r x R≡ = 6 ). It then decreases dramatically to 69 meV/mN at 1.02r = , which is almost 

under the edge of the nanoprobe ( 1.0r = ). This variation of 69–139 meV/mN for the 

simulated rates agrees quantitatively with the variation observed in the experiments (typical 

bright streaks in Fig. 2(b)). 

In Fig. 10, the shifts of the CBM and VBM of the QDs along the x axis are plotted. The 

strain induced by the lattice mismatch shifts the CBM and VBM upward by 281 meV and 56 

meV, respectively, without any indentation. When the indentation-induced strain is 

superposed, the CBM for 0.76r <  shifts further upward by 101–106 meV, while the VBM 

for 0.85r <  shifts downward by 28–34 meV. In this superposition case, the CBM increases 

by only 5 meV when r  changes from 0 to 0.76, and it decreases rapidly by 47 meV for r  
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from 0.76 to 1.02. On the other hand, when r  changes from 0 to 0.85, the VBM decreases 

by 6 meV and reaches its minimum at 0.85r =  nm; it then increases rapidly by 25 meV for 

r  from 0.85 to 1.02. This indicates that the shift of the emission energy of the QD is reduced 

near the transitional area from the contact to the non-contact region, which agrees with the 

experimental observations for a small Rs, as shown in Fig. 2(b). 

6. DISCUSSION 

This section focuses on the analysis of the relation between the energy level shifts and 

indentation-induced strain states considering their position dependences. First, we consider 

the biaxial strain state, i.e., xx yy zzε ε ε= ≠  and 0xy yz zxε ε ε= = = , which is realized below 

the center of the nanoprobe. In this state, the nonzero elements in the six-band 

strain-dependent Hamiltonian are P and Q, as shown in Eq. (3); these relate to the hydrostatic 

strain and the average principal shear strain, respectively. From Eq. (3), the shifts of the 

valence bands are 

,
,

hh

lh

E P
E P Q

Δ = − −⎧
⎨Δ ≈ − +⎩

Q
                                  (8) 

where  and  are the energy shifts of the heavy hole band and light hole band due 

to strain, respectively. In order to discuss the influence of the shear strain components of 

hhEΔ lhEΔ

xzε  

on the shifting and splitting of the light hole and heavy hole bands, we should additionally 

consider a simple shear-strain state in which the only nonzero strain component is xzε . The 

substitution of this condition into Eq. (3) yields the dependence of the energy shift of the 

VBM ( ) on the shear strain components (VEΔ xzε ): 
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1 1
3 32 3 2 33 3 2 3 3 2

2 20 0 0 0 0 0( ) ( )
27 27 9 27 27 9 3V xzE d dε ε

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ Δ Δ Δ Δ Δ⎢ ⎥ ⎢Δ = − + − + + − − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

0
xz

⎤ Δ⎥
⎥
⎦

. (9) 

Fig. 11 shows the changes in the volume-averaged –P, –Q (Eq.(3)), and  (Eq. (9)) 

in the QD with its position from the center to the edge of the nanoprobe. The strain 

components adopted in Fig. 11 are from the FE analysis in Sec. 3. The dependence of –P and 

–Q on the QD position can be attributed to 

VEΔ

hydroε  and shearε  in the QD, respectively, as seen 

in Eq. (3). The dependence of  in Fig. 11 can be related directly to VEΔ xzε , as indicated in 

Eq. (9). In Fig. 11, the values of –P and VEΔ  are almost independent of the QD position 

when 0.76r < . When r  changes from 0.76 to 1.02, the value of –P increases from –16 

meV to –9 meV, and VEΔ  increases from 1 meV to 43 meV. On the other hand, the value of 

–Q decreases slowly when r  changes from 0 to 0.93 (down to its minimum value of –28 

meV at 0.93r = ), and then increases rapidly to –11 meV when r  changes from 0.93 to 

1.02. 

The dependence of –P, –Q, and VEΔ  in Fig. 11 corresponds to the strain distribution 

shown in Fig. 7 and Fig. 8. In both the QDs, the sign of the indentation-induced hydroε  is 

negative below the center (Fig. 7(a)) and edge of the nanoprobe (Fig. 7(b)). Due to the 

different constraint condition of the compressive region, the absolute value of hydroε  of the 

QD when it is close to the center is larger by 0.004~0.005 than when it is near the edge. 

Consequently, the upward shift of the CBM of the QD when it is close to the center is 25~30 

meV larger than when it is near the edge (Eq. (5) and Fig. 10). The difference in hydroε  also 

causes a similar behavior of the VBM: the downward shift of the VBM of the QD when it is 
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close to the center is 4~5 meV larger than when it is near the edge (Eq. (8)). Since the 

absolute value of the deformation potential of  is considerably smaller than that of , the 

downward shift of the VBM caused by 

va ca

hydroε  is only 15% of the upward shift of the CBM. 

