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This paper proposes a new relevant logic B+
��, which is obtained by adding two binary

connectives, intensional conjunction � and intensional disjunction �, to Meyer–Routley

minimal positive relevant logic B+, where � and � are weaker than fusion ◦ and fission +,

respectively. We give Kripke-style semantics for B+
��, with →, � and � modelled by ternary

relations. We prove the soundness and completeness of the proposed semantics. A number

of axiomatic extensions of B+
��, including negation-extensions, are also considered, together

with the corresponding semantic conditions required for soundness and completeness to be

maintained.

1. Introduction

With sufficiently strong relevant logics, there are two derivative connectives, ◦ and +,

which may be defined as A ◦ B =df ¬(A → ¬B) and A + B =df ¬A → B (Anderson and

Belnap 1975). The former is called fusion and the latter fission. These two connectives

may also be called intensional conjunction and intensional disjunction, since they may share

some of the features classically attributed to extensional conjunction ∧ and disjunction ∨,

respectively. In general, ∧ will be interpreted as a lattice ‘meet’ and ∨ as a lattice ‘join’.

But ◦ fails to have ‘the lattice property’ A ◦B → A or A ◦B → B, so it is not ∧; similarly,

+ fails to satisfy A → A + B or B → A + B, so it is not ∨.

By the above definitions, ◦ and + are highly related to implication → and negation ¬.

But in various applications in computer science and artificial intelligence such as auto-

mated theorem finding, knowledge discovery, reasoning rule generation, and so on, weaker

versions of the standard intensional connectives ◦ and + may play important roles (Cheng

2006). In order to axiomatise logics with weaker intensional conjunction and disjunction,

we propose a basic relevant logic B+
��, which is obtained by adding two binary connectives,

� and �, to the minimal positive relevant logic B+ proposed in Routley and Meyer (1972),

where � and � are characterised in such a way that neither of them relies on the presence

of negation ¬. That is, we adopt Dunn’s approach (Dunn 1990) in which we assign to

each of � and � a distribution type† such that � shares the same distribution type with

† Dunn’s general approach is algebraic, where each logical connective is characterised as an operation on

distributive lattices, which ‘distributes’ in each of its places over at least one of ∧ and ∨, leaving ∧ or
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◦†, and � shares with +‡. Then, additional axioms or rules can be added to make �
coincide with ◦, and � with +. This qualifies � and � as weaker versions of intensional

conjunction and disjunction, respectively.

To give a semantics for B+
��, we apply Dunn’s strategy (Dunn 1990), that is, we

use n + 1-placed accessibility relations to model n-placed connectives. The semantics

is defined by adapting and extending the traditional relational semantics for relevant

logics. There are four ternary relations: R1 and R2 for →; S1 for �; and S2 for �.

To construct canonical models, as well as theories, we define dualtheories and anti-

dualtheories such that R1, R2, S1, S2 are canonically defined as derivatives of operations

on theories and anti-dualtheories. The crucial tools for completeness are extensions or

reductions of a given theory or anti-dualtheory to a prime theory. Then, by well-known

standard techniques, together with our extra definitions, we can establish the soundness

and completeness of the proposed semantics for B+
��. Furthermore, we consider a number

of axiomatic extensions of B+
�� (including negation-extensions with negation modelled by

the Routley ‘∗’-operation), together with the corresponding semantic conditions to ensure

that soundness and completeness are maintained.

2. The basic system B+
��

2.1. An axiom system for B+
��

B+
�� is expressed in a language L, which has the two-place connectives →,∧,∨,� and �,

parentheses ( and ), and a stock of propositional variables p, q, r, ... Formulas are defined

recursively in the usual manner. We use the following scope conventions: the connectives

are ranked �, �, ∧, ∨, → in order of increasing scope (that is, � binds more strongly

than �, � binds more strongly than ∧, and so on), otherwise, association is to the left.

A,B, C, ... will be used to range over arbitrary formulas.

We begin by giving an axiom system for B+, which is defined in the same way as that

of Priest and Sylvan (1992) and Restall (1993)§:

Axioms

A1 A → A

A2 A → A ∨ B, B → A ∨ B

A3 A ∧ B → A, A ∧ B → B

A4 A ∧ (B ∨ C) → (A ∧ B) ∨ C

A5 (A → B) ∧ (A → C) → (A → B ∧ C)

A6 (A → C) ∧ (B → C) → (A ∨ B → C)

∨ unchanged or switching it with its dual. More explicitly, let τ (with subscripts) range over {∧,∨}, and

associate with each n-ary operation f a distribution type (τ1, . . . , τi, . . . , τn) 
−→ τ. Then, where ∗ and � is ∧ or ∨
depending on the value of τi and τ, respectively, f(a1, . . . , b ∗ c, . . . , an) = f(a1, . . . , b, . . . , an) � f(a1, . . . , c, . . . , an).

† When ◦ is defined as A ◦ B =df ¬(A → ¬B), its distribution type is (∨,∨) 
−→ ∨, that is, ◦ satisfies

(A ∨ B) ◦ C ↔ (A ◦ C) ∨ (B ◦ C) and C ◦ (A ∨ B) ↔ (C ◦ A) ∨ (C ◦ B).
‡ When + is defined as A + B =df ¬A → B, its distribution type is (∧,∧) 
−→ ∧, that is, + satisfies

(A ∧ B) + C ↔ (A + C) ∧ (B + C) and C + (A ∧ B) ↔ (C + A) ∧ (C + B).
§ Here, disjunctive forms of rules are not given separately.
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Rules

R1 A,A → B ⇒ B (Modus Ponens)

R2 A,B ⇒ A ∧ B (Adjunction)

R3 A → B,C → D ⇒ (B → C) → (A → D) (Affixing).

Thus B+
�� is obtained by adding the following axioms and rules to B+:

A7 (A ∨ B) � C ↔ (A � C) ∨ (B � C),

C � (A ∨ B) ↔ (C � A) ∨ (C � B)

A8 (A � C) ∧ (B � C) ↔ (A ∧ B) � C ,

(C � A) ∧ (C � B) ↔ C � (A ∧ B)

R4 A → B,C → D ⇒ A � C → B � D

R5 A → B,C → D ⇒ A � C → B � D.

It may be noted that special cases of R3 are:

A → B ⇒ (C → A) → (C → B) (Prefixing)

A → B ⇒ (B → C) → (A → C) (Suffixing)

A → B,B → C ⇒ A → C (Transitivity).

And special cases of R4 and R5 are, respectively:

A → B ⇒ C � A → C � B

A → B ⇒ A � C → B � C

A → B ⇒ C � A → C � B

A → B ⇒ A � C → B � C .

Note that A7 and A8 contain slight redundancies. R4 and R5, together with the axioms

and rules of B+, suffice to prove each of A7 and A8 in right-to-left direction.

Given a logical system L, we use 
L A to denote the fact that A is a theorem of L. If

L is obvious, the subscript ‘L’ will be omitted.

2.2. Semantics for B+
��

Now we define semantics for B+
��. We also give some notions for its extensions, that

is, logics obtained by adding one or more axioms or rules to B+
��. The semantics is an

extension of the traditional semantics for B+ – see Routley et al. (1982, Chapter 4).

