
STUPP–06–186

hep-th/0608198

August, 2006

Holographic Chiral Phase Transition

with Chemical Potential

Norio Horigome∗ and Yoshiaki Tanii†

Division of Material Science

Graduate School of Science and Engineering

Saitama University, Saitama 338-8570, Japan

Abstract

We discuss the Sakai-Sugimoto model at finite temperature and finite
chemical potential. It is a holographic model of large Nc QCD with Nf

massless quarks based on a D4/D8-D8 brane system. The near horizon
limit of the D4-branes and the probe approximation of the D8-D8 pairs
allow us to treat the D4-branes as a gravitational background and the D8-
D8 pairs as a probe which does not affect the background. We propose
that the asymptotic value of a U(1) gauge field on the D8-D8-branes is
identified with the chemical potential for the baryon number. Using this
chemical potential we analyze the phase structure of this model and find
a chiral symmetry phase transition of the first order.
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1. Introduction

The AdS/CFT correspondence [1, 2, 3] (see [4] for a review) is a useful duality

between a string theory in (d + 1)-dimensional anti de Sitter spacetime (times a

compact space) and a d-dimensional conformal field theory. The AdS/CFT corre-

spondence can be extended to more general cases of the string/gauge duality for

non-conformal and non-supersymmetric theories. In this scheme one can discuss

some features of the low energy QCD such as confinement and spontaneous chiral

symmetry breaking. Such an approach to low energy behaviors of QCD in terms of

the string/gauge duality is often called the holographic QCD [5, 6, 7, 8, 9, 10] (and

references therein).

One of the interesting recent developments in the holographic approach to QCD

is the D4/D8-D8 model proposed by Sakai and Sugimoto [11, 12]. This brane system

consists of Nc D4-branes compactified on S1 and probe Nf D8-D8-brane pairs. The

D4-branes are described by the extremal brane solution in the near horizon limit

with one of the spatial directions along its world-volume compactified on S1. This

gravitational background is dual to a five-dimensional gauge theory, which looks

four-dimensional at energy scale below the compactification scale. This description

is valid for the case 1 ≪ g2
Y MNc ≪ 1/g4

Y M , where gY M is the four-dimensional

gauge coupling. Imposing periodic boundary conditions on the bosons and anti-

periodic ones on the fermions along the compactified direction, supersymmetry is

explicitly broken. The scalars and the fermions on the D4-branes become massive

and are decoupled from the system at low energy. Thus one obtains a U(Nc) pure

gauge theory. To describe quarks in the fundamental representation of the gauge

group U(Nc) one introduces Nf D8-D8 pairs into the D4 background. The probe

approximation Nf ≪ Nc [5] allows us to treat the Nf D8-D8 pairs as a probe,

which does not affect the D4 background. A string connecting the D4-branes and

the D8-branes (D8-branes) represents a massless left-(right-)handed quark with Nf

flavors. Therefore one obtains a four-dimensional U(Nc) gauge theory with Nf

flavored massless quarks in the fundamental representation of the gauge group at

low energy. The U(Nf )L ×U(Nf )R symmetry of the D8 and D8-branes represents a

chiral symmetry of the quarks. It was shown in ref. [11] that this chiral symmetry

is broken to a diagonal symmetry U(Nf )V because of a configuration of the probe

D8-D8 pairs. By the topology of the D4-brane geometry they must have a curved

configuration in which the D8-branes and the D8-branes are connected each other

(see Fig. 2), which breaks the chiral symmetry.
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The Sakai-Sugimoto model was also studied at finite temperature T [13, 14, 15].

