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We study a frustrated mixed spin chain with side chains, where the spin species and the exchange interac-
tions are spatially varied. A nonlinear � model method is formulated for this model, and a phase diagram with
two disordered spin-gap phases is obtained for typical cases. Among them, we examine the case with a main
chain, which consists of an alternating array of spin-1 and spin-1

2 sites, and side chains, each of which consists
of a single spin-1

2 site, in great detail. Based on numerical, perturbational, and variational approaches, we
propose a singlet cluster solid picture for each phase, where the ground state is expressed as a tensor product
of local singlet states.
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I. INTRODUCTION

Quantum one-dimensional �1D� spin systems have been
studied in various aspects, with particular interest in their
strong quantum fluctuations due to the low dimensionality.
There appear a variety of quantum disordered ground states
where the continuous spin rotation symmetry is not broken
and the lowest spin excitation has a finite gap �spin gap�.
These quantum disordered states have no analogs in classical
spin systems. Typical examples are a Haldane state in a
spin-1 chain,1 a dimer state in a spin-1

2 chain with bond
alternation,2 and a spin-gap state in a spin-1

2 ladder.3

In extensive research for various 1D spin systems, spin
chains with side chains have not attracted enough attention in
spite of their potentially rich physics. Since a side chain is of
finite length, it may enhance quantum fluctuation in the sys-
tem. Actually, the 1D Kondo necklace model, which has
been extensively studied as a simplified version of the 1D
Kondo lattice model,4,5 can be regarded as a spin chain with
side chains. In this model, the main chain is a spin-1

2 chain
and each side chain consists of a single spin with magnitude
of 1

2 . The ground state of this model is known to be in the
Kondo singlet phase with spin gap,5 while the spin-1

2 chain
without side chains is critical. This means that the quasi-
long-range order in the main chain is destroyed by the quan-
tum fluctuation in the side chains. Also, if the side chains
bring geometrical frustration into the system, quantum fluc-
tuation is expected to be further enhanced. Thus, how quan-
tum fluctuation manifests itself and what kind of ground state
appears in various types of spin chains with side chains are
interesting subjects.

In this paper, we investigate the nature of quantum disor-
dered ground states of one of the simplest models with frus-
trated side chains. The main chain of the model consists of
two species of spins in alternating order, and each side chain
consists of a single spin, with each side chain alternately
attached to the main chain, as shown in Fig. 1. This model
incorporates the effects of a mixture of different spins, bond
alternation, and frustration in spite of its simplicity. In par-
ticular, the frustration comes from triangles, each consisting
of three antiferromagnetically interacting spins. Although
quantum spin systems with similar geometry have been in-

vestigated by several authors,6 our model is physically dif-
ferent from them. If the side chains of our model are re-
moved, the main chain is in a ferrimagnetic ground state. The
side-chain spins introduce frustration to the system and de-
stroy the ferrimagnetic order, leading to quantum disordered
states.

The disordered ground states of the present model cannot
be understood in the conventional valence bond solid �VBS�
picture,7 which successfully explains the disordered ground
states of many spin models with local frustration. Instead, we
will explain the present ground states using the concept of
the singlet cluster solid �SCS� picture. A SCS state is a direct
product of local singlet states or singlet clusters. Each singlet
cluster consists of more than two singlet dimers, and the
dimers are resonating locally within the cluster. The SCS
states are realized as a result of the interplay of quantum
fluctuation and local frustration, as will be explained in de-
tail.

It is desirable that the SCS state manifested in this paper
is experimentally inspected in materials. However, a material
precisely described by the present model has not been found
so far to our knowledge. Despite the lack of materials, it is
worth clarifying the concept of the SCS states and verifying
their existence in a concrete model. Further, by considering
the rich variety of magnetic materials synthesized by modern
chemical technology,8 desired materials are expected to be
synthesized, since they are not necessarily complex in struc-
ture.

The details of the model are explained in the next section.
Various approaches are employed to clarify the ground-state
phases of this model. In Sec. III, a nonlinear � model

T

S1 S2

J1 J2

K1 K2

FIG. 1. A quantum spin chain with side chains; two unit cells
are presented. S1, S2, and T are spins whose magnitudes satisfy Eq.
�3�. The case where S1=1, S2= 1

2 , and T= 1
2 is particularly studied in

detail.
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�NLSM� method is proposed to grasp a qualitative feature of
the phase diagram. Since a similar NLSM method has been
developed for mixed spin chains without side chains, we
extend it to the present side-chain case.

We also employ other approaches while limiting ourselves
to the simplest cases of spin magnitudes of 1 and 1

2 . In Sec.
IV, a numerical diagonalization for finite systems is carried
out to obtain a quantitatively reliable phase diagram, which
confirms the qualitative correctness of the NLSM method.
Some limiting cases are exactly treated to draw a physical
picture for each phase in Sec. V. After these considerations,
we arrive at the SCS pictures to explain the ground states in
Sec. VI. The SCS pictures are also supported by variational
calculations in Sec. VII. Section VIII is devoted to a sum-
mary and discussion.