A B+
��-frame (or model structure) is a 7-tuple F =< o,W ,O, R1, R2, S1, S2 >, where W

is a set (of worlds), o ∈ W (the base world), O is a nonempty subset of W , and R1, R2, S1,

and S2 are ternary relations on W , such that definitions d1–d4 apply and postulates p1–p7

hold for every a, b, c, d, e ∈ W †.

d1. a � b =df ∃x(x ∈ O and R1xab)

d2. T1(T2ab)cd =df ∃x(T2abx and T1xcd)

d3. T1a(T2bc)d =df ∃x(T2bcx and T1axd)

d4. T (T1ab)(T2cd)e =df ∃x, y(T1abx, T2cdy and Txye),

† Because the system B+
�� is not strong enough, we can not use a ‘reduced’ frame, that is, to reduce O to

a single element, that is, the base world o. Actually, in non-reduced frames O plays an important role to

guarantee the soundness result.
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where T , T1 and T2 represent any of R1, R2, S1 and S2. For d2 and d3, if T1 and T2

coincide, we usually abbreviate T1(T2ab)cd to T1(ab)cd, and T1a(T2bc)d to T1a(bc)d. For

example, R1(S2ab)cd is defined as ∃x(S2abx and R1xcd), and R1(ab)cd as ∃x(R1abx and

R1xcd)
†.

p1. o ∈ O

p2. a � a

p3. R1abc iff R2acb

p4. if R1abc and a′ � a, then R1a
′bc

p5. if R2abc and a′ � a, then R2a
′bc

p6. if S1abc and c � c′, then S1abc
′

p7. if S2abc and c′ � c, then S2abc
′.

In fact, definitions d2–4 are only necessary for some extensions of B+
��. We list them

here for later use.

A B+
��-model (or interpretation) is an 8-tuple M =< o,W ,O, R1, R2, S1, S2, I >, where

< o,W ,O, R1, R2, S1, S2 > is a B+
��-frame and I is a function that assigns to each pair of

a formula, A, and a world, x, a truth value I(A, x) ∈ {1, 0} that satisfies the following

condition and rules.

Atomic Hereditary Condition.

For a propositional variable p, if I(p, x) = 1 and x � y, then I(p, y) = 1.

Evaluation Rules.

(∧) I(A ∧ B, a) = 1 iff I(A, a) = 1 and I(B, a) = 1

(∨) I(A ∨ B, a) = 1 iff I(A, a) = 1 or I(B, a) = 1

(�) I(A � B, c) = 1 iff ∃a, b ∈ W , S1abc, I(A, a) = 1 and I(B, b) = 1

(�) I(A � B, c) = 1 iff ∀a, b ∈ W , if S2abc, then I(A, a) = 1 or I(B, b) = 1

(→1) I(A → B, a) = 1 iff ∀b, c ∈ W , if R1abc and I(A, b) = 1, then I(B, c) = 1

(→2) I(A → B, a) = 1 iff ∀b, c ∈ W , if R2abc and I(A, c) = 1, then I(B, b) = 1.

With p3, it is easy to see that the rules (→1) and (→2) are equivalent. Hence, if we

omit R2, a B+
��-model is indeed an extension of a B+-model by adding definitions and

postulates for S1, S2 and evaluation rules for �, �. But, the inclusion of R2 makes it easier

to give semantic conditions for additional axioms or rules involving �. So, we introduce

relation R2 and rule (→2).

In this paper, we will usually use the following rules, which are equivalent to the above

rules (�) and (→2), respectively:

(�′) I(A � B, c) �= 1 iff ∃a, b ∈ W , S2abc, I(A, a) �= 1 and I(B, b) �= 1;

(→′
2) I(A → B, a) = 1 iff ∀b, c ∈ W , if R2abc and I(B, b) �= 1, then I(A, c) �= 1.

Assuming L is a logic obtained by adding additional axioms or rules to B+
��, an L-

frame F or L-model M is obtained by adding corresponding conditions to a B+
��-frame

or B+
��-model.

† Our representation is a little different from that in Routley et al. (1982), where, given a ternary relation R,

we have R2abcd =df ∃x(Rabx and Rxcd), R2a(bc)d =df ∃x(Rbcx and Raxd), and R3ab(cd)e =df ∃x(R2abxe

and Rcdx).
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Now, taking L to be any logic in this paper, we define:

— A is valid on an L-model if I(A, o) = 1.

— A implies B on an L-model if for every a ∈ W , if I(A, a) = 1, then I(B, a) = 1.

— A is valid on an L-frame if A is valid on every L-model based on this frame.

— A implies B on an L-frame if A implies B on every L-model based on this frame.

— A is L-valid if A is valid on every L-frame.

— A L-implies B if A implies B on every L-frame.

The following lemmas will simplify the proof for soundness.

Lemma 2.1 (Hereditary Condition). For an arbitrary formula A, if I(A, x) = 1 and x � y,

then I(A, y) = 1.

Proof. The proof is by an induction on the construction of A with the Atomic Hereditary

Condition as basis – note how p4–7 are used. We just give proofs for �, �.

(�) Suppose I(A � B, x) = 1 and x � y. Then, ∃a, b ∈ W such that S1abx, I(A, a) = 1 and

I(B, b) = 1. By p6, we have S1aby. So I(A � B, y) = 1 as required.

(�) Suppose I(A � B, y) �= 1 and x � y, to show I(A � B, x) �= 1. Then ∃a, b ∈ W such

that S2aby, I(A, a) �= 1 and I(B, b) �= 1. By p7, S2abx. So I(A � B, x) �= 1 as

required.

Lemma 2.2 (Verification Lemma).

(1) If A implies B on an L-model, then A → B is valid on this model.

(2) If A implies B on an L-frame, then A → B is valid on this frame.

(3) A L-implies B if and only if A → B is L-valid.

Proof. The proof is similar to that in Routley et al. (1982, pages 302–303). It is easy to

show (1), (2) and the left-to-right direction of (3) by d1, p1, rule (→1) and Lemma 2.1.

The converses of (1) and (2) fail, since there is no guarantee that R1oaa holds for every a

in an arbitrary L-frame or L-model.

We will now give the proof in full for the right-to-left direction of (3). Assume A → B

is L-valid. Suppose F is an arbitrary L-frame with the base world o in order to show

A implies B on F. Suppose also that M is an arbitrary L-model based on F with the

assignment function I , and that I(A, a) = 1 for an arbitrary a ∈ W . Then it suffices to

show I(B, a) = 1, since then A implies B on M, and, furthermore, since M is arbitrary,

A implies B on F. Now by d1 and p2, for some o′ ∈ W , we have o′ ∈ O and R1o
′aa.

Consider an L-frame F′, which differs from F simply in a change in the base world

brought about by selecting o′ as base in place of o. So F′ is an L-frame, since no semantic

condition depends on the choice of o as base. We now define an assignment function I ′ in

F′ such that I ′(C, x) = I(C, x) for every formula C and every world x. Hence we obtain

an L-model M′ based on F′ with the assignment function I ′ such that I ′(A, a) = 1 and

I ′(B, a) = I(B, a). M′ is indeed an L-model, since neither the Atomic Hereditary Condition

nor the Evaluation Rules depend on the choice of o as base, so both of them still hold.

Since A → B is L-valid, I ′(A → B, o′) = 1. But R1o
′aa, so it follows that I ′(B, a) = 1 by

rule (→1). Hence I(B, a) = 1 as required.
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Thus, for soundness, in order to show the validity of axioms with the form A → B, we

usually suppose for an arbitrary L-model M, that I(A, x) = 1 (I(B, x) �= 1) in order to

show I(B, x) = 1 (I(A, x) �= 1). Then, A → B is valid on M by Lemma 2.2 (1). Hence,

since M is arbitrary, A → B is L-valid. Conversely, if A → B is L-valid, then for an

arbitrary L-model M, we will have I(B, x) = 1 (I(A, x) �= 1) from I(A, x) = 1 (I(B, x) �= 1)

by Lemma 2.2 (3).

2.3. Soundness

In this section we demonstrate the soundness of the semantics for B+
��.

Theorem 2.3. If A is a theorem of B+
��, then A is B+

��-valid.

Proof. The proof is by a simple induction over the length of proofs. It suffices to prove

that all axioms are B+
��-valid and all rules preserve validity. We just give proofs for one

of A8 (in one direction) and R4.

A8 Suppose I((A ∧ B) � C, c) �= 1 in order to show I((A � C) ∧ (B � C), c) �= 1. Then

∃a, b ∈ W such that S2abc, I(A ∧ B, a) �= 1 and I(C, b) �= 1. So I(A, a) �= 1 or

I(B, a) �= 1. Since S2abc, we have I(A � C, c) �= 1 or I(B � C, c) �= 1 by rule (�).