There are two D4-brane geometries which represent a low temperature phase and

a high temperature phase respectively. A phase transition between these phases

occurs at a certain critical temperature Tc. This transition corresponds to a con-

finement/deconfinement transition in a dual gauge theory [16]. For each of the

phases one can introduce probe D8-D8 pairs. The only configuration of the D8-D8

pairs which can realize in the low temperature phase T < Tc is a curved D8-D8

configuration as in the zero temperature case. Thus the chiral symmetry is always

broken in the low temperature phase. On the other hand, another configuration

exists in addition to the curved one in the high temperature phase T > Tc. The

new configuration consists of straight D8-branes and D8-branes disconnected each

other (see Fig. 3). The chiral symmetry is unbroken for this configuration. A chiral

symmetry phase transition can occur between these two configurations at a certain

temperature [13, 14].

The purpose of the present paper is to analyze the Sakai-Sugimoto model at

finite temperature T and finite baryon number chemical potential µ. We introduce a

non-vanishing background U(1) gauge field on the probe D8-D8-brane world-volume.

The asymptotic value of this gauge field background is related to the baryon number

chemical potential. There are several related works in which chemical potentials are

introduced as asymptotic values of gauge fields [17, 18, 19, 20, 21]. The gauge

fields and the chemical potentials considered there, however, are those for the R

symmetry in the bulk geometry or for the isospin symmetry on the probe brane

world-volume. In contrast, we consider the chemical potential for the baryon number

U(1)V symmetry on the probe brane. The D8-D8-brane configuration and the gauge

field background are determined by equations derived from the Dirac-Born-Infeld

effective action on the world-volume of the probe branes. By solving these equations

and comparing values of the effective action for the solutions we discuss a chiral

symmetry breaking as in refs. [11, 13, 14].

We can summarize our results as follows. In the low temperature phase T < Tc

of the confinement/deconfinement transition there is a unique solution for the probe

brane configuration and the gauge field background. As in the case without the

gauge field background the probe branes have a curved configuration and the chiral

symmetry is always broken. In the high temperature phase T > Tc there are two

types of solutions. One solution has a curved brane configuration and the chiral

symmetry is broken. The other solution has a straight brane configuration and the
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Figure 1: The phase diagram of the dual gauge theory.

chiral symmetry is unbroken. A phase transition between these two solutions occurs

at certain temperature and chemical potential. The transition is of the first order.

There is a critical value of the chemical potential above which the phase transition

never occurs for any temperature. A qualitative feature of the phase diagram is

shown in Fig. 1.

The organization of this paper is as follows. In section 2 we review the bulk

geometry of the Sakai-Sugimoto model at finite temperature and set up the effective

action for the probe brane configuration and the U(1) gauge field. In sections 3 and

4 we obtain solutions for the brane configuration and the gauge filed and discuss

the chiral symmetry breaking in the low and high temperature phases respectively.

Section 5 is devoted to some discussions.

While preparing the manuscript of this paper, we have received a paper [22], in

which a gauge field background on the probe branes is used to represent the baryon

number chemical potential in studying hadronic matters in the Sakai-Sugimoto

model. After submitting the manuscript of this paper for publication, we have

received a paper [23] discussing the chiral phase transition in the D4/D8-D8 model,

in which an error in the first version of our paper was pointed out.

2. D4/D8-D8 brane system

The Sakai-Sugimoto model [11, 12] is based on a D4/D8-D8 brane system con-
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sisting of S1 compactified Nc D4-branes and Nf D8-D8-brane pairs transverse to the

S1. The brane configuration of the system is

t x1 x2 x3 τ U θ1 θ2 θ3 θ4

D4 ◦ ◦ ◦ ◦ ◦ − − − − −
D8-D8 ◦ ◦ ◦ ◦ − ◦ ◦ ◦ ◦ ◦

(2.1)

with τ and θ’s being coordinates of S1 and S4 respectively. The period of τ is denoted

as δτ = 2π/MKK . In the large Nc limit and the near horizon limit the D4-branes

are described by a bulk background geometry, which is a classical solution of the

type IIA supergravity in ten dimensions. Assuming Nf ≪ Nc the D8-D8 pairs are

treated as a probe which does not affect the bulk background.

