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Abstract

In our previous report (Aita et al.,2004), an analogy between thermodynamics and adap-

tive walks on a Mt. Fuji-type fitness landscape in an artificial selection system was

presented. Introducing the ”free fitness” as the sum of a fitness term and an entropy

term and ”evolutionary force” as the gradient of free fitness on a fitness coordinate, we

demonstrated that the adaptive walk (=evolution) is driven by the evolutionary force

in the direction in which free fitness increases. In this report, we examined the effect

of various modifications of the original model on the properties of adaptive walk. The

modifications were as follows: first, mutation distance d was distributed obeying binomial

distribution; second, the selection process obeyed the natural selection protocol; third,

ruggedness was introduced to the landscape according to the NK model; forth, a noise

was included in the fitness measurement. The effect of each modification was described in

the same theoretical framework as the original model by introducing ”effective” quantities

such as the effective mutation distance or the effective screening size.
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Notation

ν: Chain length of a biopolymer sequence

λ: Number of available letters, e.g. λ = 20 for natural proteins

L: Number of blocks (=groups)

νl: Chain length of the l-th block,
∑L

l=1 νl = ν

εl: Mean of the site-fitness over λ letters for the l-th block

σl: Standard deviation of the site-fitness over λ letters for the l-th block

N (x|a, b): Normal distribution of a variable x with mean a and variance b.

W : Fitness of a sequence

Wm: Fitness of the m-th fittest among M parents or among N children

E : Mean of the fitness over all possible sequences

V : Variance of the fitness over all possible sequences

M : Number of parents as walkers

N : Number of children (=mutants)

d: Number of mutated sites, Hamming distance between a parent and each of its children

E[x ]: Expectation of a variable x

V [x ]: Variance of a variable x

W : Mean fitness over M parents

U : Standard deviation of fitness over M parents

∆W : Change of W after a single generation, climbing rate of M walkers

∆U : Change of U after a single generation
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W ∗,U ∗: The W and U in the stationary state, respectively

δW , δU : δW ≡ W − W ∗ and δU ≡ U − U ∗, respectively

∆W : Change between the mean fitness over M parents (W ) and the fitness of their

arbitrary mutant

Ñm: Expected value of the m-th greatest among N samples from the standard Gaussian

〈Ñm〉: Mean of Ñm over M parents, a measure of selection pressure

J: Expectation of climbing rate (∆W ) when (W ,U ) = (W ∗ + δW ,U ∗ + δU )

V [∆W ]: Variance of climbing rate (∆W ) when (W ,U ) = (W ∗ + δW ,U ∗ + δU )

D: Diffusion coefficient for a random walk by M walkers

Ω(W ): Number of sequences whose fitnesses range in W − ∆ ∼ W (∆ > 0)

S(W ): Entropy for a single walker with the fitness W

k: Landscape constant (Boltzmann constant-like quantity)

T : Evolutionary temperature, T ≡ √
d/〈Ñm〉

G (W ): Evolutionary potential for M walkers with the mean fitness W

G(W ): Free fitness for M walkers with the mean fitness W

X(W ): Evolutionary force that acts on the M walkers with the mean fitness W

L : Linear transport coefficient or Admittance

µ: Mutation rate per site

d: Mean of d, d = µν

Tc: Critical value of T for phase transition

deff , Neff ,Meff , Teff : Effective values of d, N , M and T , respectively

β: Parameter that governs the strength of natural selection
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xm: The value of the m-th greatest among N samples from the standard Gaussian

〈xm〉, V ar[xm ]: the weighted mean and weighted variance of xm, respectively

K: The number of sites that affect the site-fitness at an arbitrary site
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1 Introduction

Darwinian evolution through mutation processes and subsequent selection processes is

driven by an entropy force and a selection force. The entropy force drives an evolving

population to diverse in the sequence space, whereas the selection force drives the evolving

population to converse. This suggests that evolution is analogous to thermodynamics.

This analogy has been reported in Iwasa,(1988) and Eigen et al.,(1989). The former

introduced the idea of ”free fitness” and the latter introduced the idea of ”quasi-species”.

In our previous report (Aita et al.,2004), to comprehend the underlying principles of

biological evolution, we analyzed an evolution model on a Mt. Fuji-type fitness land-

scape, in which the mutational effect is additive. In the evolution model, we adopted the

(M,N)-Evolutionary Strategy (Rechenberg, 1984). M parents (=wild-types) produce N

children (=mutants), and subsequently, the best M individuals among the N children

will become new parents in the next generation. The number of mutated sites is fixed

at d in a production of every mutant. This is a model of an artificial evolution system

directed by engineers (Keefe & Szostak,2001; Yamauchi et al., 2002). As a result from

the analysis, we succeeded in quantifying the analogy between evolution and thermody-

namics by introducing our original ”free fitness” G = W + TS, where W , S and T are

fitness, entropy and ”evolutionary temperature”, respectively. The entropy is defined as

S(W ) ≡ k lnΩ(W ), where Ω(W ) represents the number of all possible sequences that

have the fitness W and k is a ”landscape constant”. The evolutionary temperature is

defined as T ≡
√
d/2 ln(N/M). It contains both of a mutational effect governed by the

mutation distance d and a random-drift effect governed by the population size N and M .