Hence I((A � C) ∧ (B � C), c) �= 1 as required.

R4 Suppose A → B and C → D are B+
��-valid in order to show that A � C → B � D is

B+
��-valid. Suppose also that I(A�C, c) = 1. It suffices to show I(B �D, c) = 1. Then

∃a, b ∈ W such that S1abc, I(A, a) = 1 and I(C, b) = 1. Since A → B and C → D are

B+
��-valid, we have I(B, a) = 1 and I(D, b) = 1 by Lemma 2.2 (3). But S1abc, so by rule

(�), we have I(B � D, c) = 1 as required.

2.4. Key notions for completeness

We establish completeness in the usual way. For any non-theorem A, we design a canonical

model that refutes A. Most of the techniques come from Routley et al. (1982, Chapter 4),

and Brady (2003, Chapter 8). In this section, we will give some definitions for any logic

L in this paper.

First, we establish some conventions. With Σ the set of all formulas, we have for every

V ,U ⊆ Σ:

(1) U is L-derivable from V , written V 
L U, if and only if for some A1, . . . , An in V and

some B1, . . . , Bm in U, we have 
L A1 ∧ ... ∧ An → B1 ∨ ... ∨ Bm.

(2) An L-derivation of A from V , written V 
L A, is a finite sequence of formulas A1, ..., An,

with An = A such that each member Ai of the sequence either belongs to V or is

obtained from predecessors in the sequence by adjunction or a provable L-implication

(that is, in the latter case, Ai is obtained from Aj (j < i) since 
L Aj → Ai).

(3) An L-derivation of U from V is an L-derivation of some disjunction B1 ∨ ... ∨ Bm of

formulas B1, . . . , Bm of U from V . Hence, U is L-derivable from V if and only if there

is an L-derivation of U from V .
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(4) < V,U > is an L-maximal pair if and only if:

— V ∪ U = Σ

— V �L U.

It is immediate that if < V,U > is an L-maximal pair, then V ∩ U = �.

Next, it is easy to see that if a ⊆ Σ and b = Σ − a, then a satisfies the following a1, a2,

a3 separately if and only if b satisfies b1, b2, b3 separately.

a1. If 
L A → B and A ∈ a, then B ∈ a.

a2. If A ∈ a and B ∈ a, then A ∧ B ∈ a.

a3. If A ∨ B ∈ a, then A ∈ a or B ∈ a.

b1. If 
L A → B and B ∈ b, then A ∈ b.

b2. If A ∧ B ∈ b, then A ∈ b or B ∈ b.

b3. If A ∈ b and B ∈ b, then A ∨ B ∈ b.

Then we define, for every a, b ⊆ Σ:

(1) a is an L-theory if and only if it satisfies a1 and a2.

(2) An L-theory a is prime if and only if it satisfies a3 also.

(3) a is an L-anti-dualtheory if and only if it satisfies a1 and a3.

(4) An L-anti-dualtheory a is prime if and only if it satisfies a2 also.

(5) b is an L-dualtheory if and only if it satisfies b1 and b3.

(6) An L-dualtheory b is prime if and only if it satisfies b2 also.

Thus, if a ⊆ Σ and b = Σ − a:

— a is a prime L-theory if and only if a is a prime L-anti-dualtheory.

— a is an L-anti-dualtheory if and only if b is an L-dualtheory.

— a is a prime L-theory if and only if b is a prime L-dualtheory.

It is obvious that the set of all theorems of L is a theory. We will use l to denote this

particular theory. In addition, an L-theory a is regular if and only if l ⊆ a, that is,

whenever 
L A, A ∈ a.

In the following, the subscript ‘L’ and the prefix ‘L-’ will be omitted if system L is

obvious.

Now we define four operations† on sets of formulas. For every a, b ⊆ Σ:

a ⊕ b = {B : ∃A ∈ b, A → B ∈ a}
a ⊗ b = {A : ∀B,A → B ∈ a ⇒ B ∈ b}‡

a � b = {C : ∃A ∈ a, ∃B ∈ b,
L A � B → C}
a � b = Σ − {C : ∃A /∈ a, ∃B /∈ b,
L C → A � B}.

We now give some propositions for ⊕,⊗,� and �.

Proposition 2.4.

(1) If a, b are L-theories, then a ⊕ b is an L-theory.

(2) If a is an L-theory and b is an L-anti-dualtheory, then a ⊗ b is an L-anti-dualtheory.

(3) If a, b are L-theories, then a � b is an L-theory.

(4) If a, b are L-anti-dualtheories, then a � b is an L-anti-dualtheory.

† The notation ‘⊕’ and ‘⊗’ come from Brady (2003).



Y. Gao and J. Cheng 152

Proof. We will just show (4) as an example. First, suppose C2 /∈ a�b and 
 C1 → C2 in

order to show C1 /∈ a� b. Then ∃A /∈ a, ∃B /∈ b such that 
 C2 → A�B. So 
 C1 → A�B.

Hence C1 /∈ a � b as required.

Now suppose C1, C2 /∈ a�b in order to show C1∨C2 /∈ a�b. Then ∃A1, A2 /∈ a, ∃B1, B2 /∈ b

such that 
 C1 → A1 � B1 and 
 C2 → A2 � B2. Since 
 A1 � B1 → (A1 � B1) ∨ (A2 � B2),

we have 
 C1 → (A1 � B1) ∨ (A2 � B2). Similarly, 
 C2 → (A1 � B1) ∨ (A2 � B2). So


 C1 ∨ C2 → (A1 � B1) ∨ (A2 � B2). Now, since 
 A1 → A1 ∨ A2 and 
 B1 → B1 ∨ B2, we

have 
 A1 �B1 → (A1 ∨A2) � (B1 ∨B2) by R5. Similarly, 
 A2 �B2 → (A1 ∨A2) � (B1 ∨B2).

So 
 (A1 �B1) ∨ (A2 �B2) → (A1 ∨A2) � (B1 ∨B2). Thus 
 C1 ∨C2 → (A1 ∨A2) � (B1 ∨B2).

Since a and b are L-anti-dualtheory, A1 ∨ A2 /∈ a and B1 ∨ B2 /∈ b. So C1 ∨ C2 /∈ a � b as

required.

Thus, if a and b are prime L-theories, then a ⊕ b and a � b are L-theories; a ⊗ b and

a � b are L-anti-dualtheories.

Proposition 2.5. For every a, b, c ⊆ Σ, we have a ⊕ b ⊆ c if and only if b ⊆ a ⊗ c.

Proof. For the left-to-right direction, suppose A ∈ b, but A /∈ a ⊗ c. Then ∃B /∈ c such

that A → B ∈ a. Since A ∈ b, we have B ∈ a ⊕ b; and since a ⊕ b ⊆ c, we have B ∈ c,

giving a contradiction. Thus A ∈ a ⊗ c.

For the right-to-left direction, suppose B ∈ a ⊕ b in order to show B ∈ c. Then ∃A ∈ b

such that A → B ∈ a. Since b ⊆ a ⊗ c, we have A ∈ a ⊗ c, so B ∈ c as required.

We now define ternary relations R1, R2, S1, S2 on sets of formulas. For every a, b, c ⊆ Σ:

— R1abc if and only if a ⊕ b ⊆ c, that is, for every A,B, if A → B ∈ a and A ∈ b, then

B ∈ c.

— R2abc if and only if c ⊆ a ⊗ b, that is, for every A,B, if A → B ∈ a and B /∈ b, then

A /∈ c.

— S1abc if and only if a�b ⊆ c, that is, for every A,B, C , if A ∈ a, B ∈ b and 
L A�B → C ,

then C ∈ c.

— S2abc if and only if c ⊆ a � b, that is, for every A,B, C , if A /∈ a, B /∈ b and


L C → A � B, then C /∈ c.

Thus, since a ⊕ b ⊆ c if and only if b ⊆ a ⊗ c, it is immediate that R1abc if and only if

R2acb.