II. MODEL HAMILTONIAN AND ITS CLASSICAL
VERSION

We study an isotropic quantum spin chain with alternately
arrayed side chains, as illustrated in Fig. 1. In the pth unit
cell, S1�p� and S2�p� are spin operators on the main chain,
and T�p� is a spin operator on the side chain. The quantum
numbers of spin magnitudes of these spin operators are ex-
pressed as S1, S2, and T. Exchange parameters are repre-
sented as J1, J2, K1, and K2 and are assumed to be all posi-
tive. Then the Hamiltonian is written as

H = �
p=1

N

�J1S1�p� · S2�p� + J2S2�p� · S1�p + 1�

+ K1S1�p� · T�p� + K2S2�p� · T�p�� . �1�

The spacing between the nearest spins is a, and the length of
a unit cell is 2a. The Hamiltonian is characterized by three
independent dimensionless parameters, as follows:

j =
J2

J1
, k =

TK1

S2J1
, r =

S2K2

S1K1
. �2�

Here, j measures the strength of the bond alternation in the
main chain, k measures the strength of interaction between a
main-chain spin and a side-chain spin, and r measures the
strength of frustration.9

In the present paper, we assume the following restriction
on spin magnitudes:

S1 − S2 − T = 0. �3�

This is the condition that the corresponding classical spin
chain can have a ground state with no total magnetization
�i.e., no ferrimagnetism� when K2 is not large. The restriction
�3� serves to simplify the Berry phase term in the continuum
limit.

Expectation values of the spin operators for a spin coher-
ent state are written as

�S1�p�� = S1M1�p� ,

�S2�p�� = − S2M2�p� ,

�T�p�� = − TM��p� , �4�

where M1�p�, M2�p�, and M��p� are unit vectors. By sub-
stituting them for the spin operators in Eq. �1�, we have the
following classical version of the Hamiltonian:

Hc =
1

2
J̃1�

p=1

N � j	M2�p� − M1�p + 1�
2

+ �1 −
kr

1 − r
�	M1�p� − M2�p�
2

+
k

1 − r
	M1�p� − rM2�p� − �1 − r�M��p�
2 , �5�

where J̃1=J1S1S2 and a constant term is omitted from Hc.
The classical antiferromagnetic configuration,

M1�p� = M2�p�� = M��p�� �6�

for all p, p�, and p�, is the ground-state solution if the pref-
actors of the squares in Eq. �5� are all positive. This gives the
condition for the classical stability of the antiferromagnetism
as

0 � r � 1, 0 � k �
1

r
− 1. �7�

In the following arguments, we will concentrate on this re-
gion.

III. NONLINEAR � MODEL FOR THE SPIN CHAIN

By using the spin coherent representation, the partition
function of Hamiltonian �1� is written in a path-integral form
as

Z =� �
j

D	M j
��M j
2 − 1�e−A, �8�

with j=1, 2, and �. The action A is written as

A = − iAB + AH,

AB = �
p

�S1w	M1�p�
 − S2w	M2�p�
 − Tw	M��p�
� ,

AH = �
0

�

d�Hc, �9�

where � is the inverse of temperature and w	Mi�p�
 is the
solid angle that Mi�p� forms in period �. The term −iAB in
action A is the Berry phase term.

We introduce a slow variable m�p� for each unit cell and
fluctuation variables L1�p�, L2�p�, and L��p� for each spin
in a unit cell. Then the original variables are transformed as
follows:
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M1�p� = m�p� + aL1�p� ,

M2�p� =
1

2
m�p� +

1

2
m�p + 1� + aL2�p� ,

M��p� = m�p� + aL��p� . �10�

This transformation is found by observing and extending the
transformation for a simple chain without a side chain.10,11

Since the left hand side terms in Eq. �10� are unit vectors, we
have the following constraints for the new variables:

m2 = 1, m · L1 = m · L2 = m · L� = 0. �11�

The fluctuation variables depend on one another, and one of
them, e.g., L�, can be set equal to 0. Hence, the number of
independent variables is conserved in the transformation. By
defining new fluctuation variables,

R = L2 − L1,

Q = �1 − r�L� − L1 + rL2, �12�

and taking the continuum limit, we have

A =� d�dx� i

2
S2

�m

�x
· �m �

�m

��
� +

a

4
J̃1�c+ − kr2�� �m

�x
�2

+
a

4
J̃1	k�Q2 + 2f · Q� + c+�R2 + 2g · R�
 , �13�

with c�=1� j− 	kr / �1−r�
. Here, vectors f and g are given
as

f = r
�m

�x
+ i

S1 − S2

aJ̃1k�1 − r�
m �

�m

��
,

g =
c−

c+

�m

�x
− i

rS1 − S2

c+aJ̃1�1 − r�
m �

�m

��
. �14�

By integrating the partition function with respect to R and
Q, we have the following NLSM action:

Aeff =� d�� dx�i
�

4	
m · � �m

��
�

�m

�x �
+

c+�S1 − S2�2 + k�rS1 − S2�2

4aJ̃1�1 − r�2kc+
� �m

�� �2

+
a

4
J̃1c+�1 −

c−
2

c+
2�� �m

�x �2 . �15�

The first term is the topological term and � is the topological
angle given by

� =
4	j�S2 − rS1�

�1 − r��1 + j� − kr
. �16�

In the absence of frustration �r=0�, the topological angle
reduces to �=4	S2J2 / �J1+J2�. This is the same expression
as that for a simple spin chain of magnitude S2 with bond
alternation.10,12 This can be interpreted as follows: a spin S1

is combined with an adjacent spin T on the side chain, and a
two-spin cluster with total spin magnitude S1−T �=S2� is
formed. However, the coefficients of ��m /���2 and ��m /�x�2

in Eq. �15� do not reduce to those for the simple spin chain,
even if k is very large. This implies that the quantum fluc-
tuation of spins on side chains still survives for large k.

