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1. Introduction

Let (X, d) be a metric space and let T be a mapping on X. Then T is called a contraction if there
exists r ∈ [0, 1) such that

d(Tx, Ty) ≤ rd(x, y) (1.1)

for all x, y ∈ X. T is called Kannan if there exists α ∈ [0, 1/2) such that

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (1.2)

for all x, y ∈ X. We know that if X is complete, then every contraction and every Kannan
mapping have a unique fixed point, see [1, 2]. We know that both conditions are independent,
that is, there exist a contraction, which is not Kannan, and a Kannan mapping, which is not a
contraction. Thus we cannot compare both conditions directly. So we compare both indirectly.
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2 Fixed Point Theory and Applications

Fact 1

Banach fixed-point theorem, which is often called the Banach contraction principle, is very im-
portant because it is a very forceful tool in nonlinear analysis. We think that Kannan fixed-point
theorem is also very important because Subrahmanyam [3] proved that Kannan theorem char-
acterizes the metric completeness of underlying spaces, that is, a metric space X is complete
if and only if every Kannan mapping on X has a fixed point. On the other hand, Connell [4]
gave an example of a metric space X such that X is not complete and every contraction on X
has a fixed point. Thus the Banach theorem cannot characterize the metric completeness of X.
Therefore, we consider that the notion of contractions is stronger from this point of view.

Fact 2

Using the notion of τ-distances, Suzuki [5] considered some weaker contractions and Kannan
mappings and proved the following.

(i) If T is a contraction with respect to a τ-distance, then T is Kannan with respect to
another τ-distance.

(ii) If T is Kannan with respect to a τ-distance, then T is a contraction with respect to
another τ-distance.

That is, both conditions are completely the same.
Recently, Suzuki [6] proved the following theorem, see also [7].

Theorem 1.1 (see [6]). Define a nonincreasing function θ from [0, 1) onto (1/2, 1] by

θ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ r ≤ 1
2
(√

5 − 1
)
,

1 − r
r2

if
1
2
(√

5 − 1
) ≤ r ≤ 1√

2
,

1
1 + r

if
1√
2
≤ r < 1.

(1.3)

Then for a metric space (X, d), the following are equivalent:

(i) X is complete,

(ii) every mapping T on X, satisfying the following, has a fixed point: there exists r ∈ [0, 1) such
that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Remark 1.2. θ(r) is the best constant for every r.

The purpose of this paper is to prove a Kannan version of Theorem 1.1. Then we compare
the theorem (Theorem 2.2) with Theorem 1.1 and attempt to judge which is stronger from our
new point of view.

2. Kannan mappings

Throughout this paper we denote by N the set of all positive integers and by R the set of all
real numbers.

In this section, we prove our main result. We begin with the following lemma.
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Lemma 2.1. Let (X, d) be a metric space and let T be a mapping on X. Let x ∈ X satisfy d(Tx, T2x) ≤
rd(x, Tx) for some r ∈ [0, 1). Then for y ∈ X, either

1
1 + r

d(x, Tx) ≤ d(x, y) or
1

1 + r
d
(
Tx, T2x

) ≤ d(Tx, y) (2.1)

holds.

Proof. We assume

1
1 + r

d(x, Tx) > d(x, y),
1

1 + r
d
(
Tx, T2x

)
> d(Tx, y). (2.2)

Then we have

d(x, Tx) ≤ d(x, y) + d(y, Tx)

<
1

1 + r
(
d(x, Tx) + d

(
Tx, T2x

))

≤ 1
1 + r

(
d(x, Tx) + rd(x, Tx)

)
= d(x, Tx).

(2.3)

This is a contradiction.

The following theorem is a Kannan version of Theorem 1.1.

Theorem 2.2. Define a nonincreasing function ϕ from [0, 1) into (1/2, 1] by

ϕ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ r < 1√
2
,

1
1 + r

if
1√
2
≤ r < 1.