On the other hand, in Iwasa’s definition of free fitness (Iwasa,1988), the temperature-like

parameter is 1/2N , where N is the population size, and it does not contain the mutational

effect explicitly. His theory is not based on the structure of fitness landscapes in sequence

space. These are the major difference between our definition and Iwasa’s one. In the field

of evolutionary computation, Maekawa et al. applied the concept of free energy minimiza-

tion principle to the optimization protocol, called ”Thermodynamic Genetic Algorithm”
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(Maekawa et al.,1997). In their protocol, evolving population is selected to minimize free

energy (or to maximize free fitness) at each generation. The aim of our study is not

to apply thermodynamical concepts to an optimization technique but to find principles

underlying in a simplified evolution system.

Our major findings are as follows. An adaptive walk (=evolution) is driven in the di-

rection in which free fitness increases. The walker starting from the foot of the landscape

climbs rapidly and then reduces the climbing rate and finally reaches a stationary state,

which is the specific region of the ”mutation-selection-random drift balance” (Woodcock

& Higgs, 1996; Prügel-Bennett, 1997; Lazaro et al.,2002) and corresponds to the max-

imal free fitness state. The walker starting from near top of the landscape descends

the landscape to the stationary state. This descending process is called Muller’s ratchet

(Muller,1964). The stationary point on the fitness coordinate is determined by the evo-

lutionary temperature T . If T is higher (or lower), then the stationary point shifts to

a lower (or higher) region on the fitness coordinate. This behavior is analogous to that

in thermodynamics, because the highest point of the landscape represents the maximal

fitness state and the foot of the landscape is the maximal entropy state.

This behavior has been observed in serial transfer experiments for RNA viruses. Serial

transfers with large (or small) populations usually lead to increases (or decreases) in fitness

(Novella et al.,1995; Escarmis et al.,1999; Arias et al.,2001). In our interpretation, large

(or small) population size N sets the evolutionary temperature T low (or high) values

and then pushes the stationary fitness-value upward (or downward). Therefore, the above

results of the serial transfer experiments are compatible with our theoretical results.

This report is a sequel of Aita et al. (2004). In Section 2, we summarized the previous

paper, that is, our original model, definitions and ideas are described. In Section 3, 4, 5

and 6, we introduced various modifications to this original model and examined the effect

of each modification on the statistical properties of the adaptive walk. The modifications

are as follows. First (in Section 3), it is the case where the mutation distance d is

distributed obeying binomial distribution. Second (in Section 4), it is the case where the

selection process obeys the natural selection protocol, in which the number of children
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generated from a parent depends on the fitness of the parent. Third (in Section 5), it

is the case where ruggedness is introduced to the landscape according to the NK model

(Kauffman,1993). Fourth (in Section 6), it is the case where a noise is included in the

fitness measurement.

As a result, we found that the thermodynamical scheme found in the original model

is applicable to various cases by introducing ”effective” quantities such as the effective

mutation distance or the effective screening size.

2 Summary of our previous report

2.1 Original model of fitness landscape and evolving population

We deal with the λ-valued ν-dimensional sequence space of all possible sequences of

biopolymers, where ν represents the chain length of a biopolymer sequence and λ rep-

resents the number of available letters at each site. We focus on cases where λ is large

enough to give (λ − 1)/λ ≈ 1. Consider individual ν sites classified by tolerance against

mutations into L groups, l = 1, 2, · · · , L. Let νl be the number of sites belonging to the

l-th group. Thus,
∑L

l=1 νl = ν. We introduced ”site-fitness”, which is an independent

contribution from a particular letter at each site in a given sequence, and assumed that

the site-fitness for the i-th letter ai located at the j-th site in the l-th group is given by

the following ”comb-type” function :

wlj(ai) =
2εl

λ
i ≤ 0 (i = 0, 1, 2, · · · , λ− 1), (1)

where εl ≤ 0 is a constant equivalent to the mean of the site-fitness over all available

letters. The variance of the site-fitness, σ2
l , plays a key-role in this theory and is given by

σ2
l =

1

λ

λ−1∑
i=0

(wlj(ai) − εl)
2 ≈ εl

2

3
. (2)

The fitness W for a given sequence is defined as follows:

W =
L∑

l=1

νl∑
j=1

wlj(αlj), (3)
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where αlj ∈ {a0, a1, · · · , aλ−1} represents a particular letter at the j-th site in the l-

th group in a given sequence. The fitness landscape resulting from this model is the

”anisotropic” Mt. Fuji-type landscape in the λ-valued ν-dimensional sequence space. Let

E and V be the mean and variance of fitness W over all possible sequences, respectively.