The topological term of Eq. �15� determines whether or
not the system has a spin gap in the same manner as
Haldane’s argument.1 That is, the system does not have a
spin gap if and only if the topological angle � is just 	
�mod 2	�. This condition is written as

2j�S2 − rS1�
�1 − r��1 + j� − kr

= h , �17�

where h is any half odd integer. This gapless condition de-
termines phase boundaries between gapful disordered phases
in the parameter space. We notice that, for each value of h,
boundaries for all values of r pass through the common point

�k, j� = �2�S1 − S2�
2S2 − h

,
h

2S2 − h
� . �18�

In the case of S1=1, S2= 1
2 , and T= 1

2 , only a permitted
value of h in Eq. �17� is 1

2 for k
0 and j
0. Then the phase
boundaries for several values of r are solid lines in Fig. 2.
Owing to the definitions of the parameters, they are straight
lines in the present approximation. The regions of both sides
of each boundary are gapful disordered phases. We call them
Gap I phase and Gap II phase as noted in the figure. For
r=0, the phase boundary is horizontal, since the topological
angle is independent of k as mentioned below Eq. �16�. This
can be understood by considering S1 as a composite of two 1

2
spins. In fact, when r=0, T and one of the 1

2 spins of S1
necessarily form a valence bond irrespective of the value of k
in the ground state. As r increases from 0, the slope of the
boundary becomes negatively large. The reason will be ar-
gued later.

4

3

2

1

0

j

86420

k

r = 0.0

0.3

0.1

0.2

r = 1/3

Gap II

Gap I

FIG. 2. Phase boundaries for several values of r in the k-j plane
by the NLSM method for S1=1, S2= 1

2 , and T= 1
2 . For each value of

r �=K2 /2K1�, the region of 0�k�
1
r −1 is meaningful in the NLSM

method.
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We also show phase diagrams in other cases in Fig. 3; the
phase boundaries in Fig. 3�a� are for S1= 3

2 , S2=1, and T= 1
2 ,

and those in Fig. 3�b� are for S1= 3
2 , S2= 1

2 , and T=1.
Although Eq. �17�, which determines the phase boundaries,
is quite general, we mainly examine the case of S1=1,
S2= 1

2 , and T= 1
2 . This case is expected to include the essence

of the present type of spin chains with side chains.

IV. NUMERICAL DIAGONALIZATION

Hamiltonian �1� can be numerically diagonalized for
small size systems. The numerical calculation is effective not
only in analyzing the system itself in detail, but also in de-
termining the precision of the NLSM method by comparing
the results. We performed a numerical diagonalization in the
case of S1=1, S2= 1

2 , and T= 1
2 to obtain the phase diagram

for the ground state.
The phase transition points are determined as follows. The

phase transitions between different spin-gap phases are ex-
pected to be the Gaussian transition. Hence, we employ the
method of twist boundary condition proposed by Kitazawa13

and Kitazawa and Nomura14 to determine the phase bound-
ary. As will be examined later, the ground-state phases are
described by different SCS configurations. Under the twisted
boundary condition, the different singlet solid configurations
have different time reversal parities depending on the even-
odd parity of the number of valence bonds across the twisted
boundary. Hence, the energy levels of the ground state and of
the first excited state cross at the phase boundary without
level repulsion. This ensures a precise evaluation of the
phase boundary. The size extrapolation is based on the fol-
lowing formula for the finite size correction:13,14

jc�N� = jc��� +
c1

N2 +
c2

N4 , �19�

where jc�N� is the finite size critical value of quantity j, and
c1 and c2 are the fitting parameters. We have carried out the
extrapolation by using numerical results for the total spin
number, 3N=12, 18, and 24.

Resultant phase boundaries for several values of r are
plotted in Fig. 4. By comparing Figs. 2 and 4, we find that
the NLSM method gives qualitatively correct phase bound-
aries. In particular, for small r, or weak frustration, the

NLSM method provides a quantitatively fair approximation.
With the increase in r, the Gap I phase extends to the region
j
1 for small k, and it is suppressed in the region j�1 for
large k. Although this feature qualitatively coincides with
that of the NLSM results, quantitative coincidence becomes
worse with the increase in r. This is natural because the
present NLSM method starts from a classical antiferromag-
netic solution in the absence of frustration.

The possibility of a first order transition between different
spin-gap phases was pointed out in the frustrated ladder by
Hakobyan et al.15 in the appropriate parameter regime. By
considering the presence of frustration, this type of transition
cannot be ruled out in the present model. However, we did
not find numerical evidence for the first order transition
within the parameter regime discussed in this paper.

V. LIMITING CASES

To further confirm the numerical phase diagram for
S1=1, S2= 1

2 , and T= 1
2 , we consider the effective theory in

the limiting cases of j→0 and j→�.

A. Strong J1 limit (j\0)

In the limit of j→0, the system can be regarded as a
one-dimensional array of weakly coupled three-spin units, as
shown in Fig. 5�a�. One of the three-spin units is described
by the Hamiltonian

H3 = J1S1 · S2 + K1S1 · T + K2S2 · T , �20�

where we have dropped the common index p representing
the pth unit cell for simplicity. The Néel basis is represented
as �S1

z ,S2
z ,Tz�, where S1

z takes ⇑, 0, or ⇓, and S2
z and T take ↑

or ↓. By introducing the composed spin Ŝ�S1+S2+T, we

have another set of basis vectors ��S̃ , S̃z ,���, where S̃ and S̃z

are quantum numbers of the magnitude and the z component
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0
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r
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0
.2
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FIG. 3. Phase boundaries in the k-j plane by the NLSM method
in the case of �a� S1= 3

2 , S2=1, and T= 1
2 , and �b� in the case

of S1= 3
2 , S2= 1

2 , and T=1. For each value of r, the region of
0�k�

1
r −1 is meaningful.
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r = 0.0
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0 0.5 1
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k

FIG. 4. Phase boundaries by numerical diagonalization for
S1=1, S2= 1

2 , and T= 1
2 . Each point of a boundary is determined by

extrapolation for the total spin number 3N=12, 18, and 24. Inset:
Phase boundaries for small k.
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of S̃, respectively, and � discriminates multiple states with

the same S̃ and S̃z, if necessary. We seek the ground state of

the three-spin unit with S̃=0 or 1, since all the exchange
interactions are antiferromagnetic.