The finite temperature behavior of the Sakai-Sugimoto model was discussed in

[13, 14, 15]. The bulk background geometry is represented by a metric with a

periodic Euclidean time coordinate tE ≡ it ∼ tE + δtE in addition to the periodic

τ . The period of tE is the inverse temperature δtE = 1/T . There are two such

Euclidean solutions which have an appropriate asymptotic boundary behavior. One

of them is the Euclidean version of the extremal D4-brane geometry compactified

on S1 with the metric

ds2 =

(
U

R

) 3
2 (

dt2E + δijdxidxj + f(U)dτ 2
)

+

(
R

U

) 3
2
(

dU2

f(U)
+ U2dΩ2

4

)
,

f(U) = 1 − U3
KK

U3
, UKK =

4

9
R3M2

KK , (2.2)

where dΩ2
4 is the metric of S4 and R3 = πgsNcl

3
s with gs and ls being the string

coupling and the string length. The parameter UKK must be related to MKK as

above to avoid a singularity of the metric at U = UKK . With this relation the τ -U

submanifold has a cigar-like form with a tip at U = UKK . The dilaton ϕ and the

RR 3-form C3 are given by

eϕ = gs

(
U

R

) 3
4

, F4 = dC3 =
2πNc

V4

ϵ4, (2.3)

where ϵ4 and V4 are the volume form and the volume of S4. The other solution is

the Euclidean version of the non-extremal D4-brane geometry

ds2 =

(
U

R

) 3
2 (

f̃(U)dt2E + δijdxidxj + dτ 2
)

+

(
R

U

) 3
2
(

dU2

f̃(U)
+ U2dΩ2

4

)
,

f̃(U) = 1 − U3
T

U3
, UT =

16π2

9
R3T 2 (2.4)
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with the dilaton and the RR 3-form given in eq. (2.3). The parameter UT must be

related to T as above to avoid a singularity of the metric at U = UT . The tE-U

submanifold has a cigar-like form with a tip at U = UT . It is obvious that these two

backgrounds are related by interchanging τ , UKK and tE, UT .

It was shown [16, 8, 13] that the background (2.2) is dominant at low tempera-

ture, while (2.4) is dominant at high temperature by comparing values of the Eu-

clidean supergravity action for these backgrounds. A phase transition between these

backgrounds occurs at the temperature for UT = UKK , i.e. Tc = MKK/(2π). This

phase transition is of the first order and represents a confinement/deconfinement

transition [16].

In refs. [13, 14] Nf D8-D8 pairs were introduced as a probe in the backgrounds

(2.2), (2.4). The effective action of the D8-branes consists of the Dirac-Born-Infeld

action and the Chern-Simons term

SD8 = T8

∫
d9x e−ϕ Tr

√
det(gMN + 2πα′FMN) − i

48π3

∫
C3 TrF 3, (2.5)

where gMN and FMN = ∂MAN − ∂NAM − i [AM , AN ] (M,N = 0, 1, · · · , 8) are the

induced metric and the field strength of the U(Nf ) gauge field AM on the D8-branes.

T8 is the tension of the D8-brane and α′ = l2s is the Regge slope parameter. The

effective action for the D8-branes has a similar form. The total effective action has

a gauge symmetry

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (2.6)

where U(Nf )L and U(Nf )R are symmetries of Nf D8 and D8-branes respectively.

It was argued in ref. [11] that this gauge symmetry corresponds to a flavor chiral

symmetry of quarks. The total effective action can be written in the form (2.5) with

the integrations being over the whole of the D8-D8 world-volume. We use this form

of the effective action in the following.

In refs. [11, 13] the gauge fields on the probe branes are treated as fluctuations

representing the hadron spectrum. In this paper we consider a background gauge

field. We assume that only the Euclidean time component of the U(1) gauge field has

a non-vanishing background. We will see that it corresponds to an introduction of

the baryon number chemical potential. We use a physical gauge for D8-brane world-

volume reparametrizations and use the spacetime coordinates other than τ as the

world-volume coordinates. Then, D8 and D8-brane configurations are determined
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by τ as a function of those world-volume coordinates. We make an ansatz that A0

and τ depend only on the coordinate U

τ = τ(U), A0 = A0(U). (2.7)

By this ansatz the Chern-Simons term in eq. (2.5) vanishes and does not concern

us.