The number of sequences whose fitnesses range between W − ∆ and W (∆ > 0) is given

by

Ω(W ) =
λν

√
2πV

exp

(
−(W − E )2

2V

)
× ∆ for W ≤ 0, (4)

where ∆ is determined to satisfy Ω(0) = 1.

We adopted the (M,N)-Evolutionary Strategy as the hill-climbing protocol: M par-

ents (=wild-types) generate N children (=mutants), and subsequently, the best M indi-

viduals among the N children will become new parents in the next generation (Rechen-

berg, 1984). The Hamming distance between a parent and each of its children is a constant

d, that is, d is the number of mutated sites. We dealt with cases where M 	 N and

d 	 νl for all l’s. This is a model of an artificial evolution system directed by engineers

(Keefe & Szostak,2001; Yamauchi et al., 2002).

2.2 Evolutionary dynamics on a fitness landscape

Let W and U be the mean fitness and standard deviation of fitness over M parents,

respectively. The dynamics of an adaptive walk is described with mean fitness W and

deviation U . The walkers starting from the foot of the landscape climb rapidly and

then reduce the climbing rate and finally reach a stationary state, W = W ∗, which is

the specific region of the ”mutation-selection-random drift balance” (Woodcock & Higgs,

1996; Prügel-Bennett, 1997; Lazaro et al.,2002). Meanwhile, the U -value rapidly tends

to the stationary value U ∗ at the initial stage.

First, we will begin by considering the underlying mutant population, that consists of

all conceivable d-fold point mutants generated from theM parents. Let ∆W be the change

between the mean fitness W over M parents and a fitness of their arbitrary mutant. The

expectation and variance of ∆W over the underlying mutant population are respectively
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given as follows:

E[∆W ] = −(W − E )
d

ν
, (5)

V [∆W ] =
(
2V + c1(U

2 + (W − E )2) + c2(W − E )
) d
ν

+

(
1 − d

ν

)2

U 2, (6)

where c1 and c2 are constants dependent on the landscape properties. The details are

described in eqn.(18) and (19) in Aita et al.,(2004).

Let ∆W be the change of the mean fitness after a single generation, that is the

”climbing rate” of the evolving population. By using the extremal value statistics, the

expectation of the climbing rate is given by

J ≡ E[∆W ] = E[∆W ] +
√
V [∆W ] 〈Ñm〉, (7)

where 〈Ñm〉 is defined as follows. Consider that N samples are randomly chosen according

to the standard Gaussian probability density N (x|0, 1), and let xm be the value for the

m-th greatest among the N samples. We denoted the expectation of xm by Ñm (≡ E[xm]).

The mean of Ñm from m = 1 through m = M is given by

〈Ñm〉 ≡ 1

M

M∑
m=1

Ñm ≈
√√√√2 ln

(N/M)√
2π

. (8)

In eqn. (7), 〈Ñm〉 governs the climbing rate, then we designate 〈Ñm〉 as a measure of

selection pressure.

From J = 0 and E[∆U ] = 0, the stationary point (W ∗,U ∗) is determined as follows:

W ∗ ≈ E +

√
2V ν

T
(9)

U ∗ ≈ 2k
√
d V ar[Ñm], (10)

where V ar[Ñm] is the variance of Ñm from m = 1 through m = M . k and T were defined

as follows:

k ≡
√

V

2ν
=

√∑L
l=1 σ

2
l νl

2ν
=

√
〈σ2

l 〉
2
, (11)

T ≡
√
d

〈Ñm〉
≈
√√√√ d

2 ln(N/M
√

2π)
. (12)
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σl in eqn. (11) is defined in eqn. (2). The meaning of k is the standard deviation of a fitness

change for a unit Hamming distance, then we designated k as the ”landscape constant”.

T works just like thermodynamic temperature, then we designated T as the ”evolutionary

temperature”. In our original model, T is constant through the walk process.

For the special case of N = M , that is the case of 〈Ñm〉 = 0, since the selection

pressure does not act on the walkers, the walkers perform a random walk with a step-

width d on the landscape. In this case, the variance of ∆W is given by V [∆W ]/M . Then,

we introduced a diffusion coefficient D in a random walk on the one-dimensional fitness

space as follows.