�i� For S̃=0, we have S̃z=0. Then the one-dimensional
subspace consists of a single state,

��0,0�� =
1
�6

��0↓↑� + �0↑↓� − �2�⇑↓↓� − �2�⇓↑↑�� .

�21�

This is a singlet eigenstate of H3 belonging to the eigenvalue

E0 = − J1 − K1 +
K2

4
. �22�

�ii� For S̃=1, we have S̃z=1, 0, or −1. In this three-
dimensional subspace, it is sufficient to inspect the case of

S̃z=1, owing to the spherical symmetry of the Hamiltonian
H3. We choose the orthonormal basis of the subspace

S̃= S̃z=1 as

��1,1,1�� =
1

2
��⇑↓↑� + �⇑↑↓� − �2�0↑↑�� ,

��1,1,2�� =
1
�2

��⇑↓↑� − �⇑↑↓�� . �23�

By operating H3 on these bases, we have an eigenvalue equa-
tion. Then the lowest eigenvalue E1 in this subspace is de-
termined as the smaller solution of the characteristic equa-
tion:

�−
J1

2
−

K1

2
+

K2

4
− E1

1
�2

�− J1 + K1�

1
�2

�− J1 + K1� −
3K2

4
− E1

� = 0. �24�

By introducing a normalized energy difference as
= �E1−E0� /J1, Eq. �24� with Eq. �22� reduces to

22 − 	3�1 + k� − 4rk
 + 2k	2 − �1 + k�r
 = 0. �25�

If the smaller solution for  is negative, the ground state is a

triplet �S̃=1� state; otherwise, it is a singlet �S̃=0� state. By
using Eq. �25�, the condition for the triplet ground state be-
comes

k 
 kc �
2

r
− 1 �S̃ = 1� . �26�

We notice that kc
1 in the region of 0�r�1, which we
have concentrated on in this paper. In the triplet ground state,
S2 tends to orient to a direction opposite from S1 for

J1
K1, and T does so for J1�K1. The composed spin S̃
always orients in the same direction as S1.

The composed spin S̃�p� at the pth unit cell interacts

with adjacent S̃�p+1� by an effective exchange interaction.
We denote the effective exchange parameter by Jeff.
Since the interaction between S2�p� and S1�p+1� is antifer-
romagnetic �J2
0�, the correlation between S1�p� and
S1�p+1� is antiferromagnetic for K1
J1 �k
1� and ferro-
magnetic for K1�J1 �k�1�. Therefore, Jeff has the same
sign as K1−J1=J1�k−1�, considering that the signs of

�S̃�p� · S̃�p+1�� and �S1�p� ·S1�p+1�� are the same.
For k
kc, we have Jeff
0, since kc
1 for 0�r�1.

Hence, the original spin chain is equivalent to a spin-1 anti-
ferromagnetic Heisenberg chain consisting of effective spins,

S̃�p�’s. The ground state of a uniform spin-1 chain is the
Haldane state,1 which gives a spin gap for excitation. In the
Haldane state, there is a strong correlation between each ad-
jacent spin pair, as known from the VBS picture for effective

spins, S̃�p�’s.7 In terms of the original spins, there is a strong
correlation between adjacent three-spin units. For k�kc, on
the other hand, the ground state of each three-spin unit is
already a closed singlet state. Then the ground state of the
total spin chain is approximately an array of such closed
local singlets, and there is almost no correlation between
adjacent three-spin units. Thus, there is a Gaussian transition
between the two characteristic ground states with spin gap at
k=kc. The value of kc in this argument for j→0 agrees with
the critical value by the numerical diagonalization, as seen
on the j=0 line of the phase diagram �Fig. 4�.

B. Strong J2 limit (j\�)

In the limit of j→�, spins S1�p+1� and S2�p� form an

effective spin Ŝ�p��S1�p+1�+S2�p� with magnitude 1
2 , and

other interactions can be treated as perturbations. Then the

effective Hamiltonian for Ŝ�p� and T�p� is

Heff = �
p=1

N �−
4

9
J1Ŝ�p� · Ŝ�p + 1� +

4

3
K1Ŝ�p� · T�p + 1�

−
1

3
K2Ŝ�p� · T�p� . �27�

The ground state of this chain is still nontrivial. However, K2
plays a secondary role in the weakly frustrated region, so that
each T antiferromagnetically interacts with the ferromag-

T

S1 S2 J2

J2

J1

K1

(a)

(b)

K2KK

T

S1 S2J1

K2
K1KK

FIG. 5. �a� Three-spin units for j→0 and �b� those for j→� and
r→0 in the case of S1=1, S2= 1

2 , and T= 1
2 . Three spins �circles� in

a shadowed region form a three-spin unit.
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netic chain consisting of Ŝ’s. Therefore, it is plausible that
the ground state is always nonmagnetic for small r. Numeri-
cal studies of the effective model �27� suggest no phase tran-
sition for 0�r�1 /3, where no phase transition is predicted
by the NLSM method for large j.