Please note that since 
L A � B → A � B, 
L A � B → A � B, it is easy to see that for

every a, b, c ⊆ Σ, and every formula A,B:

— If S1abc, A ∈ a and B ∈ b, then A � B ∈ c.

— If S2abc, A /∈ a and B /∈ b, then A � B /∈ c.

2.5. Lemmas for completeness

We begin by giving some results (Lemmas 2.6–2.8), which are either proved in Routley et

al. (1982, Pages 307–308)) or are easy to obtain.

Lemma 2.6. If < V,U > is an L-maximal pair, then V is a prime L-theory, and U is a

prime L-dualtheory.
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Lemma 2.7 (Extension Lemma). Let V and U be sets of formulas such that V �L U.

Then there is an L-maximal pair < V ′, U ′ > with V ⊆ V ′ and U ⊆ U ′.

Lemma 2.8 (Priming Lemma 1). Let V be an L-theory, U be closed under disjunction,

and V ∩ U = �. Then there is an L-theory V ′ such that:

(1) V ⊆ V ′;

(2) V ′ ∩ U = �; and

(3) V ′ is prime.

We also have Priming Lemma 2, which is similar to Priming Lemma 1.

Lemma 2.9 (Priming Lemma 2). Let V be closed under conjunction, U be an L-

dualtheory, and V ∩ U = �. Then there is an L-dualtheory U ′ such that:

(1) U ⊆ U ′;

(2) V ∩ U ′ = �; and

(3) U ′ is prime.

Proof. V �L U as otherwise there would be A1, . . . , An ∈ V such that A1∧...∧An ∈ V∩U,

since U is an L-dualtheory. By Lemma 2.7, there is an L-maximal pair < V ′, U ′ > with

V ⊆ V ′ and U ⊆ U ′, and the result then follows by Lemma 2.6.

The following results are proved in Routley et al. (1982, Page 309)†.

Corollary 2.10.

(1) If A is a non-theorem of L, then there is a prime regular L-theory oc such that A /∈ oc.

(2) If a, b are L-theories, c is an L-anti-dualtheory and R1abc, then there is a prime

L-theory a′ such that a ⊆ a′ and R1a
′bc.

(3) If a, b are L-theories, c is an L-anti-dualtheory and R1abc, then there is a prime

L-theory b′ such that b ⊆ b′ and R1ab
′c.

(4) If a, b, c are L-theories, R1abc and C /∈ c, then there are prime L-theories, b′, c′, such

that b ⊆ b′, C /∈ c′ and R1ab
′c′.

We now prove several corollaries of Lemmas 2.8 and 2.9.

Corollary 2.11.

(1) If a, c are L-theories, b is an L-anti-dualtheory and R2abc, then there is a prime

L-theory a′ such that a ⊆ a′ and R2a
′bc.

(2) If a, c are L-theories, b is an L-anti-dualtheory and R2abc, then there is a prime

L-theory b′ such that b′ ⊆ b and R2ab
′c.

† Note that the form of (2) and (3) in Corollary 2.10 is a little different from that given in Routley et al. (1982),

where c is required to be a prime L-theory. In fact, it is sufficient to require that c is only an L-anti-dualtheory

for the proof to go through.
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Proof. Since R2abc if and only if R1acb, (1) here is equivalent to Corollary 2.10 (2).

Hence, we just give the proof for (2).

Set V = {B : ∃A ∈ c, A → B ∈ a}. We want to prove:

(a) V is closed under conjunction.

(b) Σ − b is disjoint from V .

(a) Suppose B1, B2 ∈ V . Then ∃A1, A2 ∈ c, A1 → B1 ∈ a and A2 → B2 ∈ a. Since


 A1 ∧ A2 → A1, we have 
 (A1 → B1) → (A1 ∧ A2 → B1), so A1 ∧ A2 → B1 ∈ a.

Similarly, A1 ∧ A2 → B2 ∈ a, so (A1 ∧ A2 → B1) ∧ (A1 ∧ A2 → B2) ∈ a. By


 (A1 ∧ A2 → B1) ∧ (A1 ∧ A2 → B2) → (A1 ∧ A2 → B1 ∧ B2) ,

we have A1 ∧ A2 → B1 ∧ B2 ∈ a. Since c is an L-theory, A1 ∧ A2 ∈ c. So B1 ∧ B2 ∈ V

as required.

(b) To show a contradiction, suppose ∃B ∈ Σ − b, that is, B /∈ b and B ∈ V . Then ∃A ∈ c

such that A → B ∈ a. But R2abc, so A /∈ c, which gives a contradiction.

Since b is an L-anti-dualtheory, Σ−b is an L-dualtheory. Hence by (a) and (b), Lemma 2.9

applies to provide a prime L-dualtheory b′′ disjoint from V with Σ−b ⊆ b′′. Let b′ = Σ−b′′.

Then b′ is a prime L-anti-dualtheory, that is, a prime L-theory, and b′ ⊆ b. Next we prove

R2ab
′c. Suppose A → B ∈ a and B /∈ b′, that is, B ∈ b′′. Since b′′ is disjoint from V , we

have A /∈ c, so R2ab
′c.

Corollary 2.12.

(1) If a, b are L-theories, c is an L-anti-dualtheory and S1abc, then there is a prime

L-theory a′ such that a ⊆ a′ and S1a
′bc.

(2) If a, b are L-theories, c is an L-anti-dualtheory and S1abc, then there is a prime

L-theory b′ such that b ⊆ b′ and S1ab
′c.

Proof. We give the proof for (1); the proof for (2) is similar.

Set U = {A : ∃B ∈ b, ∃C /∈ c,
 A � B → C}. We want to prove:

(a) U is closed under disjunction.

(b) a is disjoint from U.

(a) Suppose A1, A2 ∈ U. Then ∃B1, B2 ∈ b, ∃C1, C2 /∈ c such that 
 A1 � B1 → C1 and


 A2 � B2 → C2. Since 
 B1 ∧ B2 → B1, we have 
 A1 � (B1 ∧ B2) → A1 � B1 by R4.

So 
 A1 � (B1 ∧B2) → C1. Since 
 C1 → C1 ∨C2, we have 
 A1 � (B1 ∧B2) → C1 ∨C2.

Similarly, 
 A2 � (B1 ∧ B2) → C1 ∨ C2. So


 (A1 � (B1 ∧ B2)) ∨ (A2 � (B1 ∧ B2)) → C1 ∨ C2 .

By A7,


 (A1 ∨ A2) � (B1 ∧ B2) → (A1 � (B1 ∧ B2)) ∨ (A2 � (B1 ∧ B2)) .

So 
 (A1 ∨ A2) � (B1 ∧ B2) → C1 ∨ C2. Since b is an L-theory, B1 ∧ B2 ∈ b. And since c

is an L-anti-dualtheory, C1 ∨ C2 /∈ c. Hence A1 ∨ A2 ∈ U.
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(b) To show a contradiction, suppose ∃A ∈ a and A ∈ U. Then ∃B ∈ b, ∃C /∈ c such that


 A � B → C . But S1abc, so C ∈ c, which gives a contradiction.

Hence, by (a) and (b), Lemma 2.8 applies to provide a prime L-theory a′ disjoint from

U with a ⊆ a′. Next we prove S1a
′bc. Suppose A ∈ a′, B ∈ b and 
 A � B → C . Since a′ is

disjoint from U, we have C ∈ c. So S1a
′bc.

Corollary 2.13.

(1) If a, b are L-anti-dualtheories, c is an L-theory and S2abc, then there is a prime

L-anti-dualtheory a′ such that a′ ⊆ a and S2a
′bc.

(2) If a, b are L-anti-dualtheories, c is an L-theory and S2abc, then there is a prime

L-anti-dualtheory b′ such that b′ ⊆ b and S2ab
′c.

Proof. We just give proof for (1); the proof for (2) is similar.

Set V = {A : ∃B /∈ b, ∃C ∈ c,
 C → A � B}. We want to prove:

(a) V is closed under conjunction.