D ≡ V [∆W ]

2M
(13)

≈ V d

νM
. (14)

2.3 Thermodynamical interpretation of the evolutionary dynamics

Defining the ”entropy” S, with Ω in eqn. (4), as

S(W ) ≡ k × ln Ω(W ) (15)

= − k

2V
(W − E )2 +

kE 2

2V
, (16)

we defined the ”evolutionary potential” G for M walkers (m = 1, 2, · · · ,M) as follows:

G (W ) ≡ W + T × S(W ) (17)

= − kT

2V

(
W −

(
E +

V

kT

))2

+ const. (18)

And we defined the ”free fitness”: G(W ) ≡ G (W ) ×M . We note that the evolutionary

potential G and free fitness G are the Lyapunov function of the evolution process (G

and G take the maximal values at W = W ∗), if kT in eqn. (18) satisfies the following

relationship:

kT =
1

〈Ñm〉

√
V d

2ν
. (19)

k defined in eqn. (11) and T defined in eqn. (12) satisfy this relationship. Therefore, W ∗

is related with kT by

W ∗ = E +
V

kT
. (20)
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In addition, we defined the ”evolutionary force” X that acts on the M walkers:

X(W ) ≡ d

dW

G (W )

T
(21)

= − k

V
(W − W ∗) . (22)

The expectation of the climbing rate at (W ,U ) = (W ∗ + δW ,U ∗) is given by

J ≈ −d
ν
× δW . (23)

By combining eqn. (23) with eqn. (22) and eqn. (14), we deduced that the expected

climbing rate, J , obeys the following simple linear relation with X:

J ≈ L ×X with L =
MD

k
, (24)

where L is the linear transport coefficient or admittance. The relation L = MD/k is

analogous to the Einstein relation in Brownian motion (Einstein, 1905). By using this

relation, the expected change of G /T for a single generation is given by

E[
∆G

T
] = JX ≈ L X2 ≥ 0. (25)

This shows that G is the Lyapunov function of the evolution process. Note that many

other studies on maximized quantities through evolution have been reported (Iwasa,1988;

Weinberger, 2002; Garske & Grimm,2004).

The standard deviation of the climbing rate is proportional to kT as follows:

√
V [∆W ] ≈ kT × 4√

M + 1
. (26)

√
V [∆W ] represents ”uncertainty” of the mean-fitness change for a single generation.

Then, eqn. (26) suggests that the uncertainty corresponds to the mean thermal energy-like

quantity kT (×4/(
√
M + 1)). Then, the quantity ∆W /kT is the digitized mean-fitness

change by the unit of uncertainty
√
V [∆W ] (because kT ≈

√
V [∆W ] × √

M/4). We

designated ∆W /T as the ”fitness information” because it is interpreted as the negative

entropy the walkers absorb from the ”surroundings”. Here, the surroundings consist of

the experimental setup.
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These results lead to the following interpretation. Driven by the evolutionary force

X, the walkers climb the landscape to the maximal free fitness state, through absorbing

the fitness information ∆W /T from the surroundings. Further consideration from the

informational view point is described in Section 4.3 in Aita et al., (2004).

3 Effect of distributed mutation distance

In the original model, we set the mutation distance d constant through a walk process. In

this section, we examine a case where the mutation distance d is stochastically distributed

obeying binomial distribution. Consider that, in the mutagenesis process, a residue sub-

stitution occurs with the probability of µ for each site. The µ is called ”mutation rate”.

Then, the mole fraction of the d-fold point mutants generated from a wild-type obeys

B(d) =

(
ν

d

)
µd(1 − µ)ν−d. (27)

Since d is distributed around its mean d = µν, we apply our scheme shown in Section 2

to this case by substituting d = d = µν. We confirmed the effectiveness of this approach

through computer simulation. Fig.1 shows the theoretical and numerical values of W ∗ as

a function of T . The resulting W ∗-values from the computer simulation agree well with

the theoretical ones from eqn. (9). It is remarkable that there are two phases for the

stationary state, W ∗ < 0 when T > Tc and W ∗ = 0 when T < Tc. The latter phase,

W ∗ = 0, is realized in the situation where the replication of sequences is so accurate that

a population of N children includes non-mutated sequences identical to their parents. In

this case, the walkers never descend the landscape and can reach the peak ultimately.

The condition in which the latter phase, W ∗ = 0, occurs is

B(0) × N

M
= (1 − µ)ν × N

M
≥ 1. (28)

Then, by substituting d = d = µν and N/M = (1 − µ)−ν into eqn. (12) and using

ln(1 − µ) ≈ −µ, the critical T -value for the phase transition is given by

Tc ≈
√

µ

−2 ln(1 − µ)
≈
√

1

2
= 0.71. (29)
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Taking an analogy to the phase diagram of the water, we can interpret that the Tc is

analogous to the triple point, T3 = 273.16K, in the phase diagram, in which the degree

of freedom for the observer is zero according to the phase rule. The thermodynamic (or

absolute) temperature is scaled by T3. In the same way, the evolutionary temperature T

can be scaled by the setup-independent constant Tc as follows:

T ≈ Tc ×
√√√√ d

ln(N/M
√

2π)
. (30)

The mean d-value over selected M mutants as new parents in each generation is de-

noted by deff , where the subscript ”eff” means an effective quantity. In addition, we

introduce the effective screening size, Neff = N × B(deff). Fig.2(a) shows the deff-values

against δW = W −W ∗, where W is the mean fitness over M parents. In the early stage of

the walk, deff is larger than d = µν, whereas in the later stage, deff is smaller than d = µν.

