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Abstract. Ground state properties of the S = 1/2 frustrated Heisenberg chain with

period 3 exchange modulation are investigated using the numerical diagonalization and

DMRG method. It is known that this model has a magnetization plateau at 1/3 of the

saturation magnetization Ms. On the other hand, the ground state is ferrimagnetic

even in the absence of frustration if one of the nearest neighbour bond is ferromagnetic

and others are antiferromagnetic. In the present work, we show that this ferrimagnetic

state continues to the region in which all bonds are antiferromagnetic if frustration

is strong. This state further continues to the above mentioned 1/3-plateau state. In

between, we also find the noncollinear ferrimagnetic phase in which the spontaneous

magnetization is finite but less than Ms/3. The intuitive interpretation for the phase

diagram is given and the physical properties of these phases are discussed.

PACS numbers: 75.10.Jm, 75.10.Pq

1. Introduction

Frustrated quantum spin chains have been the subject of extensive studies for decades.

One of the most remarkable phenomena driven by frustration is the transition to

spontaneously dimerized ground state as demonstrated by the exact solution of

Majumdar and Ghosh[1]. In the magnetic field, another type of translational symmetry

breakdown is recently found by Okunishi and Tonegawa[2, 3] and Tonegawa et al.[4]

resulting in a nontrivial magnetization plateau at one third of full magnetization Ms.

The present author and Affleck[5] have investigated the effect of period three exchange

modulation on this plateau state. It turned out that the transition between the classical

plateau state and the quantum plateau state takes place within the 1/3 plateau state

Another remarkable effect of frustration is the stabilization of ferrimagnetic ground

state. Yoshikawa and Miyshita[6] proposed a model of frustrated quantum chain which

shows a ferrimagnetic ground state. Remarkably, this model not only has a Lieb-Mattis

type ground state in which magnetization is fixed to a value determined by the difference

of number of sites of two sublattices but also has a noncollinear ferrimagnetic ground
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state where magnetization is not a simple fraction of full magnetization. In this state,

the local magnetization profile has an incommensurate structure.

In the present paper, we show that the S = 1/2 frustrated Heisenberg chain

with period 3 exchange modulation also shows Lieb-Mattis type and noncollinear type

ferrimagnetism in appropriate parameter range. The former continues to the 1/3 plateau

state investgated in ref. [5].

This paper is organized as follows. In the next section, we present the model

Hamiltonian. The ground state phase diagram obtained by numerical diagonalization is

presented in section 3. The property of each phase is also discussed based on the density

matrix renormalization group (DMRG) calculation. In the last section we summarize

our results.

2. Hamiltonian

The Hamiltonian of the S = 1/2 frustrated Heisenberg chain with period 3 exchange

modulation is given by,

H = J
N/3∑

l=1

[(1 − α) (S3l−1S3l + S3lS3l+1)

+ (1 + α)S3l+1S3l+2] + Jδ
N∑

i=1

SiSi+2. (1)

where Si is the spin 1/2 operator and N is the number of sites. This model has a

magnetization plateau at 1/3 of the saturation magnetization Ms as investigated in [5].

On the other hand, it is obvious that the ground state is ferrimagnetic for α < −1

even in the absence of frustration. In this paper, we concentrate on the ground state

properties of this model in the region −1 < α < 0 and δ > 0.

3. Ground State Properties

The ground state phase diagram is obtained for α ≤ 0 and 0 ≤ δ ≤ 0.8 as shown in

Fig. 1 by the numerical diagonalization of finie size system with N = 12, 18 and 24.

For δ > 0.8, the strong finite size effect prevents the precise deterimination of phase

boundary.

For small |α|, the ground state is the gapless Tomonaga-Luttinger liquid for small

δ and the Majumdar-Ghosh type spontaneously dimerized phase for larger δ. The

transition between these two phases is the Brezinskii-Kosterilitz-Thouless type transition

and the phase boundary can be determined by the level spectroscpic method[7] usung

the numerical diagonalization data for N = 12, 18 and 24.

Typical magnetization curves calculated by the DMRG method in these two

nonmagnetic phases are shown in Fig. 2 (a) for (α, δ) = (−0.2, 0.2) and (b) for

(α, δ) = (−0.8, 0.8) and N = 96 with open boundary condition. It is evident that

the spin gap is absent in the former case while it is present in the latter case. The
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Figure 1. Ground state phase diagram for −1 ≤ α ≤ 0 for 0 ≤ δ ≤ 0.8. TL, MG,

NC and LM stand for Tomonaga-Luttinger liquid phase, Majumdar-Ghosh type dimer

phase, noncollinear and Lieb-Mattis ferrimagnetic phases, respectively.
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Figure 2. Magnetization curve in (a) Tomonaga-Luttinger liquid phase with (δ, α) =

(0.2,−0.2) and (b) Majumdar-Ghosh type dimer phase with (δ, α) = (0.8,−0.2) for

N = 96 calculated by DMRG method.

magnetization plateau at M = Ms/3 is always present reflecting the period 3 exchange

modulation.