(b) Σ − a is disjoint from V .

(a) Suppose A1, A2 ∈ V . Then ∃B1, B2 /∈ b, ∃C1, C2 ∈ c such that 
 C1 → A1 � B1 and


 C2 → A2 � B2. Since 
 B1 → B1 ∨ B2, we have 
 A1 � B1 → A1 � (B1 ∨ B2) by R5.

So 
 C1 → A1 � (B1 ∨B2). Since 
 C1 ∧C2 → C1, we have 
 C1 ∧C2 → A1 � (B1 ∨B2).

Similarly, 
 C1 ∧C2 → A2 � (B1 ∨B2). So 
 C1 ∧C2 → (A1 � (B1 ∨B2))∧ (A2 � (B1 ∨B2)).

By A8,


 (A1 � (B1 ∨ B2)) ∧ (A2 � (B1 ∨ B2)) → (A1 ∧ A2) � (B1 ∨ B2) .

So 
 C1 ∧ C2 → (A1 ∧ A2) � (B1 ∨ B2). Since b is an L-anti-dualtheory, B1 ∨ B2 /∈ b.

And since c is an L-theory, C1 ∧ C2 ∈ c. Hence A1 ∧ A2 ∈ V .

(b) To show a contradiction, suppose ∃A ∈ Σ − a, that is, A /∈ a and A ∈ V . Then ∃B /∈ b,

∃C ∈ c such that 
 C → A � B. But S2abc, so C /∈ c, which gives a contradiction.

Since a is an L-anti-dualtheory, Σ − a is an L-dualtheory. Hence by (a) and (b), we can

use Lemma 2.9 to provide a prime L-dualtheory a′′ disjoint from V with Σ − a ⊆ a′′. Let

a′ = Σ − a′′. Then a′ is a prime L-theory, that is, prime L-anti-dualtheory, and a′ ⊆ a.

Next we prove S2a
′bc. Suppose A /∈ a′, that is, A ∈ a′′, B /∈ b and 
 C → A � B. Since a′′

is disjoint from V , we have C /∈ c, so S2a
′bc.

Lemma 2.14.

(1) Let a be a prime L-theory and A → B /∈ a. Then there are prime L-theories, b′, c′, such

that R1ab
′c′, A ∈ b′, and B /∈ c′.

(2) Let c be a prime L-theory and A � B ∈ c. Then there are prime L-theories, a′, b′, such

that S1a
′b′c, A ∈ a′, and B ∈ b′.

(3) Let c be a prime L-theory and A � B /∈ c. Then there are prime L-theories, a′, b′, such

that S2a
′b′c, A /∈ a′, and B /∈ b′.

Proof.

(1) Suppose a is a prime L-theory such that A → B /∈ a. Let b = {A′ :
 A → A′}. We will

show that b is an L-theory. Suppose that 
 A′
1 → A′

2 and A′
1 ∈ b. Then 
 A → A′

1, so
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 A → A′
2. Hence A′

2 ∈ b. Now suppose A′
1, A

′
2 ∈ b. Then 
 A → A′

1 and 
 A → A′
2.

Thus 
 A → A′
1 ∧ A′

2. So A′
1 ∧ A′

2 ∈ b. Now let c = a ⊕ b. Then c is an L-theory by

Proposition 2.4. Also, R1abc. It is obvious that A ∈ b. Moreover, B /∈ c. Otherwise,

∃A′ ∈ b and A′ → B ∈ a. Then, 
 A → A′, so 
 (A′ → B) → (A → B). So A → B ∈ a,

which gives a contradiction. Hence, by Corollary 2.10 (4), there are prime L-theories

b′, c′ such that A ∈ b′, B /∈ c′ and R1ab
′c′.

(2) Suppose c is a prime L-theory such that A � B ∈ c. Let a = {A′ :
 A → A′} and

b = {B′ :
 B → B′}. Then a, b are L-theories by the same proof as in (1). It is immediate

that A ∈ a and B ∈ b. To show S1abc, suppose A′ ∈ a, B′ ∈ b and 
 A′ � B′ → C .

Then, 
 A → A′ and 
 B → B′. So 
 A � B → A′ � B′ by R4. Then 
 A � B → C . But

A � B ∈ c, so C ∈ c. Thus S1abc. By Corollary 2.12, there are prime L-theories a′, b′

such that A ∈ a′, B ∈ b′ and S1a
′b′c.

(3) Suppose c is a prime L-theory such that A � B /∈ c. Let a′′ = {A′ :
 A′ → A} and

b′′ = {B′ :
 B′ → B}. Then a′′, b′′ are L-dualtheories. For a′′, suppose that 
 A′
1 → A′

2

and A′
2 ∈ a′′. Then 
 A′

2 → A. So 
 A′
1 → A. Hence, A′

1 ∈ a′′. Now suppose A′
1, A

′
2 ∈ a′′.

Then 
 A′
1 → A and 
 A′

2 → A. Hence 
 A′
1 ∨ A′

2 → A. So A′
1 ∨ A′

2 ∈ a′′. Thus a′′ is an

L-dualtheory. Similarly, b′′ is also an L-dualtheory. Let a = Σ − a′′ and b = Σ − b′′.

Then, a, b are L-anti-dualtheories. It is immediate that A /∈ a and B /∈ b. To show

S2abc, suppose A′ /∈ a, B′ /∈ b and 
 C → A′ � B′. Then 
 A′ → A and 
 B′ → B. So


 A′ �B′ → A�B by R5, and thus 
 C → A�B. But A�B /∈ c, so C /∈ c. Thus S2abc.

Then, by Corollary 2.13, there are prime L-theories a′, b′ such that A /∈ a′, B /∈ b′ and

S2a
′b′c.

2.6. Completeness

For any non-theorem A of L, by Corollary 2.10 (1), there is a prime regular L-theory oc
such that A /∈ oc. Thus we design a canonical model for L,

< oc,Wc, Oc, R1, R2, S1, S2, I >

where Wc is the class of all prime L-theories, that is, the class of all prime L-anti-

dualtheories; Oc is the subset of Wc such that x ∈ Oc if and only if x is regular; R1, R2,

S1 and S2 are canonically defined as above (restricted to Wc); and I is defined, for every

prime theory x and formula A, as I(A, x) = 1 if and only if A ∈ x.

Theorem 2.15. If A is B+
��-valid, then A is a theorem of B+

��.

Proof. We prove the contrapositive. Given a non-theorem A, there is a canonical

model < oc,Wc, Oc, R1, R2, S1, S2, I > for B+
��. We show that the canonical model is

really a B+
��-model. It suffices to show that p1–7 hold, and that I satisfies the Atomic

Hereditary Condition and the Evaluation Rules. p1 and the Atomic Hereditary Condition

are immediate. By the corresponding proof in Routley et al. (1982, Page 312), we can

prove that a � b if and only if a ⊆ b. Thus p2 is obvious. p3 was shown by Proposition 2.5.

Finally, p4–7 are immediate from the canonical definitions of R1, R2, S1 and S2.

Now we show a � b if and only if a ⊆ b.
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For the left-to-right direction, since a � b, there is an x such that x ∈ Oc, that is, x

is regular, and R1xab. Hence, since A → A ∈ x, by the canonical definition of R1, A ∈ b

whenever A ∈ a. So a ⊆ b.

For the right-to-left direction, suppose a ⊆ b. Then it is easy to see that R1lab. Since

l is an L-theory, by Corollary 2.10 (2), l can be replaced by a prime theory x such that

l ⊆ x and R1xab. Thus x is regular, that is, x ∈ Oc. So a � b.

Next we show that I satisfies the Evaluation Rules, and hence the canonical model is a

B+
��-model. It follows that A is not valid on < oc,Wc, Oc, R1, R2, S1, S2, I >. Hence A is not

B+
��-valid. The cases for ∧ and ∨ are immediate from the definition of a prime theory.

Here we will just give proofs for the connectives →, � and �.