At the foot of the landscape, mutants with large d-values have the possibility of jumping

to higher regions. As the walkers climb the landscape, the relative number of ascending

paths against descending paths decreases, and then mutants with small d-values have the

possibility of finding ascending paths, efficiently. This works just like an auto-tuning sys-

tem in an optimization process. According to eqn. (23), the expectation of the climbing

rate, J , is predicted by J = −deff/ν × δW . Fig.2(b)(c) shows the predicted J-values

and the J-values obtained by computer simulation. The good agreement between them

suggests that the introduction of deff and Neff is effective to understand the property of

the adaptive walks in the theoretical framework of the original model.

In conclusion in this section, our original scheme (mentioned in Section 2) is applied

to this case when T > Tc, by adopting d = d = µν. Moreover, the dynamics in details is

described by introducing the effective mutation distance deff and effective screening size

Neff = N ×B(deff).

4 Effect of natural selection

In the original model, we dealt with an artificial evolution, in which engineers direct

the evolution according to their sense of values. In this section, we examine a case
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where evolution is driven by natural selection according to the Darwinian principle, and

moreover the selection is frequency independent (Husimi,1989; Novella et al.,1995). Since

we consider the evolution system in an evolution reactor in which environmental conditions

are controlled, the frequency independent selection is easily realized.

Let Wm be the fitness of the m-th fittest among N parents (m = 1, 2, · · · , N), and

consider that the m-th parent produces

N × exp(βWm)∑N
m=1 exp(βWm)

(31)

children (=mutants), where β is a parameter that governs the strength of natural selection.

The generated N children become new N parents in the next generation. The weight,

exp(βWm), in eqn. (31) is used frequently in the selection protocol in the genetic algorithm

(Prügel-Bennett,1997). The use of the weight seems practically effective in handling of

the selection of self-replicators (such as viruses or microbes) according to their growth

rate in a fixed environment (Husimi,1989; Novella et al.,1995; Escarmis et al.,1999), or

effective in handling of the selection of ligand molecules according to their affinity to a

target receptor (Mandecki et al.,1995; Sun et al.,1996; Yang et al.,2003).

First, we will begin by considering the underlying biased mutant population, that

consists of d-fold point mutants generated from the N parents with the production bias

shown in eqn. (31). The probability density of fitness over the biased mutant population

is described in Appendix A. Let ∆W be the change between the mean fitness W over

the N parents and the fitness of their arbitrary mutant. The expectation and variance of

∆W over the biased mutant population, Ẽ[∆W ] and Ṽ [∆W ], are respectively related to

E[∆W ] and V [∆W ], which are the expectation and variance over the non-biased mutant

population (see eqn. (5) and (6)), by

Ẽ[∆W ] = E[∆W ] + U 〈xm〉(1 − d/ν) (32)

Ṽ [∆W ] ≈ V [∆W ] − U 2(1 − V ar[xm])(1 − d/ν)2, (33)

where xm is defined below eqn. (7). 〈xm〉 and V ar[xm] are respectively the weighted mean
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and weighted variance of xm as follows:

〈xm〉 ≡
∑N

m=1 xm exp(βU xm)∑N
m=1 exp(βU xm)

(34)

V ar[xm] ≡
∑N

m=1 xm
2 exp(βU xm)∑N

m=1 exp(βU xm)
− 〈xm〉2. (35)

〈xm〉 and V ar[xm] play key roles in this model. We obtained numerical values of the

expectation E[∗] and variance V [∗] of 〈xm〉 and those of V ar[xm]. Fig.3 shows them as

functions of βU . The approximate forms of them are derived in Appendix B. If β = 0,

〈xm〉 and V ar[xm] take around 0 and 1, respectively, and then Ẽ[∆W ] and Ṽ [∆W ] are

equivalent to E[∆W ] and V [∆W ], respectively. As β becomes higher, 〈xm〉 and V ar[xm]

tend toward x1 and 0, respectively, and then Ẽ[∆W ] becomes greater than E[∆W ] and

Ṽ [∆W ] becomes less than V [∆W ].

Since N parents in the next generation are chosen randomly according to the proba-

bility density with mean Ẽ[∆W ] and variance Ṽ [∆W ], the expectation of climbing rate

∆W and that of ∆U are given by

E[∆W ] = Ẽ[∆W ] (36)

E[∆U ] =
√
Ṽ [∆W ] − U , (37)

respectively. Substituting eqn. (32) into eqn. (36), we can see that 〈xm〉 works as a

selection pressure. By solving equations E[∆W ] = 0 and E[∆U ] = 0, the W -value and

U -value at the stationary state are determined as follows:

W ∗ ≈ E +

√
2V ν

T̃
(38)

U ∗ ≈ 2k
√
d, (39)

where k is the landscape constant defined in eqn. (11) and T̃ is the evolutionary temper-

ature in this natural selection model:

T̃ ≡
√
d

E[〈xm〉] . (40)