3. Low temperature phase

In the low temperature phase the geometry (2.2) is dominant. Using the ansatz

(2.7) the induced metric gMN on the probe D8-branes is given by

ds2 =

(
U

R

) 3
2 (

dt2E + δijdxidxj
)

+

[(
U

R

) 3
2

f(U)(τ ′(U))2 +

(
R

U

) 3
2 1

f(U)

]
dU2 +

(
R

U

) 3
2

U2dΩ2
4, (3.1)

where τ ′ = dτ
dU

. Then, the effective action of the D8-branes (2.5) becomes

SD8 =
NfT8V4

gs

∫
d4x dUU4

[
f (τ ′)2 +

(
R

U

)3 (
f−1 − (2πα′A′

0)
2
)] 1

2

, (3.2)

where A′
0 = dA0

dU
.

This action leads to equations of motion for τ(U) and A0(U)

d

dU

 U4f τ ′√
f (τ ′)2 +

(
R
U

)3 (
f−1 − (2πα′A′

0)
2)

 = 0,

d

dU

 U4
(

R
U

)3
A′

0√
f (τ ′)2 +

(
R
U

)3 (
f−1 − (2πα′A′

0)
2)

 = 0, (3.3)

which can be easily integrated once. We obtain

(τ ′(U))2 =

(
U8

0 + C2
(

U0

R

)3
)

f(U0)
(

R
U

)6

f(U)2
[(

R
U

)3
(U8f(U) − U8

0 f(U0)) + C2
(
f(U) − f(U0)

(
U0

U

)3
)] ,

(2πα′A′
0(U))

2
=

C2(
R
U

)3
(U8f(U) − U8

0 f(U0)) + C2
(
f(U) − f(U0)

(
U0

U

)3
) , (3.4)
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Figure 2: A D8-D8-brane configuration in the low temperature phase.

where C and U0 are integration constants. As in the zero temperature case [11] and

the low temperature phase in ref. [13] we have imposed a condition τ ′(U0) = ∞. A

typical configuration of τ(U) is shown in Fig. 2. Since there is no place for the D8

and D8-branes to end, they are connected at U = U0. We also impose the boundary

condition A0(∞) = µ at the both ends of the D8-D8 world-volume, where µ is a

constant. We will identify this constant with the chemical potential for the baryon

number later. Solving eq. (3.4) with this boundary condition we find for U ∼ U0

A0(U) ∼ A0(U0) + const. × C |U − U0|
1
2 . (3.5)

This solution is singular at U = U0 and does not actually satisfy the original equation

(3.3) unless C = 0. Therefore, we must choose C = 0 and obtain A0(U) = µ.

Because of the connected configuration of the D8 and D8-branes the chiral symmetry

U(Nf )L×U(Nf )R on the probe D8-D8 pairs is always broken to a diagonal subgroup

U(Nf )V in the low temperature phase. The situation is the same as in the cases

without the gauge field background [11, 13].

Instead of using the constant U0 to parametrize the solution we can also use the

U = ∞ asymptotic separation L between the D8 and D8-branes in the τ -direction.

It is related to U0 by

L = 2

∫ ∞

U0

dU τ ′(U), (3.6)

where τ ′(U) is given in eq. (3.4) with C = 0.

Substituting eq. (3.4) with C = 0 into the action (3.2) and introducing new

variables u = U/U0, uKK = UKK/U0 and f(u) = 1 − u3
KK/u3 the effective action
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becomes

SD8 = T̃8

∫ ∞

1

du u5

√
u3

u8f(u) − f(1)
, (3.7)

where

T̃8 =
NfT8V4

gs

(
R3U7

0

) 1
2

∫
d4x. (3.8)

Note that this reproduce the result in ref. [13].