(2.4)

Let (X, d) be a complete metric space and let T be a mapping on X. Let α ∈ [0, 1/2) and put r :=
α/(1 − α) ∈ [0, 1). Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (2.5)

for all x, y ∈ X, then T has a unique fixed point z and limn T
nx = z holds for every x ∈ X.

Proof. Since ϕ(r) ≤ 1, ϕ(r)d(x, Tx) ≤ d(x, Tx) holds. From the assumption, we have

d
(
Tx, T2x

) ≤ αd(x, Tx) + αd(Tx, T2x
)
, (2.6)

and hence

d
(
Tx, T2x

) ≤ rd(x, Tx) (2.7)

for x ∈ X. Let u ∈ X. Put u0 = u and un = Tnu for all n ∈ N. From (2.7), we have

∞∑

n=1

d
(
un, un+1

) ≤
∞∑

n=1

rnd
(
u0, u1

)
<∞. (2.8)
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So {un} is a Cauchy sequence in X and by the completeness of X, there exists a point z such
that un → z.

We next show

d(z, Tx) ≤ αd(x, Tx), ∀x ∈ X with x /= z. (2.9)

Since un → z, there exists n0 ∈ N such that d(un, z) ≤ (1/3)d(x, z) for all n ∈ N with n ≥ n0.
Then we have

ϕ(r)d
(
un, Tun

) ≤ d(un, Tun
)
= d

(
un, un+1

)

≤ d(un, z
)
+ d

(
un+1, z

)

≤ 2
3
d(x, z) = d(x, z) − 1

3
d(x, z)

≤ d(x, z) − d(un, z
) ≤ d(un, x

)
,

(2.10)

and hence

d
(
Tun, Tx

) ≤ αd(un, Tun
)
+ αd(x, Tx) for n ∈ N with n ≥ n0. (2.11)

Therefore, we obtain

d(z, Tx) = lim
n→∞

d
(
un+1, Tx

)
= lim

n→∞
d
(
Tun, Tx

)

≤ lim
n→∞

(
αd

(
un, Tun

)
+ αd(x, Tx)

)

= αd(x, Tx)

(2.12)

for x ∈ X with x /= z.
Let us prove that z is a fixed point of T . In the case where 0 ≤ r < 1/

√
2, arguing by

contradiction, we assume that Tz /= z. Then we have, from (2.9),

d
(
z, T2z

) ≤ αd(Tz, T2z
) ≤ αrd(z, Tz), (2.13)

and hence

d(z, Tz) ≤ d(z, T2z
)
+ d

(
Tz, T2z

)

≤ αrd(z, Tz) + rd(z, Tz) = r + 2r2

1 + r
d(z, Tz)

<
r + 1
1 + r

d(z, Tz) = d(z, Tz).

(2.14)
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This is a contradiction. Therefore, we obtain Tz = z. In the case where 1/
√

2 ≤ r < 1, from
Lemma 2.1, either

ϕ(r)d
(
u2n, u2n+1

) ≤ d(u2n, z
)

or ϕ(r)d
(
u2n+1, u2n+2

) ≤ d(u2n+1, z
)

(2.15)

holds for n ∈ N. Thus there exists a subsequence {nj} of {n} such that

ϕ(r)d
(
unj , unj+1

) ≤ d(unj , z
)

(2.16)

for j ∈ N. From the assumption, we have

d(z, Tz) = lim
j→∞

d
(
unj+1, Tz

) ≤ lim
j→∞

(
αd

(
unj , unj+1

)
+ αd(z, Tz)

)
= αd(z, Tz). (2.17)

Since α < 1/2, we have Tz = z. Therefore, we have shown Tz = z in both cases.
From (2.9), we obtain that the fixed point z is unique.

Remark 2.3. Since θ(r) ≤ ϕ(r) for every r, we can consider that Kannan is stronger from our
new point of view. Though θ and ϕ are different, we remark that the graphs of θ and ϕ are
quite similar.

The following theorem shows that ϕ(r) is the best constant for every r.