The derivation of eqns (38) and (39) is shown in Appendix C. Note that eqns (38) and

(39) are valid when β � βc. βc is defined as follows:

βc ≡ E[x1]

2k
√
d

=
1

2kT̃1

, (41)
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where E[x1] ≈
√

2 ln(N/2π) and T̃1 ≡ √
d/E[x1]. To verify the effectiveness of eqns (38)

and (39), we carried out a computer simulation of adaptive walk by N walkers in this

natural selection model. In this simulation, the mutation process obeyed the mutage-

nesis protocol mentioned in the previous section. That is, the mutation distance d is

distributed obeying binomial distribution shown in eqn. (27). Fig.4 shows the theoretical

and numerical values of W ∗ as a function of T̃ . The resulting W ∗-values from the com-

puter simulation agree well with the theoretical ones from eqn. (38), when β ≥ βc. When

β < βc, eqn. (67) is effective (data not shown) instead of eqn. (38).

Here, we interpret this natural selection scheme by the theoretical framework of the

original model in Section 2. Comparing eqn. (38) and (40) with eqn. (9) and (12), we

can see that E[〈xm〉] plays the same role as 〈Ñm〉. 〈Ñm〉 works as the artificial selection

pressure, which is caused by the selection of M individuals from among N candidates,

whereas E[〈xm〉] works as the natural selection pressure, which is caused by the production

bias of N individuals. We introduce an effective M-value, Meff , that satisfies E[〈xm〉] =

〈Ñm〉. By using eqn. (8), Meff is approximately given by

Meff ≈ N√
2π

exp

(
−E[〈xm〉]2

2

)
. (42)

If β = 0, E[〈xm〉] = 0 and then Meff = N , while if β = ∞, E[〈xm〉] = E[x1] and then

Meff = 1. Note that the evolutionary temperature T̃ in the natural selection model is

equivalent to T in the artificial selection model with M = Meff .

The expectation of the climbing rate at (W ,U ) = (W ∗ + δW ,U ∗) is given by

J ≡ E[∆W ] ≈ −d
ν
× δW . (43)

According to eqn. (13), we introduce a diffusion coefficient D in a random walk on the

one-dimensional fitness space:

D ≡ V [∆W ]

2N
(44)

≈ 2V d

Nν
. (45)

In the derivation of eqn. (45) from eqn. (44), we used the stationary value of V [∆W ]. By

combining eqn. (43) with eqn. (22) and eqn. (45), we deduce that the expected climbing
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rate, J , obeys the following simple linear relation with X:

J ≈ L ×X with L =
ND

2k
. (46)

This equation is almost the same as eqn. (24).

The variance of the climbing rate is given by

V [∆W ] ≈ Ṽ [∆W ]

N
+ V [Ẽ[∆W ]] (47)

≈ U ∗2
(

1

N
+ V [〈xm〉]

)
. (48)

V [〈xm〉] and E[〈xm〉]−2 are plotted against βU in Fig.3(b). It suggests that, for large

βU , these two quantities become closer to each other. This tendency becomes more

conspicuous as N becomes greater. We can theoretically derive the following:

lim
β→∞

V [〈xm〉] = V [x1] ≈ 1

E[x1]2
= lim

β→∞
1

E[〈xm〉]2 . (49)

This means that, when β grows toward ∞, only the children of the fittest parent (m = 1)

can survive. Then, regarding that V [〈xm〉] is approximately equal to E[〈xm〉]−2, we obtain

the standard deviation of the climbing rate as follows:

√
V [∆W ] ≈ U ∗

E[〈xm〉] =

√
ND

E[〈xm〉] = 2kT̃ , (50)

for β � βc. Eqn. (50) is derived by using eqn. (39) and eqn. (45).

In conclusion, by identifying E[〈xm〉] with 〈Ñm〉, or by introducing Meff , the natural

selection model is comprehended in the similar theoretical scheme of the artificial selection

model. If this equivalence is satisfied, the evolutionary temperature, the stationary point

W ∗ and the expected climbing rate J take identical values between these models. However,

several properties remain slightly different from each other.

5 Effect of ruggedness: application to NK landscape

In this section, we examine the effect of ruggedness on a fitness surface by adopting the

NK model (Kauffman,1993). The fitness W for a sequence ”α1α2 · · ·αν” is defined by

W =
ν∑

j=1

wj(αj|αj1, αj2, · · · , αjK
), (51)
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where the ”site-fitness” wj(αj |αj1, αj2, · · · , αjK
) is a fitness contribution from a particular

letter αj at the jth site when the K sites {j1, j2, · · · , jK} are occupied by the particular

letters {αj1, αj2, · · · , αjK
}. The K sites {j1, j2, · · · , jK} are randomly chosen from the

whole ν − 1 sites except the j-th site. The assignment of site-fitness values is modeled

as follows. With a set of letters {αj1, αj2, · · · , αjK
} given, the site-fitness for an arbitrary

letter ai (i = 0, 1, 2, · · · , λ− 1) at each site is randomly assigned from the following set of

λ values, but the degeneracy of assignment is not allowed:

wj(ai|αj1, αj2, · · · , αjK
) ∈

{
2ε

λ
h

∣∣∣∣h = 0, 1, 2, · · · , λ− 1
}

(52)

under the condition that wj(ai) �= wj(ai′) for i �= i′, where ε ≤ 0 is a constant. The result-

ing fitness landscape is called the ”NK landscape”, although the original NK landscape

was defined in the binary sequence space (Kauffman,1993).