(→) It suffices to prove that A → B ∈ a if and only if for every b, c ∈ Wc, if R1abc and

A ∈ b, then B ∈ c. But this is guaranteed by Lemma 2.14 and the canonical definition

of R1.

(�) It suffices to prove that A � B ∈ c if and only if for some a, b ∈ Wc, we have S1abc,

A ∈ a and B ∈ b. But this is guaranteed by Lemma 2.14 and the canonical definition

of S1.

(�) It suffices to prove that A � B /∈ c if and only if for some a, b ∈ Wc, we have S2abc,

A /∈ a and B /∈ b. But this is guaranteed by Lemma 2.14 and the canonical definition

of S2.

Hence the result is proved.

3. Extensions of B+
��

The following are some additional axioms and rules that can be added to B+
�� to obtain

stronger systems. For a given postulate Si, si is the corresponding semantic condition on

models.

S1 A � B → B � A s1 S1abc ⇒ S1bac

S2 A � B → B � A s2 S2abc ⇒ S2bac

S3 (A → B) → (A � C → B � C) s3 R1a(S1de)c ⇒ S1(R1ad)ec

S4 (A → B) → (C � A → C � B) s4 R1a(S1de)c ⇒ S1d(R1ae)c

S5 (A → B) → (A � C → B � C) s5 R2a(S2de)c ⇒ S2(R2ad)ec

S6 (A → B) → (C � A → C � B) s6 R2a(S2de)c ⇒ S2d(R2ae)c

S7 (A → C) � (B → D) → (A � B → C � D) s7 R1(S1ab)(S1fg)e ⇒S1(R1af)(R1bg)e

S8 (A → C) � (B → D) → (A � B → C � D) s8 R2(S1ab)(S2fg)e ⇒ S2(R2af)(R2bg)e

S9 (A → B) � (B → C) → (A → C) s9 R1(S1ab)de ⇒ R1b(ad)e

S10 (B → C) � (A → B) → (A → C) s10R1(S1ab)de ⇒ R1a(bd)e

S11 A � (A → B) → B s11S1abc ⇒ R1bac

S12 A → (B → A � B) s12R1abc ⇒ S1abc

S13 (A → (B → C)) → (A � B → C) s13R1a(S1de)c ⇒ R1(ad)ec

S14 (A � B → C) → (A → (B → C)) s14R1(ab)de ⇒ R1a(S1bd)e

S15 A ∧ B → A � B s15S1aaa

S16 A � B → A ∨ B s16S2aaa

S17 A � B → A � B s17∃x(S1abx and S2dex) ⇒ a � d or b � e
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S18 A → (B → C) =⇒ A � B → C s18S1abc ⇒ R1abc

S19 A � B → C =⇒ A → (B → C) s19R1abc ⇒ S1abc.

Theorem 3.1. For each row in the list above, the extension of B+
�� obtained by adding

axiom or rule Si is sound and complete with respect to the class of B+
��-models

< o,W ,O, R1, R2, S1, S2, I >

that satisfy si.

Proof. For soundness, we take an arbitrary model and assume that it satisfies si. Then

we demonstrate that Si (as an axiom) is valid or Si (as a rule) preserves validity in this

model. Completeness is proved by showing that the canonical model for an extension with

Si must satisfy si. We will give proofs for some rows as examples.

We will sketch the approach for completeness. In many cases, we search for prime

L-theories satisfying some specific conditions. In general, we first construct appro-

priate L-theories or L-anti-dualtheories using operations ⊕, ⊗, � or �, from given prime

L-theories, and then apply Corollaries 2.10–13 to obtain the required prime L-theories.

1. For soundness, suppose I(A�B, c) = 1 in order to show I(B�A, c) = 1. Then ∃a, b ∈ W

such that S1abc, I(A, a) = 1 and I(B, b) = 1. Since S1abc, we have S1bac by s1. So

I(B � A, c) = 1 as required.

For completeness, assume that S1 holds. Let S1abc in order to show S1bac. Suppose

B ∈ b, A ∈ a and 
 B�A → C . It suffices to show C ∈ c. By S1, we have 
 A�B → C .

But S1abc, so C ∈ c as required.

5. For soundness, suppose I(A → B, a) = 1 in order to show I(A � C → B � C, a) = 1.

Suppose also that R2abc and I(B � C, b) �= 1. It suffices to show I(A � C, c) �= 1. Then

∃d, e ∈ W such that S2deb, I(B, d) �= 1 and I(C, e) �= 1. Since S2deb and R2abc, we

have R2a(S2de)c. So, by s5, we have S2(R2ad)ec, that is, ∃x ∈ W such that R2adx and

S2xec. Since R2adx, we have I(A, x) �= 1. And since S2xec, we have I(A � C, c) �= 1 as

required.

For completeness, assume that S5 holds. Suppose that R2a(S2de)c in order to show

S2(R2ad)ec. Then ∃x ∈ Wc such that S2dex and R2axc. Let y = a ⊗ d. It is immediate

that R2ady and that y is an L-anti-dualtheory. We show S2yec. Suppose that A /∈ y,

C /∈ e and 
 E → A � C . It suffices to show E /∈ c. Since A /∈ y, we have ∃B /∈ d such

that A → B ∈ a. Then A � C → B � C ∈ a by S5. Since S2dex, we have B � C /∈ x;

and since R2axc, we have A � C /∈ c. So E /∈ c as required. Thus S2yec. Now we can

use Corollary 2.13 to provide a prime L-theory y′ such that y′ ⊆ y and S2y
′ec. It is

immediate that R2ady
′. So we have S2(R2ad)ec.

7. For soundness, suppose I((A → C) � (B → D), c) = 1 in order to show I(A � B →
C � D, c) = 1. Then ∃a, b ∈ W such that S1abc, I(A → C, a) = 1 and I(B → D, b) = 1.

Suppose also that R1cde and I(A � B, d) = 1. It suffices to show I(C � D, e) = 1. Then

∃f, g ∈ W such that S1fgd, I(A, f) = 1 and I(B, g) = 1. Since S1abc, S1fgd and R1cde,

we have R1(S1ab)(S1fg)e. So, by s7, we have S1(R1af)(R1bg)e, that is, ∃x, y ∈ W such

that R1afx, R1bgy and S1xye. Since R1afx, we have I(C, x) = 1. And since R1bgy, we

have I(D, y) = 1. Finally, since S1xye, we have I(C � D, e) = 1 as required.
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For completeness, assume that S7 holds. Suppose R1(S1ab)(S1fg)e in order to show

S1(R1af)(R1bg)e. Then ∃x1, x2 ∈ Wc such that S1abx1, S1fgx2 and R1x1x2e. Let y1 =

a ⊕ f and y2 = b ⊕ g. It is immediate that R1afy1 and R1bgy2, and that y1, y2 are

L-theories. We show S1y1y2e. Suppose that C ∈ y1, D ∈ y2 and 
 C � D → E. It

suffices to show E ∈ e. Since C ∈ y1, we have ∃A ∈ f such that A → C ∈ a; and

since D ∈ y2, we have ∃B ∈ g such that B → D ∈ b. Then, since S1abx1, we have

(A → C)�(B → D) ∈ x1. And since S1fgx2, we have A�B ∈ x2. So A�B → C�D ∈ x1

by S7. Since R1x1x2e, we have C � D ∈ e, so E ∈ e as required. Thus S1y1y2e. Now

we can use Corollary 2.12 to provide prime L-theories y′
1, y

′
2 such that y1 ⊆ y′

1,

y2 ⊆ y′
2 and S1y

′
1y

′
2e. It is immediate that R1afy

′
1 and R1bgy

′
2. So we have S1(R1af)

(R1bg)e.