4. High temperature phase

In the high temperature phase the geometry (2.4) is dominant. Using the ansatz

(2.7) the induced metric on the probe D8-branes is

ds2 =

(
U

R

) 3
2 (

f̃(U)dt2E + δijdxidxj
)

+

[(
U

R

) 3
2

(τ ′(U))2 +

(
R

U

) 3
2 1

f̃(U)

]
dU2 +

(
R

U

) 3
2

U2dΩ2
4 (4.1)

and the effective action of the D8-branes (2.5) becomes

SD8 =
NfT8V4

gs

∫
d4x dUU 4

[
f̃ (τ ′)2 +

(
R

U

)3 (
1 − (2πα′A′

0)
2
)] 1

2

. (4.2)

This action leads to equations of motion for τ(U) and A0(U)

d

dU

 U4f̃ τ ′√
f̃ (τ ′)2 +

(
R
U

)3 (
1 − (2πα′A′

0)
2)

 = 0,

d

dU

 U4
(

R
U

)3
A′

0√
f̃ (τ ′)2 +

(
R
U

)3 (
1 − (2πα′A′

0)
2)

 = 0, (4.3)

which can be easily integrated once as before. As in the case without the gauge field

[13, 14] there are two types of solutions in the high temperature phase.

One solution is similar to the one in the low temperature phase. The integration

of eq. (4.3) gives

(τ ′(U))
2

=
U8

0 f̃(U0)(
U
R

)3
f̃(U)

(
U8f̃(U) − U8

0 f̃(U0)
) , A0(U) = µ. (4.4)
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Figure 3: D8-D8-brane configurations in the high temperature phase.

where U0 is an integration constant. As before we have imposed the boundary

conditions τ ′(U0) = ∞ and A0(∞) = µ. A typical configuration of τ(U) is shown in

Fig. 3 (a). The chiral symmetry U(Nf )L×U(Nf )R is broken to a diagonal subgroup

U(Nf )V . Substituting eq. (4.4) into eq. (4.2) the effective action becomes

SU
D8 = T̃8

∫ ∞

1

du u5

√
u3f̃(u)

u8f̃(u) − f̃(1)
, (4.5)

where we have rescaled the variables as u = U/U0, uT = UT /U0, f̃(u) = 1 − u3
T /u3,

and T̃8 is given in eq. (3.8).

Instead of using U0 we can also use the asymptotic separation L in eq. (3.6) to

parametrize the solution, which is more convenient when comparing this solution to

the other one. The relation between L and U0 is obtained from eqs. (3.6) and (4.4)

as

L =

(
R3

U0

) 1
2

F (uT ), (4.6)

where

F (uT ) = 2

∫ ∞

1

du

√√√√ f̃(1)

u3f̃(u)
(
u8f̃(u) − f̃(1)

) . (4.7)

For the other solution the first integration of eq. (4.3) gives

τ ′(U) = 0, (2πα′A′
0(U))

2
=

C2

U8
(

R
U

)3
+ C2

, (4.8)

10



where C is an integration constant. τ ′(U) = 0 is the trivial solution of (4.3). A

typical configuration is shown in Fig. 3 (b). It describes a situation that the probe

D8 and D8-branes separately extend along the U -direction in straight lines. The

separation between the D8 and D8-branes is chosen to be the same as the asymptotic

separation L in the previous solution. The chiral symmetry U(Nf )L × U(Nf )R is

unbroken in this case. Substituting eq. (4.8) into eq. (4.2) and using the rescaled

variables as in eq. (4.5) the effective action becomes

S
||
D8 = T̃8

∫ ∞

uT

du
u5

√
u5 + c2

, (4.9)

where

c2 =
C2

R3U5
0

. (4.10)

To determine which of the two solutions is dominant we compare the values of

the effective action. From eqs. (4.5), (4.9) we obtain the difference as

∆S ≡ SU
D8 − S

||
D8

T̃8

=

∫ ∞

1

du u5

[√
u3f̃(u)

u8f̃(u) − f̃(1)
− 1√

u5 + c2

]
−

∫ 1

uT

du
u5

√
u5 + c2

. (4.11)