As shown in Fig. 8, the shear strain component xzε  increases from approximately zero to 

0.01 when the position of the QD shifts from the center to the edge of the nanoprobe, which 

results in a 38 meV upward shift of the VBM according to Eq. (9). This increase in xzε  

causes a larger upward shift of the VBM of the QD when it is near the edge than when it is 

close to the center of the nanoprobe ( VEΔ  in Fig. 11); this causes a reduction in the emission 

energy of the QD when it is at the edge. 

The shifts of the CBM and VBM due to indentation are summarized in Fig. 12, with the 

normalization of the energy shifts by ( )0 2c v
eff

FE a a
R Eπ

Δ ≡ + , where ac and av are the 

deformation potentials of the In0.5Ga0.5As QD; F, the indentation force; R, the radius of the 

indenter; and Eeff, the equivalent Young’s modulus of In0.5Ga0.5As. From the above discussion 

and the dependences shown in Fig. 12, we can deduce the following relationship between the 

indentation-induced strain state and the energy shifts of the CBM and VBM of the QD. 

(a) The compressive hydrostatic strain is weakly dependent on the QD position when 

0.76r < , while the absolute value of the hydrostatic strain decreases significantly because of 

the loss of constraint in the surrounding material for r  from 0.76 to 1.02. This decrease 

reduces the upward shift of the CBM with the deformation potential of ac. Similarly, it 

reduces the downward-shift of the VBM with the deformation potential of av. 

 18



(b) The shear strain component of xzε  also has a weak dependence on the QD position 

when 0.76r < . It increases by 0.01 when r  changes from 0.76 to 1.02 due to the evolution 

of shear strain around the edge of the nanoprobe. This increase results in a large upward shift 

of the VBM, which significantly narrows the band gap of the QD and consequently decreases 

the shift rate of the energy band gap, Rs. 

(c) The principal shear strain causes a gradual downward shift of the VBM by 12 meV 

when r  ranges from 0 to 0.93, and an upward shift by 17 meV when r  ranges from 0.93 

to 1.02. Due to the combined effect of the shifts of the VBM and CBM, the maximum energy 

shift rates are observed at 0.76r = , instead of at the center of the nanoprobe. In addition, the 

upward shift of the VBM for r  from 0.93 to 1.02 due to the principal shear strain 

contributes partly to the decrease in the energy shift rates of the QD near the edge of the 

nanoprobe. 

7. CONCLUSION 

In this work, the simultaneous measurement of the nanoprobe indentation force and the 

photoluminescence of QDs was successfully achieved in nanoprobe indentation experiments; 

the results yielded information essential for the precise description of the effects of external 

strain on the energy levels of QDs. Based on the precisely determined indentation force, 

quantitative agreements were obtained between the simulations and the experiments for the 

energy shifts of QDs that were produced using a nanoprobe. The shifts of the emission energy 

of QDs under the center of the nanoprobe ( 0.76r < ) were attributed mainly to the increase in 

the CBM (78%) rather than the decrease in the VBM (22%). Under the edge of the 
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nanoprobe-indented area, the decrease in the VBM was reduced to almost zero, but the 

increase in the CBM still remained at over 50% of that at the center. These results revealed 

that the increase in the strain component xzε  at the edge of the nanoprobe is responsible for 

the upward shift of the VBM, while the loss of constraint at the edge results in a reduction in 

the upward shift of the CBM. Simultaneous measurements of the nanoprobe indentation force 

and the PL of QDs enables us to modulate the discrete energy levels of the QDs precisely and 

reproducibly. It provides a promising method of studying the emission properties of QDs due 

to strain and to realize the strain-based modulation of the energy levels in QDs in various 

applications. 
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Figure captions 

Fig.1 Dependence of indentation force on z step of the piezo-driven nanoprobe 
in nanoprobe indentation experiment. The milled flat apex of nanoprobe 
is shown in the insert. 

Fig.2 Dependence of energy band gap shifts of QDs on indentation force. (a) 
Indentation force dependence of nanoprobe PL spectrum. The brightness 
in the figure shows the intensity of peak. (b) Traces of some emission 
lines in (a). Values are the energy shift rates of each peak. 

Fig.3 Shifts of emission energy from QDs in the experiment of repeated 
indentation with horizontal step-wise movement of nanoprobe. The 
dashed white lines in the figure are corresponding to the shift of 
emission energy of one QD at different position relative to the nanoprobe. 