9. For soundness, suppose I((A → B)� (B → C), c) = 1 in order to show I(A → C, c) = 1.

Then ∃a, b ∈ W such that S1abc, I(A → B, a) = 1 and I(B → C, b) = 1. Suppose also

that R1cde and I(A, d) = 1. It suffices to show I(C, e) = 1. Since S1abc and R1cde, we

have R1(S1ab)de. So, by s9, R1b(ad)e, that is, ∃x ∈ W such that R1adx and R1bxe. Since

R1adx, we have I(B, x) = 1; and since R1bxe, we have I(C, e) = 1 as required.

For completeness, assume that S9 holds. Suppose that R1(S1ab)de in order to show

R1b(ad)e. Then ∃x ∈ Wc such that S1abx and R1xde. Let y = a ⊕ d. It is immediate

that R1ady and that y is an L-theory. We show R1bye. Suppose that B → C ∈ b and

B ∈ y. It suffices to show C ∈ e. Since B ∈ y, we have ∃A ∈ d such that A → B ∈ a.

Then, by S1abx, we have (A → B) � (B → C) ∈ x. So A → C ∈ x by S9; and since

R1xde, we have C ∈ e as required. Thus R1bye. Now we can use Corollary 2.10 to

provide a prime L-theory y′ such that y ⊆ y′ and R1by
′e. It is immediate that R1ady

′.

So we have R1b(ad)e.

12. For soundness, suppose I(A, a) = 1 in order to show I(B → A � B, a) = 1. Suppose

also that R1abc and I(B, b) = 1. It suffices to show I(A � B, c) = 1. Since R1abc, we

have S1abc by s12. So I(A � B, c) = 1 as required.

For completeness, assume that S12 holds. Let R1abc in order to show S1abc. Suppose

also that A ∈ a, B ∈ b and 
 A � B → C . It suffices to show C ∈ c. Then 
 (B →
A � B) → (B → C). Since A ∈ a, we have B → A � B ∈ a by S12. So B → C ∈ a. But

R1abc, so C ∈ c as required.

14. For soundness, suppose I(A � B → C, a) = 1 in order to show I(A → (B → C), a) = 1.

Suppose also that R1abc and I(A, b) = 1 in order to show I(B → C, c) = 1. Finally,

suppose R1cde and I(B, d) = 1. It suffices to show I(C, e) = 1. Since R1abc and R1cde,

we have R1(ab)de. So, by s14, we have R1a(S1bd)e, that is, ∃x ∈ W such that S1bdx

and R1axe. Since S1bdx, we have I(A�B, x) = 1. And since R1axe, we have I(C, e) = 1

as required.

For completeness, assume that S14 holds. Suppose R1(ab)de in order to show

R1a(S1bd)e. Then ∃x ∈ Wc such that R1abx and R1xde. Let y = b � d. It is immediate

that S1bdy and that y is an L-theory. We will show R1aye. Suppose that D → C ∈ a

and D ∈ y. It suffices to show C ∈ e. Since D ∈ y, we have ∃A ∈ b and ∃B ∈ d such

that 
 A � B → D. Then 
 (D → C) → (A � B → C). So A � B → C ∈ a, and thus

A → (B → C) ∈ a by S14. Since R1abx, we have B → C ∈ x, and since R1xde, we

have C ∈ e as required. Thus R1aye. Now we can use Corollary 2.10 to provide a
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prime L-theory y′ such that y ⊆ y′ and R1ay
′e. It is immediate that S1bdy

′. So we have

R1a(S1bd)e.

15. For soundness, suppose I(A ∧ B, a) = 1 in order to show I(A � B, a) = 1. Then

I(A, a) = 1 and I(B, a) = 1. Since S1aaa, we have I(A � B, a) = 1 as required.

For completeness, assume that S15 holds. Suppose A,B ∈ a and 
 A � B → C . It

suffices to show C ∈ a. By S15, we have 
 A ∧ B → A � B. So 
 A ∧ B → C . Since

A,B ∈ a, we have A ∧ B ∈ a. Hence C ∈ a as required.

17. For soundness, suppose I(A � B, x) = 1, but I(A � B, x) �= 1. Then ∃a, b ∈ W such

that S1abx, I(A, a) = 1 and I(B, b) = 1. Also, ∃d, e ∈ W such that S2dex, I(A, d) �= 1

and I(B, e) �= 1. By s17, we have a � d or b � e. So I(A, d) = 1 or I(B, e) = 1 by

Lemma 2.1. But this gives a contradiction. Hence I(A � B, x) = 1.

For completeness, assume that S17 holds. Let S1abx and S2dex in order to show a ⊆ d

or b ⊆ e. Suppose a � d and b � e. Then ∃A ∈ a but A /∈ d, and ∃B ∈ b but B /∈ e.

Since S1abx, we have A � B ∈ x. And since S2dex, we have A � B /∈ x. But this gives a

contradiction by S17. Hence a ⊆ d or b ⊆ e.

18. For soundness, suppose A → (B → C) is L-valid in order to show A � B → C is

L-valid also. Suppose also that I(A � B, c) = 1. It suffices to show I(C, c) = 1. Then

∃a, b ∈ W such that S1abc, I(A, a) = 1 and I(B, b) = 1. Since A → (B → C) is L-valid,

we have I(B → C, a) = 1 by Lemma 2.2 (3). But since S1abc, we have R1abc by s18,

so I(C, c) = 1 as required.

For completeness, assume that S18 holds. Let S1abc in order to show R1abc. Suppose

A → B ∈ a and A ∈ b in order to show B ∈ c. Since 
 (A → B) → (A → B), we have


 (A → B) � A → B by S18. But S1abc, so B ∈ c as required.

It is easy to see that in any extension of B+
�� with the rules S18 and S19, → is the

residual of � such that S1 collapses to R1 in models.

4. Negation

4.1. The systems BM�� and B��

For a basic negation-extension of B+
��, we add the De Morgan Laws A9, A10 and

Contraposition R6:

A9 ¬(A ∧ B) ↔ ¬A ∨ ¬B

A10 ¬A ∧ ¬B ↔ ¬(A ∨ B)

R6 A → B ⇒ ¬B → ¬A.

We call this system BM��
†. A9 and A10 also contain redundancies. We can prove

each of A9 and A10 in the right-to-left direction using Contraposition and the positive

axioms.

A BM��-frame F is an 8-tuple < o,W ,O, R1, R2, S1, S2, ∗ >, where ∗ is a one-place

function from W to W , and the other elements are as before, such that postulate p8 holds

† The system BM is a negation-extension of B+ by the addition of the De Morgan Laws and Contraposition.

We can also obtain BM�� by adding �,� to BM.
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for every a, b ∈ W :

p8. If a � b, then b∗ � a∗.

Note that p8 is required for the Hereditary Condition.

A BM��-model M is a 9-tuple

< o,W ,O, R1, R2, S1, S2, ∗, I >

where

< o,W ,O, R1, R2, S1, S2, ∗ >

is a BM��-frame, and I is as before, such that the evaluation rule for negation is as

follows:

(¬) I(¬A, a) = 1 if and only if I(A, a∗) �= 1.

It is easy to verify that the Hereditary Condition holds as before, and hence that

BM�� is sound with respect to the class of BM��-models. For completeness, we define

∗ on a set of formulas a by a∗ = {A : ¬A /∈ a}. The canonical model for BM�� is now

< oc,Wc, Oc, R1, R2, S1, S2, ∗, I >. By the De Morgan Laws and Contraposition, it can be

shown that:

— If a is a theory, then a∗ is an anti-dualtheory.

— If a is an anti-dualtheory, then a∗ is a theory.

Hence, if a is a prime theory, a∗ is also, that is, ∗ is well-defined. Also, p8 is easy to verify.

Finally, rule (¬) holds well in the canonical model. Thus the canonical model is indeed a

BM�� model.

The system B�� is obtained from BM�� by adding Double Negation†:

A11. A ↔ ¬¬A

Then, a B��-model is a BM��-model satisfying a∗∗ = a for all a ∈ W . The soundness and

completeness results are easy to prove.

4.2. Negation extensions

We now give some extensions of BM�� and B��.