For ∆S < 0 the curved configuration (4.4) is dominant and the chiral symmetry

is broken, while for ∆S > 0 the straight configuration (4.8) is dominant and the

chiral symmetry is unbroken. Although the integrals in eqs. (4.5), (4.9) are divergent

at U = ∞, the difference is finite due to the same asymptotic behaviors of τ(U)

and A0(U). We evaluate eq. (4.11) by numerical calculations. For that purpose it

is more convenient to change an integration variable to z = u−3, which has a finite

interval 0 ≤ z ≤ 1 for 1 ≤ u < ∞. The result of the calculations is shown in Fig. 4.

The behaviors of ∆S as a function of uT for various values of c are given. The special

case c = 0 reduces to the result in ref. [13]. In this case ∆S is positive for uT larger

than a certain value uT0 and negative for uT < uT0. The chiral symmetry is broken

for uT < uT0 and unbroken for uT > uT0. The point uT = uT0 is a phase transition

point. This phase transition is of the first order since two different configurations

in Fig. 3 are possible at the transition point. As c increases, the transition point

uT0 decreases. When c > 0.2158, there appears a new region near uT = 0 in which
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Figure 4: ∆S as a function of uT for various values of c. From the bottom to the
top each line represents the case for c = 0, 0.2158, 0.2252, 0.3 respectively.

∆S > 0. When c > 0.2252, ∆S is positive for all values of uT and the chiral

symmetry is always unbroken.

From these results we can draw a phase diagram in the c-uT space as shown in

Fig. 5. The chiral symmetry is broken in the region of small c and small uT and

unbroken outside of it. Note that we are considering here the high temperature

phase of the confinement/deconfinement transition and only the part uT > uKK of

this diagram is valid.

It is more appropriate, however, to draw it in the space of the temperature T

and the baryon number chemical potential µ. From eq. (2.4) the temperature T is

related to uT as

T =
3

4π

(
U0

R3

) 1
2 √

uT =
3

4π

√
uT

L
F (uT ), (4.12)

where we have used eq. (4.6).

The relation of the chemical potential µ to uT and c can be obtained as follows.

From eq. (4.8) the large U behavior of A0(U) has a form

A0(U) ∼ µ +
v

U
3
2

, (4.13)

where µ and v are constants. We have chosen the same value µ for the constant

term as in the curved solution (4.4). According to the AdS/CFT dictionary [4]
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Figure 5: The phase diagram in the c-uT space.

for a massless vector field in a six-dimensional bulk, µ is a source coupled to an

operator of dimension four O4 on a five-dimensional boundary. The U(1) gauge

field A0 defined on the whole of the D8-D8 world-volume contains the gauge fields

for both of U(1)V and U(1)A in the flavor symmetry (2.6). The part of A0 which

is symmetric for an interchange of D8 and D8 corresponds to U(1)V , while the part

which is antisymmetric corresponds to U(1)A [11, 22]. Since the constant term µ is

symmetric, it is a background value of the U(1)V gauge field coupled to the baryon

number density O4, and µ is the baryon number chemical potential.

Integration of eq. (4.8) determines A0(U) up to a constant term (µ in eq. (4.13)).

We can fix this constant term as follows. We first require that A0(U) vanishes at

U = UT because of the regularity. To see this we first change the coordinates from

(U, tE) to (r, θ) defined by

U3 = U3
T + UT r2, θ =

3

2

(
UT

R3

) 1
2

tE. (4.14)

From the induced metric (4.1) with τ ′(U) = 0 we see that (r, θ) are the polar

coordinates near the point U = UT . The point U = UT corresponds to the origin

r = 0 and should be treated with care since the polar coordinates are not good

coordinates near the origin. It is better to use the Cartesian coordinates

y = r cos θ, z = r sin θ. (4.15)

The relation between A0 and the components Ay, Az in the coordinates (y, z) is
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obtained from A0dtE = Aydy + Azdz as

A0 =
3

2

(
UT

R3

) 1
2

r (−Ay sin θ + Az cos θ) . (4.16)

Since we require that Ay and Az are regular at the origin r = 0, A0(U) must vanish

at U = UT . We also note that although A0(U) is a gauge dependent quantity, it must

vanish at U = UT in any gauge. Only the gauge transformations which preserve the

condition A0(UT ) = 0 are allowed.