Consider that a single mutation occurs in the j-th site. Let K̃ be the number of

affected sites and let {i1, i2, · · · , iK̃} be the K̃ sites affected by the single mutation. The

value of site-fitness wj at the mutated site is re-assigned from eqn. (52). In addition, the

values of site-fitnesses, {wi1, wi2, · · · , wi
K̃
}, for the affected sites are also re-assigned from

eqn. (52) randomly. Then, the single mutation causes the change of site-fitnesses for the

(1 + K̃) sites. We can estimate that K̃ is distributed obeying binomial distribution with

mean K and variance K(1−K/(ν − 1)). Then, we use K̃ = K for simplicity. Let deff be

the number of sites where site-fitnesses change as results of the d-fold point mutations.

deff is given by

deff = d+ c
d∑

j∈{mutated sites}
K̃, (53)

where the sum is taken over the d mutated sites and c is the correction factor to avoid

multiplication of counting affected sites and then c ≤ 1. Therefore, the statistical effect of

the d-fold point mutations on the fitness in the NK model is equivalent to the statistical

effect of the deff-fold point mutations on the fitness in the Mt. Fuji-type model (K =

0). Therefore, deff can be called the ”effective mutation distance”. The mean of deff is

approximately given by

deff ≈ d(1 + K̃) ≈ d(1 +K), when d(1 +K) 	 ν. (54)
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If d(1+K) is large and comparable to ν, deff does not show such a linear response against

d(1 +K). As a result, by replacing the mutation distance d in Section 2 with the mean

effective mutation distance deff , we can apply our original scheme shown in Section 2 to

this case of NK landscapes. Fig.5(a) shows the theoretical and numerical values of W ∗

as a function of Teff , where Teff is given by substituting deff in eqn. (54) into d in eqn. (12).

The resulting W ∗-values from the computer simulation agree well with the theoretical

ones from eqn. (9). The result suggests that the introduction of deff is effective in cases

where deff 	 ν.

In a physical sense, the ruggedness should affect not the evolutionary temperature but

the landscape constant k. Therefore, we redefine k and T as follows. Substituting deff in

eqn. (54) into d in eqn. (19), we define the landscape constant k as

k ≡
√

V (1 +K)

2ν
=

√
〈σ2

l 〉(1 +K)

2
, (55)

while the evolutionary temperature T is defined as it is in eqn. (12). In this interpretation,

k is
√

1 +K times greater than the k in eqn. (11) for the Mt. Fuji-type landscape. This is

reasonable because the landscape constant k represents a standard deviation of a fitness

change for a unit Hamming distance and the ruggedness enlarges the standard deviation.

Fig.5(b) shows the theoretical and numerical values of W ∗ as a function of T , for various

k-values. It is demonstrated that the redefinition of k is effective for interpretation of the

properties of the NK landscape.

Next, we consider cases where the mutagenesis protocol is the same as that in Section

3, that is, cases where the mutation distance d is distributed according to the binomial

distribution shown in eqn. (27). Under a low evolutionary temperature, the walker has

the problem of getting trapped at the local optima (Amitrano et al.,1989). According

to Section 3, we can expect that the walker is likely to get trapped at the local optima

when T ≤ Tc, where Tc is shown in eqn. (29). We verified this prediction by the computer

simulation. Fig.6 shows the theoretical and numerical values of W ∗ as a function of T ,

for various K-values. We can confirm that the phase transition occurs around T = Tc, for

every K-value (see Fig.1 for comparison). In conclusion, when T > Tc, the adaptive walk
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is ergodic and our original scheme is applicable, while when T < Tc, the system settles

in a glass-like state (Stellinger & Weber,1984), the adaptive walk is not ergodic and our

original scheme is not applicable.