S20 ¬A → (A � B → B) s20 R2abc ⇒ S2a
∗bc

S21 (A → (B → C)) → (B → ¬A � C) s21 R2a(S2de)c ⇒ R2(R1ad
∗)ec

S22 (A → B � C) → (¬B → (A → C)) s22 R2(R1ab)de ⇒ R2a(S2b
∗d)e

S23 ¬(A � B) → ¬A � ¬B s23 S2abc ⇒ S1a
∗b∗c∗

S24 ¬A � ¬B → ¬(A � B) s24 S1abc ⇒ S2a
∗b∗c∗

S25 A � ¬A s25 S2abo ⇒ b∗ � a

S26 A → (B → C) ⇒ B → ¬A � C s26 S2abc ⇒ R2a
∗bc

S27 A → B � C ⇒ ¬B → (A → C) s27 R2abc ⇒ S2a
∗bc.

† The system B is an extension of BM by the addition of Double Negation. We can also obtain B�� by adding

�,� to B.
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Theorem 4.1. For each row in the list above, the extension of BM��/B�� obtained by

adding axiom or rule Si is sound and complete with respect to the class of BM��/B��-

models < o,W ,O, R1, R2, S1, S2, ∗, I > that satisfy si.

Proof. These are proved in the same way as the positive extensions. We will just give

proofs for some rows as examples.

21. For soundness, suppose I(A → (B → C), a) = 1 in order to show I(B → ¬A�C, a) = 1.

Suppose also that R2abc and I(¬A � C, b) �= 1. It suffices to show I(B, c) �= 1. Then

∃d, e ∈ W such that S2deb, I(¬A, d) �= 1 and I(C, e) �= 1. Since S2deb and R2abc, we

have R2a(S2de)c. So, by s21, R2(R1ad
∗)ec, that is, ∃x ∈ W such that R1ad

∗x and R2xec.

Since I(¬A, d) �= 1, we have I(A, d∗) = 1. So I(B → C, x) = 1 by R1ad
∗x. Hence

I(B, c) �= 1 by R2xec.

For completeness, assume S21 holds. Let R2a(S2de)c in order to show R2(R1ad
∗)ec.

Then ∃x ∈ Wc such that S2dex and R2axc. Let y = a⊕ d∗. It is immediate that R1ad
∗y

and that y is an L-theory. We show R2yec. Suppose that B → C ∈ y and C /∈ e. It

suffices to show B /∈ c. Since B → C ∈ y, we have ∃A ∈ d∗ such that A → (B → C) ∈ a.

So B → ¬A � C ∈ a by S21. Since A ∈ d∗, we have ¬A /∈ d. So ¬A � C /∈ x by S2dex.

Hence B /∈ c by R2axc. Thus R2yec. Now we can use Corollary 2.11 to provide a prime

L-theory y′ such that y ⊆ y′ and R2y
′ec. It is immediate that R1ad

∗y′. So we have

R2(R1ad
∗)ec.

22. For soundness, suppose I(A → B�C, a) = 1 in order to show I(¬B → (A → C), a) = 1.

Suppose also that R1abc and I(¬B, b) = 1 in order to show I(A → C, c) = 1. Finally,

suppose R2cde and I(C, d) �= 1. It suffices to show I(A, e) �= 1. Since R1abc and R2cde,

we have R2(R1ab)de. So, by s22, R2a(S2b
∗d)e, that is, ∃x ∈ W such that S2b

∗dx and

R2axe. Since I(¬B, b) = 1, we have I(B, b∗) �= 1. So I(B � C, x) �= 1 by S2b
∗dx. Hence

I(A, e) �= 1 by R2axe.

For completeness, assume S22 holds. Let R2(R1ab)de in order to show R2a(S2b
∗d)e.

Then ∃x ∈ Wc such that R1abx and R2xde. Let y = b∗ � d. It is immediate that S2b
∗dy

and that y is an L-anti-dualtheory. We will show R2aye. Suppose that A → D ∈ a

and D /∈ y. It suffices to show A /∈ e. Since D /∈ y, we have ∃B /∈ b∗, ∃C /∈ d such

that 
 D → B � C . Hence 
 (A → D) → (A → B � C). So A → B � C ∈ a, and thus

¬B → (A → C) ∈ a by S22. Since B /∈ b∗, we have ¬B ∈ b. So A → C ∈ x by R1abx,

and thus A /∈ e by R2xde. So R2aye. Now we can use Corollary 2.11 to provide a

prime L-theory y′ such that y′ ⊆ y and R2ay
′e. It is immediate that S2b

∗dy′. So we

have R2a(S2b
∗d)e.

23. For soundness, suppose I(¬A � ¬B, c) �= 1 in order to show I(¬(A � B), c) �= 1.

Thus ∃a, b ∈ W such that S2abc, I(¬A, a) �= 1 and I(¬B, b) �= 1. So I(A, a∗) = 1

and I(B, b∗) = 1. Since S2abc, we have S1a
∗b∗c∗ by s23. So I(A � B, c∗) = 1. Hence

I(¬(A � B), c) �= 1 as required.

For completeness, assume that S23 holds. Let S2abc in order to show S1a
∗b∗c∗. Suppose

A ∈ a∗, B ∈ b∗ and 
 A�B → C . It suffices to show C ∈ c∗. Then ¬A /∈ a and ¬B /∈ b.

Since S2abc, we have ¬A � ¬B /∈ c. By S23, we have ¬(A � B) /∈ c, that is, A � B ∈ c∗.

Hence C ∈ c∗ as required.
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26. For soundness, suppose A → (B → C) is L-valid in order to show that B → ¬A�C is

L-valid also. So suppose I(¬A�C, c) �= 1 in order to show I(B, c) �= 1. Then ∃a, b ∈ W

such that S2abc, I(¬A, a) �= 1 and I(C, b) �= 1. So I(A, a∗) = 1. Since A → (B → C) is

L-valid, we have I(B → C, a∗) = 1 by Lemma 2.2 (3). But since S2abc, we have R2a
∗bc

by s26. Hence I(B, c) �= 1 as required.

For completeness, assume that S26 holds. Let S2abc in order to show R2a
∗bc. Suppose

B → C ∈ a∗ and C /∈ b, but B ∈ c. Since 
 (B → C) → (B → C), we have


 B → ¬(B → C) � C by S26. Hence ¬(B → C) � C ∈ c. But B → C ∈ a∗, that is,

¬(B → C) /∈ a, so ¬(B → C) � C /∈ c by S2abc. This gives a contradiction. Hence

B /∈ c. Thus R2a
∗bc.

5. Conclusions and future work

This paper has introduced and investigated a basic relevant logic B+
��, which is obtained

by adding two binary connectives � and � to the minimal positive relevant logic B+. The

connectives � and � are axiomatised by Dunn’s approach for Gaggle Theory, and can

be seen as weaker versions of intensional conjunction and disjunction. Accordingly, the

semantics for B+
�� is an extension of the well-known relational semantics for B+, with

→, �, � modelled by ternary relations: R1 and R2 for →, S1 for �, and S2 for �. The

soundness and completeness of our semantics were proved by adaptations of familiar

methods for relevant logics. Finally, a number of additional axioms and rules were given,

each with the corresponding semantic conditions required for maintaining soundness and

completeness.

In order to construct the canonical model, we defined R1, R2, S1, S2 as derivatives of

operations ⊕,⊗,�,� on theories and anti-dualtheories, respectively. This technique was

mainly inspired by the operational treatments for → in Fine (1974) and Brady (2003). It

seems that the method can be generalised to n-placed connectives such that an n-placed

connective can be modelled by several n-placed operations. In addition, since an anti-

dualtheory a satisfies A ∨ B ∈ a if and only if A ∈ a or B ∈ a, we expect that a method

for using anti-dualtheories to model ∨ canonically can be developed, just as with theories

for ∧. Then it turns out that ∧ and ∨ can be dealt with separately without regard to

distribution. Based on the above notions, we will investigate operational semantics for

various logics with or without distribution. The further work will be presented in other

papers.
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