Theorem 2.4. Define a function ϕ as in Theorem 2.2. For every α ∈ [0, 1/2), putting r = α/(1 − α) ,
there exist a complete metric space (X, d) and a mapping T on X such that T has no fixed points and

ϕ(r)d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (2.18)

for all x, y ∈ X.

Proof. In the case where 0 ≤ r < 1/
√

2, define a complete subset X of the Euclidean space R by
X = {−1, 1}. We also define a mapping T on X by Tx = −x for x ∈ X. Then T dose not have a
fixed point and

ϕ(r)d(x, Tx) = 2 ≥ d(x, y) (2.19)

for all x, y ∈ X. In the case where 1/
√

2 ≤ r < 1, define a complete subset X of the Euclidean
space R by

X = {0, 1} ∪ {
xn : n ∈ N ∪ {0}}, (2.20)

where xn = (1 − r)(−r)n for all n ∈ N ∪ {0}. Define a mapping T on X by T0 = 1, T1 = 1 − r, and
Txn = xn+1 for n ∈ N ∪ {0}. Then the following are obvious:

(i) d(T0, T1) = r = αd(0, T0) + αd(1, T1),

(ii) ϕ(r)d(0, T0) ≥ ϕ(r)d(xn, Txn) = d(0, xn) for n ∈ N ∪ {0}.

Also, we have

d
(
Txm, Txn

) ≤ d(0, Txm
)
+ d

(
0, Txn

)
= αd

(
xm, Txm

)
+ αd

(
xn, Txn

)
,

d
(
T1, Txn

) − (
αd(1, T1) + αd

(
xn, Txn

)) ≤ d(0, T1) + d
(
0, Txn

) − (
αd(1, T1) + αd

(
xn, Txn

))

= d(0, T1) − αd(1, T1) =
1 − 2r2

1 + r
≤ 0

(2.21)

for m,n ∈ N ∪ {0}.
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3. Generalized Kannan mappings

It is a very natural question of whether or not another fixed-point theorem with θ exists. In this
section, we give a positive answer to this problem.

Theorem 3.1. Define a nonincreasing function θ as in Theorem 1.1. Let (X, d) be a complete metric
space and let T be a mapping on X . Suppose that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r max
{
d(x, Tx), d(y, Ty)

}
(3.1)

for all x, y ∈ X. Then T has a unique fixed point z and limn T
nx = z holds for every x ∈ X.

Proof. Since θ(r)d(x, Tx) ≤ d(x, Tx), we have, from the assumption,

d
(
Tx, T2x

) ≤ r max
{
d(x, Tx), d

(
Tx, T2x

)}
(3.2)

and hence

d
(
Tx, T2x

) ≤ rd(x, Tx) (3.3)

for x ∈ X. Let u ∈ X. Put u0 = u and un = Tnu for all n ∈ N. As in the proof of Theorem 2.2, we
can prove that {un} converges to some z ∈ X.

We next show

d(z, Tx) ≤ rd(x, Tx) for allx ∈ X with x /= z. (3.4)

Since un → z, we have θ(r)d(un, Tun) ≤ d(un, x) for sufficiently large n ∈ N. Hence we obtain,
from the assumption,

d(z, Tx) = lim
n→∞

d
(
un+1, Tx

)
= lim

n→∞
d
(
Tun, Tx

)

≤ lim
n→∞

r max {d(un, Tun
)
, d(x, Tx)} = rd(x, Tx)

(3.5)

for x ∈ X with x /= z.
Let us prove that z is a fixed point of T . In the case where 0 ≤ r < 1/

√
2, we note

θ(r) ≤ 1 − r
r2

. (3.6)

We will show, by induction,

d
(
Tnz, Tz

) ≤ rd(z, Tz) (3.7)

for n ∈ N with n ≥ 2. When n = 2, (3.7) becomes (3.3), thus (3.7) holds. We assume d(Tnz, Tz) ≤
rd(z, Tz) for some n ∈ N with n ≥ 2. Since

d(z, Tz) ≤ d(z, Tnz) + d(Tnz, Tz) ≤ d(z, Tnz) + rd(z, Tz), (3.8)
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we have d(z, Tz) ≤ (1/(1 − r))d(z, Tnz), and hence