Fig. 4 Illustration of the simulation model in the nanoprobe indentation (not to 
scale) 

Fig. 5 Illustration of the FE mesh used in 3D contact simulation. (a)The mesh of 
the global model, (b) the mesh of submodel along x axis, half of the QD is 
modeled due to the symmetry. This model was also used for lattice 
mismatched strain calculation. 

Fig. 6 Distribution of elastic strain in and around QD due to lattice mismatch 

and indentation. (a) Distribution of xxε  through the centre of the QD, 

which is along A-A in Fig.(4). (b) Distribution of zzε  through the centre of 

the QD, which is along A-A in Fig.(4). 
Fig. 7 Distribution of elastic hydrostatic strain in and around QD due to 1.0 mN 

indentation force with 425 nm radius indenter. (a) QD at x=36 nm, (b) QD 
at x=414 nm. 

Fig. 8 Distribution of xzε  in and around QD due to 1.0 mN indentation force with 

425 nm radius indenter. (a) QD at x=36 nm, (b) QD at x=414 nm. 
Fig. 9 Dependence of the energy shift rates on the position of the QD along x 

direction. 
Fig. 10 Dependence of energy shift of conduction band minimum (CBM) and 

valence band maximum (VBM) on the position of the QD along x axis. 

Fig. 11 Dependence of -P, -Q and VEΔ  on the position of the QD due to 1.0 mN 

indentation force. 
Fig. 12 Dependence of shifts of the CBM and the VBM on the position of the QD, 

the shifts are the difference of lattice mismatch case and superposition of 
indentation force with lattice mismatch case. 
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Fig.1 Dependence of indentation force on z step of the piezo-driven nanoprobe 
in nanoprobe indentation experiment. The milled flat apex of nanoprobe is 
shown in the insert. 
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(b) 

Fig.2 Dependence of energy band gap shifts of QDs on indentation force. (a) 
Indentation force dependence of nanoprobe PL spectrum. The brightness in the 
figure shows the intensity of peak. (b) Traces of some emission lines in (a). 
Values are the energy shift rates of each peak. 
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Fig.3 Shifts of emission energy from QDs in the experiment of repeated 
indentation with horizontal step-wise movement of nanoprobe. The dashed 
white lines in the figure are corresponding to the shift of emission energy of 
one QD at different position relative to the nanoprobe. 
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Fig. 4 Illustration of the simulation model in the nanoprobe indentation (not to 
scale) 
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(a) 

 

 
(b) 

Fig. 5 Illustration of the FE mesh used in 3D contact simulation. (a)The mesh of 
the global model, (b) the mesh of submodel along x axis, half of the QD is 
modeled due to the symmetry. This model was also used for lattice mismatched 
strain calculation. 
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(a) 

 
(b) 

Fig. 6 Distribution of elastic strain in and around QD due to lattice mismatch 

and indentation. (a) Distribution of xxε  through the centre of the QD, which is 

along A-A in Fig.(4). (b) Distribution of zzε  through the centre of the QD, which 

is along A-A in Fig.(4). 
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Fig. 7 Distribution of elastic hydrostatic strain in and around QD due to 1.0 mN 
indentation force with 425 nm radius indenter. (a) QD at x=36 nm, (b) QD at 
x=414 nm. 
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Fig. 8 Distribution of xzε  in and around QD due to 1.0 mN indentation force with 

425 nm radius indenter. (a) QD at x=36 nm, (b) QD at x=414 nm. 

 31



 

 

Fig. 9 Dependence of the energy shift rates on the position of the QD along x 
direction. The line with open circles is the energy shift rates of QDs with 
uniform In-distribution. The solid triangles are the energy shift rates of QDs with 
the linear indium distribution of 74% at top and 44% at the base. 
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Fig. 10 Dependence of energy shift of conduction band minimum (CBM) and 
valence band maximum (VBM) on the position of the QD along x axis. 
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Fig. 11 Dependence of -P, -Q and VEΔ  on the position of the QD due to 1.0 mN 

indentation force. 
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Fig. 12 Dependence of shifts of the CBM and the VBM on the position of the QD, 
the shifts are the difference of lattice mismatch case and superposition of 
indentation force with lattice mismatch case. 
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Table1. Material parameters used in the calculation of strain  
and energy band shift. 

 
 

 GaAs In0.5Ga0.5As Quartz 

a(Å) 5.6533 5.8558 - 

c11(GPa) 118.8 101.05 - 

c12(GPa) 53.8 49.53 - 

c44(GPa) 59.4 49.49 - 

ac(eV) -7.63 -6.06 - 

av(eV) -1.00 -0.93 - 

b(eV) -1.77 -1.81 - 

d (eV) -3.10 -3.21 - 

Δ0(eV) 0.33 0.35 - 

E (Young’s modulus , GPa) - - 73.1 

ν  (Poisson’s ratio) - - 0.17 
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