For large negative α and large δ, the ground state is ferrimagnetic with
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Figure 3. Magnetization curves in (a) Lieb-Mattis type ferrimagnetic phase with

(δ, α) = (0.8,−0.8) and (b) noncollinear ferrimagnetic phase with (δ, α) = (0.8,−0.39)

for N = 96 calculated by DMRG method.

magnetization M = Ms/3. Even though the present model is not strictly bipartite

due to next nearest neighbour exchange interaction, this phase can be regarded as the

Lieb-Mattis type ferrimagnetic phase because it is directly connected to the Lieb-Mattis

ferrimagnetic state with M = Ms/3 at α < −1 and δ = 0. For small δ and α ≃ −1, the

three spins connected by the (1 − α)-bonds form an effective spin 1/2 doublet.

|⇑〉 =
1√
6

(|↑↑↓〉 − 2 |↑↓↑〉 + |↓↑↑〉) (2)

|⇓〉 =
1√
6

(|↓↓↑〉 − 2 |↓↑↓〉 + |↑↓↓〉) (3)

By elementary manipulation, the effective exchange interaction between these effective

spins turns out to be 2J(1+α−δ)/9. Therefore the ground state in this region is a Lieb-

Mattis type ferrimagnetic state for 1 + α < δ and the Tomonaga-Luttinger liquid state

otherwise. Typical magnetization curve calculated by DMRG method in this phase is

shown in Fig. 3(a) for (α, δ) = (−0.8, 0.8) and N = 96 with open boundary condition.

Comparing this magnetization curve with Fig. 2, it is clear that this ferrimagnetic state

continues to the classical plateau state in the nonmagnetic phases. It should be noted

that the quantum plateau state is realized only for α > 0[5]. The local magnetization

profile 〈Sz
i 〉 calculated by the DMRG method clearly shows 3 sublattice structure as

shown in Fig. 4(a) for (α, δ) = (−0.7, 0.7) and N = 96 with open boundary condition.

It should be also noted that spins are not fully polarized even in the Lieb-Mattis type

phase although the total magnetization is exactly quantized to Ms/3.

With the decrease in |α|, the ferrimagnetic state with magnetization less than Ms/3

appears for α>∼0.72. This phase has similarity with the noncollinear ferrimagnetism
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Figure 4. Local magnetization profile (a) in the Lieb-Mattis type ferrimagnetic phase

with δ = 0.7 and α = −0.7 and (b) in the noncollinear ferrimagnetic phase with

δ = 0.8 and α = −0.39 for N = 96 calculated by DMRG method. Only the sites in

the middle of the system 19 ≤ i ≤ 78 is shown to exclude the boundary effects.The

lines are guides for eye drawn to make clear the incommensurate modulation of the

magnetization profile.
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Figure 5. Classical noncollinear spin configuration.

studied by Yoshikawa and Miyashita[6]. As a representative, the magnetization

curve in this state calculated by the DMRG method is presented in Fig. 3(b) for

(α, δ) = (−0.39, 0.8) and N = 96 with open boundary condition. It is clear that the

magnetization starts from nonzero value less than Ms/3 at H = 0. The magnetization

profile in this state calculated by the DMRG method is shown in Fig. 4(b) for the same

set of parameters. As in the case of Yoshikawa and Miyashita[6], the magnetization

profile has the incommensurate modulation.

The presence of the noncollinear ferrimagnetic state can be also understood within

the classical picture. If we assume the noncollinear spin configuration depicted in Fig.

5 and minimize the classical energy calculated using the Hamiltonian (1) with respect

to the angle θ, we find the nonzero solution of θ for δ > −1 − 3α corresponding to the

noncollinear ferrimagnetic phase. For δ < −1 − 3α, we find θ = 0 corresponding

to the Lieb-Mattis type ferrimagnetism. However, the observed incommensurate

ferrimagnetic spin profile cannot be understood within this classical picture. We expect

this phenomenon is essentially due to the combined effect of quantum fluctuation and

frustration.

Finally, in the narrow region between the ferrimagnetic phase and the spontaneously



Ferrimagnetic States in S = 1/2 Frustrated Heisenberg Chains with Period 3 Exchange Modulation 6

dimerized phase, another Tomonaga-Luttinger liquid phase is found. Considering the

difference in the spin structures of spontaneously dimerized phase and noncollinear

ferrimagnetic phase, it is reasonable to expect an intermediate critical phase between

these two phases. However, it still possible that this phase does not survive in the

thermodynamic limit because of the limitation of the system size and ambiguity in the

exterpolation procedure.

4. Summary

The phase diagram of the S = 1/2 frustrated Heisenberg chains with period 3

exchange modulation is determined by analysing the exact numerical diagonalization

data. In addition to the Tomonaga-Luttinger liquid phase, dimer phase, the Lieb-Mattis

type ferrimagnetic phase and noncollinear ferrimagnetic phase are found. Physical

interpretation of the phase diagram based on the perturbational argument and classical

picture is given. Typical magnetization curve in each phase is preented. It is

shown that the magnetization profile has incommensurate modulation in noncollinear

ferrimagnetic phase. This feature the similarity to the model investigated by Yoshikawa

and Miyashita[6] which has also frustration and noncollinear ferrimagnetism. Therefore

we may regard the incemmensurate spin profile as a characteristic of the noncollinear

quantum ferrimagnetism induced by frustration.

Another Tomonaga-Luttinger liquid phase is found in the narrow region between

dimer phase and noncollinear ferrimagnetic phase. Further investigation of the nature

of this phase is left for future studies.
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