In terms of the original Hamiltonian �1�, the ground state
of j→� and r→0 is a direct product of local singlet states of
three-spin units. A three-spin unit consists of S2�p�,
S1�p+1�, and T�p+1�, as shown in Fig. 5�b�. The ground
state of finite k and r �j→�� is adiabatically connected to the
limit without phase transition as long as r is small. The full
phase diagram of the effective model �27� is investigated in a
separate paper.16

VI. SINGLET CLUSTER SOLID PICTURE

In this section, we propose the SCS picture to explain any
ground state in the phase diagram for S1=1, S2= 1

2 , and
T= 1

2 . This is a generalization of the VBS picture and is based
on expressing S1 with a magnitude of 1 as

S1 = S1
�1� + S1

�2�, �28�

where S1
�1� and S1

�2� are spins with a magnitude of 1
2 .17

For convenience of explanation, we divide each phase
into two regions by the line of j=1, as schematically shown
in Fig. 6: the Gap I phase is divided into regions I-A and I-B,
and the Gap II phase is divided into regions I-A and I-B.

A. Valence bond solid picture and its insufficiency

The ground states of the limiting cases in the preceding
section are explained by VBS pictures. The VBS picture for
j→0 and k�kc is VBS I, as illustrated in Fig. 7�a�.18 The
valence bonds on J1 interactions, which we hereafter abbre-
viate as the J1 valence bonds, contribute mainly to the energy
gain of the ground state of VBS I. On the other hand, the

VBS picture for j→� is VBS II, as illustrated in Fig. 7�b�.
The valence bonds on J2 interactions, or the J2 valence
bonds, contribute mainly to the energy gain of the ground
state of VBS II.

The VBS pictures are not adequate for regimes away from
the above limiting cases, although they are expected to be
qualitatively valid for small-j and large-j regimes. As seen in
Fig. 6, the energetic advantage of J1 valence bonds of VBS I
on line j=0 �k�kc� remains within region I-A because
J1
J2. However, the advantage is lost in region I-B because
J2
J1. Similarly, the energetic advantage of J2 valence
bonds of VBS II in the limit of j→� remains within region
II-A because J2
J1. However, the advantage is lost in re-
gion II-B because J1
J2. Since the line of j=1 is not a
phase boundary, we need a different picture to explain the
whole Gap I �II� phase, which reduces to VBS I �II� in the
limit. The picture will be a SCS picture.

B. Concept of a singlet cluster solid picture

A general SCS picture is defined by a wave function of a
tensor product form of local singlet states. We call this wave
function the SCS state, and each local singlet state a singlet
cluster. It is typically written as

��� = ���1�� � ���2�� ¯ � ���M�� , �29�

where ���p�� �p=1,2 , . . . ,M� is a singlet cluster and M is the
total number of singlet clusters in the SCS state. Here, we
have considered that any spin with a magnitude of more than
1 is resolved into a set of spins with a magnitude of 1

2 . Then
a singlet cluster is a singlet state of more than two spins with
a magnitude of 1

2 .
A singlet cluster in a SCS state is represented as a super-

position of products of valence bonds. Hence, the valence
bonds resonate within the singlet cluster. A VBS is a special
case of the SCS, where a singlet cluster is a single valence
bond and no resonation occurs. A resonating valence bond
state is another special case, where the whole system is the
singlet cluster and all valence bonds are resonating.

3

2

1

0

j

6420

k

(Gap II)

(Gap I)

II-BI-A

II-A

I-B

FIG. 6. Four regions in a typical phase diagram for S1=1,
S2= 1

2 , and T= 1
2 ; the phase diagram for r=0.2 by the NLSM method

is shown. The solid line is the phase boundary between the Gap I
phase and the Gap II phase. In each phase, the dashed line of j=1
means a crossover between regions with different features. The Gap
I phase consists of regions I-A and I-B, while th Gap II phase
consists of regions II-A and II-B. They are explained by SCS
pictures.

T

S1 S2J1 J2

K1 K2VBS I

(a)

(b)
T

S1 S2J1 J2

K1 K2VBS II

FIG. 7. VBS pictures in the limiting cases for S1=1, S2= 1
2 , and

T= 1
2 : �a� VBS I represents the ground state for j→0 and k�kc, and

�b� VBS II does so for j→�. Small circles are 1
2 spins and bold

gray lines are valence bonds. Spin S1 is expressed by two 1
2 spins as

S1=S1
�1�+S1

�2�. Loops including two valence bonds correspond to
SCS pictures �see text�.
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Usually, a SCS state is not the exact ground state for a
given spin Hamiltonian. However, if the exact ground state is
continuously modified into an appropriate SCS state, the
SCS state describes the essence of the ground state. From
this viewpoint, the SCS state is useful to characterize the
phase to which the ground state belongs. In some quantum
spin chains without a side chain, various ground-state phases
have been successfully described by corresponding SCS
pictures.19 Furthermore, a SCS state can also quantitatively
describe the true ground state if the wave function of each
singlet cluster is well localized. Among such systems, in the
spin system on a diamond chain,20 we have the exact
tetramer-dimer-state solution, which is a kind of SCS state.

C. Singlet cluster solid picture for the Gap I phase

We call the SCS picture for the Gap I phase SCS I. The
SCS I state is constructed by assuming the following require-
ments:

�i� The ground state is continuously modified to the VBS
I state without a global rearrangement of the valence bond
configuration.