θ(r)d
(
Tnz, Tn+1z

) ≤ 1 − r
r2

d
(
Tnz, Tn+1z

) ≤ 1 − r
rn

d
(
Tnz, Tn+1z

)

≤ (1 − r)d(z, Tz) ≤ d(z, Tnz).
(3.9)

Therefore, by the assumption, we have

d
(
Tn+1z, Tz

) ≤ r max
{
d
(
Tnz, Tn+1z

)
, d(z, Tz)

}
= rd(z, Tz). (3.10)

By induction, (3.7) holds for n ∈ N with n ≥ 2. Arguing, by contradiction, we assume Tz /= z.
Then from (3.7), Tnz /= z holds for all n ∈ N. Then by (3.4), we have

d
(
Tn+1z, z

) ≤ rd(Tnz, Tn+1z
) ≤ rn+1d(z, Tz). (3.11)

This implies Tnz → z, which contradicts (3.7). Therefore, we obtain Tz = z. In the case where
1/

√
2 ≤ r < 1, as in the proof of Theorem 2.2, we can show that there exists a subsequence {nj}

of {n} such that ϕ(r)d(unj , unj+1) ≤ d(unj , z) for j ∈ N. From the assumption, we have

d(z, Tz) = lim
j→∞

d
(
unj+1, Tz

) ≤ lim
j→∞

r max
{
d
(
unj , unj+1

)
, d(z, Tz)

}
= rd(z, Tz). (3.12)

Since r < 1, the above inequality implies that Tz = z. Therefore, we have shown that Tz = z in
both cases.

From (3.4), we obtain that the fixed point z is unique.

Remark 3.2. When the second author was proving Theorem 1.1, he did not feel that θ(r) was
natural. However, since the above proof is easier to understand how θ(r) works, the authors
can faintly feel that θ(r) is natural.

The following theorem shows that θ(r) is the best constant for every r.

Theorem 3.3. Define a function θ as in Theorem 1.1. Then for any r ∈ [0, 1), there exist a complete
metric space (X, d) and a mapping T on X such that T has no fixed points and

θ(r)d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ r max
{
d(x, Tx), d(y, Ty)

}
(3.13)

for all x, y ∈ X.

Proof. We have already shown the conclusion in the case where 0 ≤ r ≤ (1/2)(
√

5−1) or 1/
√

2 ≤
r < 1 because ϕ(r) = θ(r) holds. So let us consider the case where (1/2)(

√
5 − 1) < r < 1/

√
2.

Define a complete subset X of the Euclidean space R by X = {xn : n ∈ N}, where x0 = 0, x1 = 1,
x2 = 1 − r, and xn = (1 − r − r2)(−r)n−3 for n ≥ 3. Define a mapping T on X by Txn = xn+1 for
n ∈ N. Then the following are obvious:

(i) d(Tx0, Tx1) = r = rd(x0, Tx0) = r max {d(x0, Tx0), d(x1, Tx1)},

(ii) θ(r)d(x0, Tx0) ≥ θ(r)d(x2, Tx2) = 1 − r = d(x0, x2),

(iii) θ(r)d(x0, Tx0) ≥ θ(r)d(xn, Txn) = ((1 − r2)/r2)d(x0, xn) ≥ d(x0, xn) for n ≥ 3,

(iv) d(Tx1, Tx2) = r2 = rd(x1, Tx1).

Since

x3 < x5 < x7 < · · · < x0 < · · · < x8 < x6 < x4 < x2 < x1, (3.14)
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we have the following:

(i) d(Tx1, Txn) < d(x2, x3) = r2 = rd(x1, Tx1) for n ≥ 3,

(ii) d(Tx2, Txn) − rd(x2, Tx2) ≤ d(x3, x4) − r3 = 2r2 − 1 ≤ 0 for n ≥ 3,

(iii) d(Txm, Txn) ≤ d(Txm, Txm+1) = rd(xm, Txm) for 3 ≤ m < n.

This completes the proof.
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