The vanishing of A0(U) at U = UT fixes the constant term in this case and we

find

A0(U) =
U0

2πα′

∫ u

uT

du′

√
c2

u′5 + c2
. (4.17)

The chemical potential µ is obtained as the asymptotic value for U = ∞

µ = A0(∞) =
R3

2πα′L2
(F (uT ))2

∫ ∞

uT

du

√
c2

u5 + c2
, (4.18)

where we have used eq. (4.6) to eliminate U0. This gives an expression of the chemical

potential in terms of uT and c.

Using eqs. (4.12), (4.18) we can convert the phase diagram in Fig. 5 to that in

the µ-T space by numerical calculations. Using dimensionless variables

T̃ = LT, µ̃ =
2πα′L2

R3
µ. (4.19)

the phase diagram in the µ̃-T̃ space is shown in Fig. 6. Only the part of this diagram

for the high temperature phase of the confinement/deconfinement transition, i.e.

T̃ > T̃c = LMKK/(2π) is valid. Therefore, our result of the phase diagram looks like

Fig. 1 as we explained in Introduction. The orders of T and µ at the transition points

can be estimated from eq. (4.19). Using R3 = g2
Y MNcl

2
s/(2MKK) and µ̃, T̃ = O(1)

we obtain

T = O(L−1), µ = O(g2
Y MNcL

−2M−1
KK). (4.20)

If we assume L = O(M−1
KK), the transition temperature is of the order of the com-

pactification scale MKK , and the chemical potential is of the order g2
Y MNcMKK ,

which is much larger than MKK since g2
Y MNc ≫ 1.
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Figure 6: The phase diagram in the µ̃-T̃ space.

5. Discussions

We analyzed the Sakai-Sugimoto model at finite temperature and finite baryon

number chemical potential. The chemical potential is introduced as an asymptotic

value of the U(1) gauge field on the probe D8-D8-branes. Using this model we

studied the phase structure of the chiral symmetry breaking and obtained the phase

diagram in Fig. 1. This phase diagram should be compared with that expected

in QCD [24]. Our result is especially different from the QCD expectation at low

temperature. In QCD the chiral symmetry is expected to be unbroken even at zero

temperature if the chemical potential is sufficiently large. In our analysis the chiral

symmetry is always broken below Tc since the geometry of the τ -U space allows only

the curved configuration of the probe branes. Since we used the probe approximation

for the D8-D8-branes, the gauge field on the branes (the chemical potential) does

not affect the bulk geometry. It is interesting to see whether back-reactions of the

gauge field on the geometry of the τ -U space change the phase structure below the

temperature Tc. To fully understand the phase diagram we need an analysis beyond

the probe approximation.

In the usual field theoretical approaches to the chiral symmetry breaking one

considers condensations of quark bilinears ψ̄ψ as an order parameter. The quark

masses are sources of these operators. In fact, in other models of the holographic

QCD [7, 8] the mechanism of the chiral symmetry breaking is different from that

in the Sakai-Sugimoto model. The chiral symmetry is realized as the rotational
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symmetry of the probe branes in the transverse space. The quark masses and the

quark condensations can be read from asymptotic behaviors of the probe branes. In

the Sakai-Sugimoto model quarks are always massless since the asymptotic distance

between the D4-branes and the D8-D8-branes, which is proportional to the quark

mass, is zero. It is not clear how to introduce quark masses in this model. It is

interesting to clarify the relation between the mechanisms of the chiral symmetry

breaking in the Sakai-Sugimoto model and in other models.
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