�ii� The ground state is invariant under the translation by
a single unit cell.

�iii� The ground state contains a substantial amount of
component with J2 valence bonds in region I-B.

Assumption �i� is necessary, since the Gap I phase in-
volves the limiting case of j→0 and k�kc where the VBS I
picture holds, and there is no phase transition in the Gap I
phase. As for assumption �ii�, we confirmed that there is no
indication of the translational symmetry breaking in numeri-
cal ground states. Assumption �iii� is required to explain re-
gion I-B.

Under the above requirements, we take the SCS I wave
function in the tensor product form as follows:

��I�c�� = ��I�1;c�� � ��I�2;c�� ¯ � ��I�N;c�� , �30�

as schematically depicted in Fig. 8�a�. Here, ��I�p ;c�� is a
singlet cluster of four 1

2 spins in the pth unit cell; this is
denoted by a loop filled in gray. Each singlet cluster is a
linear combination of two valence bond states written as

��I�c�� = ��I� + c��I� , �31�

where ��I� and ��I� are the valence bond states defined in the
right hand side of Fig. 8�b�. We have abbreviated index p of
the unit cell for simplicity. The valence bond state ��I� is the
same as that shown within a loop in VBS I 	Fig. 7�a�
. The
valence bond state ��I� contains a J2 valence bond. The co-
efficient c should be 0 in the limit of j→0 and may be small
for region I-A �J1
J2�. However, it should have a substan-
tial amplitude in region I-B �J1�J2�. For finite c, the two
valence bond states locally resonate in a singlet cluster to
contribute to energy gain; this effect is examined in Sec.
VI E, where the phase boundary between the Gap I and Gap
II phases is discussed energetically.

We examined which valence bonds really contribute to
the ground state by numerically calculating the short range

correlation functions. For a typical case �r=0.3 and k=0.2�,
results are shown in Fig. 9. As j increases, ��S1�p� ·S2�p���
decreases and ��S1�p+1� ·S2�p��� increases. This means that
the contribution from the J2 valence bonds becomes large in
comparison with that from the J1 valence bonds. It is also
known that ��S1�p� ·T�p+1��� takes the maximum and
��S1�p� ·T�p��� takes the minimum around region I-B. Hence,
a K1 valence bond is reduced in region I-B. Instead, a va-
lence bond between T�p+1� and S1

�1��p� 	or S1
�2��p�
 devel-

ops, although there is no exchange interaction between
T�p+1� and S1�p�. All these results are consistent with the
SCS I picture.

D. Singlet cluster solid picture for the Gap II phase

We call the SCS picture for the Gap II phase SCS II.
Similar to the case of SCS I, the SCS II state is constructed
by assuming the following requirements:

SCS I

(a)

+=

(Gap I)

(b)

T

S1 S2J1 J2

K1 K2

c

ψ|
I> α|

I> β|
I>

FIG. 8. �a� SCS I, the SCS picture for the Gap I phase
�S1=1, S2= 1

2 , and T= 1
2 �. SCS I is a tensor product form of singlet

clusters. �b� A singlet cluster ��I�c�� �the left hand side� in SCS I. It
is represented as a linear combination of two valence bond states,
��I� and ��I� �the right hand side�. c is the coefficient of the linear
combination.
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FIG. 9. Short range correlation functions for r=0.3 and k=0.2
numerically calculated for N=12, 18, and 24 �N is the number of
spins�.
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�i� The ground state is continuously modified to the VBS
II state without a global rearrangement of the valence bond
configuration.

�ii� The ground state is invariant under the translation by
a single unit cell.

�iii� The ground state contains a substantial amount of
component with J1 valence bonds in region II-B.

Under the above requirements, we take the SCS II wave
function in the tensor product form

��II�c�� = ��II�1;c�� � ��II�2;c�� ¯ � ��II�N;c�� , �32�

as schematically depicted in Fig. 10�a�. Here, ��II�p�� is a
singlet cluster of four 1

2 spins in the pth unit cell; this is
denoted by a loop filled in gray. Each singlet cluster is a
linear combination of two valence bond states written as

��II�c�� = ��II� + c��II� , �33�

where ��II� and ��II� are the two valence bond states defined
in the right hand side of Fig. 10�b�. We have abbreviated
index p of the unit cell for simplicity. The valence bond state
��II� is the same as that shown within a loop in VBS II 	Fig.
7�b�
. The valence bond state ��II� contains a J1 valence
bond. The coefficient c should be 0 in the limit of j→� and
may be small for region II-A �J1�J2�. However, it should
have substantial amplitude in region II-B �J1
J2�. For finite
c, the two valence bond states locally resonate in a singlet

cluster to contribute to energy gain; this effect is examined in
Sec. VI E.

The wave function �33� of the singlet cluster is also rep-
resented as

��II�c�� = �1 + c���II� + c��II� �34�

by using the identity ��II�= ��II�+ ��II�, which is shown in Fig.
10�c�. ��II� includes the valence bond on the K2 interaction
and contributes to energy gain in region II-B �K2�K1�.

E. Boundary between Gap I and Gap II phases

First, we consider the j
1 part of the phase boundary; it
separates regions I-B and II-A, as seen in Fig. 6. The SCS II
wave function in region II-A is close to VBS II with J2
valence bonds, while the SCS I wave function in region I-B
contains J2 valence bonds only partly in the linear combina-
tion 	Eq. �31�
. Then, since the energy gain owing to J2 va-
lence bonds in region II-A is always larger than that in region
I-B, one might expect that region II-A would extend to the
whole area of j
1. The reason why region I-B actually ex-
ists is attributed to the energy gain by local resonation be-
tween the two valence bond states within each singlet cluster
	Eq. �31�
. When k or j increases, the SCS I becomes less
favorable and VBS II becomes advantageous because of
strong K1 or J2 valence bonds.

Second, we consider the j�1 part of the phase boundary;
it separates regions II-B and I-A, as seen in Fig. 6. The SCS
I wave function in region I-A is close to VBS I with J1
valence bonds, while the SCS II wave function in region II-B
contains J1 valence bonds only partly in the linear combina-
tion 	Eq. �33�
. Then, since the energy gain owing to J1 va-
lence bonds in region I-A is always larger than that in region
II-B, one might expect that region I-A would extend to the
whole area of j�1. The reason why region II-B actually
exists is attributed to the energy gain by local resonation
between the two valence bond states within each singlet clus-
ter 	Eq. �33�
. Since the resonation is enhanced by the frus-
tration due to K2 interactions, the area of region I-B increases
with increasing r �=K2 /2K1�, as seen in Figs. 2 and 4. If r is
fixed, the increase in k �=K1 /2J1� diminishes the effect of J1
interactions and makes the effect of resonation in SCS II
advantageous. This is the reason why SCS II appears for a
relatively large k in the presence of frustration r.

VII. VARIATIONAL CALCULATION

In the preceding section, we explained that the SCS pic-
ture represents the essence of each ground-state phase. How-
ever, it does not guarantee that each SCS wave function is
quantitatively satisfactory. In this section, we perform varia-
tional calculation using the SCS I and SCS II wave functions
to examine the quantitative correctness of the wave func-
tions.

A. Variational calculation for SCS I

The variational wave function for SCS I is Eq. �30� with
variational parameter c, which is the coefficient of the linear

SCS II

(a)

+=

(Gap II)

(b)

T

S1 S2J1 J2

K1 K2

c

+=

(c)

ψ|
II> α|

II> β|
II>

α|
II>β|

II> γ|
II>

FIG. 10. �a� SCS II, the SCS picture for the Gap II phase
�S1=1, S2= 1

2 , and T= 1
2 �. SCS II is a tensor product form of singlet

clusters. �b� A singlet cluster ��II�c�� �the left hand side� in SCS II.
It is represented as a linear combination of two valence bond states,
��II� and ��II� �the right hand side�. c is the coefficient of the linear
combination. �c� Identity among local valence bond states. ��II� �the
left hand side� is exactly the sum of ��II� and ��II� �the right hand
side�.
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combination. Then the energy per unit cell in energy unit J1
is written as

I�c� =
1

NJ1

��I�c��H��I�c��
��I�c����I�c��

=
��I�c��hI��I�c��
��I�c����I�c��

, �35�

where H is the total Hamiltonian �1�, and hI is the reduced
Hamiltonian for a singlet cluster in SCS I given as

hI = S1
�1� · S2 + jS2 · S1

�2� + kS1
�2� · T . �36�

After a straightforward calculation, we have the following
formula:

I�c� = −
3

4

1 + k − �1 + k + j�c + jc2

1 − c + c2 . �37�

By minimizing I�c� with respect to c, we have the optimal
value cII of the coefficient of the linear combination

cI =
1 + k − j − ��1 + k�2 − �1 + k�j + j2

1 + k
. �38�

The result is shown in Fig. 11, where the left axis represents
−cI. It is independent of r, since a K2 interaction is between
different singlet clusters. In the limit of j→0, we have
cI=0 and the wave function reduces to VBS I. The value �cI�
increases with increasing j, and for j�1, the term of ��I�
including J2 valence bonds becomes dominant in ��I�c��.
This behavior is consistent with the argument about SCS I in
the preceding section.

B. Variational calculation for SCS II

The variational wave function for SCS II is Eq. �32� with
variational parameter c, which is the coefficient of the linear
combination. Then the energy per unit cell in energy unit J1
is written as

II�c� =
1

NJ1

��II�c��H��II�c��
��II�c����II�c��

=
��II�c��hII��II�c��
��II�c����II�c��

, �39�

where H is the total Hamiltonian �1�, and hII is the reduced
Hamiltonian for a singlet cluster in SCS II given as

hII = kT · S1
�2� + S1

�2� · S2 + jS2 · S1
�1� + 2krT · S2. �40�

After a straightforward calculation, we have the following
formula:

II�c� = −
3

4

j + k − �1 + k + j − 2kr�c + c2

1 − c + c2 . �41�

By minimizing II�c� with respect to c, we have the optimal
value cII of the coefficient of the linear combination as fol-
lows:

cII =
a − �a2 + ab + b2

a + b
�42�

with a= j+k−1 and b=1−2kr. The result for r=0.2 is shown
in Fig. 12, where the left axis represents −cII. In the limit of
j→�, we have cII=0 and the wave function reduces to VBS
II.

The result depends on r, since a K2 interaction is involved
in each singlet cluster. Except for r=1 /2k, �cII� increases with
decreasing j, which means that ��II� including J1 valence
bonds becomes dominant in Eq. �33�. This feature is consis-
tent with the SCS II picture in the preceding section. In the
special case of 2kr �=K2 /J1�=1, we have cII=0 for any val-
ues of j, since b=0 in Eq. �42�. It is explained in the follow-
ing expression for ��II�c��:

��II�c�� = �1 + c���II� − ��II� , �43�

which is derived from Eq. �33� by the identity
��II�= ��II�+ ��II� in Fig. 10�c�. For J1=K2, ��II� with a J1
valence bond and ��II� with a K2 valence bond are equally
weighted in Eq. �43�, as expected.

2.0

1.5

1.0

0.5

0.0

c

1.51.00.50.0

j

k = 0.0
0.2
0.4
0.6
0.8
1.0
1.5

SCS I
−

I

FIG. 11. Coefficient cI of the linear combination in the varia-
tional wave function for SCS I �S1=1, S2= 1
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C. Phase diagram by variational calculation

In the above sections, we have obtained the variational
energy I�cI� of SCS I for the Gap I phase and the variational
energy II�cII� of SCS II for the Gap II phase. The phase
boundary is determined by the equation

I�cI� = II�cII� . �44�

The results for various r are shown in Fig. 13. These phase
boundaries qualitatively agree with the numerical ones in
Fig. 4 and support the correctness of the SCS pictures.

Region I-B in the variational phase diagram is wider in
the k direction and narrower in thej direction than that in the
accurate one �Fig. 4�. Further, region II-B is narrower than
the accurate one. By remembering that regions I-B and II-B
exist because of the local resonation of valence bond states,
the inclusion of longer range valence bonds resonating with
each other is possibly effective in improving the variational
wave functions in regions I-B and II-B. The ground states in
regions I-A and II-A are close to VBS I and VBS II, respec-
tively, and the effect of resonation is relatively small. Hence,
the inclusion of longer range valence bonds does not seem to
be very effective in improving the variational wave func-
tions.

VIII. SUMMARY AND DISCUSSION

In this paper, we investigated the nonmagnetic ground
states of a mixed spin chain with side chains with weak
frustration. So far, these kinds of models have not been in-
vestigated in depth despite their possible rich physics. We
have chosen the present model �1� �Fig. 1� as a simple and
nontrivial one, which will be a good starting point. We ex-
amined the system in various approaches: a NLSM method,
a numerical diagonalization method, an inspection of limit-
ing cases, a physical interpretation based on SCS pictures,
and a variational calculation for SCS wave functions.

NLSM methods have been developed for simple spin
chains without a side chain. In the present work, we formu-
lated a NLSM method for the typical spin chain with side

chains. The NLSM method analytically provides a ground-
state phase diagram in the k-j parameter space for various
values of S1, S2, and T. In the special case of S1=1, S2= 1

2 ,
and T= 1

2 , the phase diagram contains two quantum disor-
dered phases, Gap I and Gap II, in each of which the system
has a spin gap.

We also examined the case of S1=1, S2= 1
2 , and T= 1

2 by
the numerical diagonalization for finite chains. By using the
method of twisted boundary condition, we have determined
phase boundaries. When frustration is not strong �r�1�,
there are two spin-gap phases in the k-j parameter space. The
numerical results confirm the qualitative correctness of the
present NLSM method.

The limiting cases of j→0 and j→� are precisely and
analytically treated. For j�1, the Hamiltonian �1� describes
an array of weakly coupled three-spin units. As k increases
from 0, the ground state of each three-spin unit changes from
singlet to triplet. Accordingly, the whole spin chain under-
goes a phase transition from the VBS I state to the Haldane
state. For j�1, the system is described by an effective
Hamiltonian where no phase transition occurs with changing
k as long as r is small. By considering the continuity to the
large k limit, the ground state is described as a state similar
to the VBS II state.

There are regimes where no VBS picture explains the
ground state for S1=1, S2= 1

2 , and T= 1
2 . To explain the whole

phase diagram, we proposed two SCS pictures: SCS I and
SCS II for Gap I and Gap II phases, respectively. Each SCS
is a wave function of a tensor product form of singlet clus-
ters. A singlet cluster in both the SCS states is a local linear
combination of two valence bond states of two different pat-
terns. The resonation contributes to the energy gain of the
system and whole phases are consistently explained.

To quantify the SCS pictures, we performed variational
calculations with the wave functions representing SCS I and
SCS II. The phase boundary between the Gap I and Gap II
phases is determined by equating the energy of the mini-
mized wave function for SCS I to that for SCS II. The re-
sultant phase diagram approximately reproduces the phase
diagram by the numerical diagonalization.

Thus, we have obtained three phase diagrams: Fig. 2 by
the NLSM method, Fig. 4 by the numerical diagonalization,
and Fig. 13 by the variational calculation. The phase diagram
of Fig. 4 is accurate, since the extrapolation by finite size
systems is reliable. The other phase diagrams qualitatively
agree with the accurate one, and both methods are shown to
be useful.

So far, we have examined the spin chain with side chains
when the parameter r measuring frustration is not large
�r�1�. For larger r, a wider variety of phases is expected.
For example, we can extend the analysis in the limit of
j→0 to the region of r
1, i.e., kc�1. For kc�k�1, effec-
tive spins of three-spin units with a spin magnitude of 1
ferromagnetically interact with the nearest neighbors and
form a ferromagnetic ground state. In terms of the original
spins, the ground state is ferrimagnetic. Further, by the nu-
merical diagonalization, we have found various ferrimag-
netic phases with different magnetization in the strongly
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FIG. 13. Phase boundaries by the variational calculation for the
SCS wave functions �S1=1, S2= 1

2 , and T= 1
2 �.
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frustrated regime. The study of these ferrimagnetic phases is
in progress and will be reported in a separate paper.
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