6 Effect of noise in the fitness measurements

In this section, we examine the effect of noise in the fitness measurements (Levitan &

Kauffman,1995). For simplicity, we deal with the case of M = 1, that is the adaptive

walk by the fittest. Consider that a random noise obeying Gaussian density with standard

deviation 	 is added to the fitness values. The fitness measurements with large noise is

likely to select the second- or third- or m-th fittest mutant as the ”pseudo-fittest” instead

of the fittest mutant. From a statistical view point, the expected fitness of the m-th fittest

among N mutants is equivalent to that of the fittest among N/m mutants (see eqn.(21)

in Aita et al.,(2004)). Therefore, we introduce Neff = N/m as the ”effective screening

size”. We estimated the probability p(m) that the m-th fittest mutant is selected as the

pseudo-fittest by the fitness measurements with the resolution 	. The mean value of Neff

is given by

Neff =
N∑

m=1

Neff p(m) =
N∑

m=1

N

m
p(m) (56)

≈ N (1−0.21�/
√

V ), (57)

where V represents the variance of mutant’s fitness, V [∆W ] in eqn. (6). As a result, by

replacing the population size N in Section 2 with the mean effective population size Neff ,

we can apply our original scheme shown in Section 2 to this case.

7 Conclusion

Introducing various modifications to the original evolution model, that is based on the

adaptive walk adopting (M,N)-ES on the Mt. Fuji-type fitness landscape, we examined

the effect of the modification on the properties of adaptive walk. We introduced ”effective”

quantities such as the effective mutation distance deff or effective screening size Neff . By
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applying these effective quantities to the original model, the effect of each modification

is systematically described in the theoretical framework of the original model. Then, the

thermodynamical scheme mentioned in Section 2 is almost applicable by modifying the

evolutionary temperature T shown in eqn. (12) to the effective one:

Teff =

√√√√ deff

2 ln(Neff/Meff

√
2π)

. (58)

The effective quantities are as follows. (1) In the case where the mutation distance

d is distributed obeying binomial distribution B(d) with mean d, the effective mutation

distance deff = d and effective screening size Neff = N × B(deff) should be applied.

(2) In the case where the selection process obeys the natural selection protocol (the

number of children generated from a parent depends on the fitness of the parent), we

interpret that Meff parents produce N children and the best Meff individuals among the

N children will become new parents in the next generation. Meff is given by Meff ≈
N√
2π

exp (−E[〈xm〉]2/2), where E[〈xm〉] is a measure of the selection pressure. (3) In

the case where ruggedness is introduced to the landscape according to the NK model,

the landscape constant k (= standard deviation of a fitness change for a unit Hamming

distance) is
√

1 +K times greater than the k-value for the Mt. Fuji-type fitness landscape.

It is reasonable that ruggedness enlarges the landscape constant k. (4) In the case where

a noise is included in the fitness measurement, we interpret that the screening size is

reduced to Neff ≈ N (1−0.21�/
√

V ), where
√
V /	 represents Signal/Noise ratio in the fitness

measurement.

In addition, we found that there are two different phases in cases where the mutation

distance d is distributed according to the binomial distribution. When T > Tc ≈ 0.71, the

adaptive walk is ergodic and the thermodynamical scheme holds, while when T < Tc, the

adaptive walk is not ergodic and thermodynamical scheme is not applicable. The reason

is as follows: when T < Tc, the replication of sequences is so accurate that a population

of N children includes non-mutated sequences identical to their parents. In this case, the

walkers never descend the landscape. This leads to the problem of getting trapped at the

local optima on rugged fitness landsacpe.
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8 Appendix

8.1 A: Probability density of fitness over the biased mutant population

Let ∆Wm be the fitness change from the m-th parent to its arbitrary mutant. We denoted

the probability density of ∆Wm over all conceivable mutants generated from the m-th

parent by ψm(∆Wm) (eqn.(16) in Aita et al.,2004). Let ∆W be the change between the

mean fitness W over the N parents and the fitness of their arbitrary mutant. That is,

these variables are related by W + ∆W = Wm + ∆Wm. The probability density of ∆W

over the biased mutant population is described by

Ψ̃(∆W ) =
N∑

m=1

exp(βWm)∑N
m=1 exp(βWm)

ψm(∆W + W −Wm). (59)

Here, we assume that Wm’s are randomly chosen according to the Gaussian density

N (x|W ,U 2). Then, we assume

Wm = W + U xm. (60)

The expectation and variance of ∆Wm based on the density ψm(∆Wm) are respectively

given by eqn.(11) and eqn.(13) in Aita et al.,(2004). Then, by substituting eqn. (60) into

eqn. (59), the expectation and variance of ∆W based on Ψ̃(∆W ) are, respectively, given

by

Ẽ[∆W ] = − (W − E )
d

ν
+ U 〈xm〉

(
1 − d

ν

)
, (61)

Ṽ [∆W ] =
(
2V + c1(U

2V ar[xm] + (W + U 〈xm〉 − E )2) + c2(W + U 〈xm〉 − E )
) d
ν

+

(
1 − d

ν

)2

V ar[xm] U 2, (62)

where 〈xm〉 and V ar[xm] are defined in eqns (34) and (35), respectively.

8.2 B: Analytical forms for the expectations of eqns (34) and (35)

We define the following generating function:

Z(βU ) ≡ ln
N∑

m=1

eβU xm.
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The expectations of eqns (34) and (35) are respectively given by

E[〈xm〉] = E
[

dZ

d(βU )

]
=

dE[Z]

d(βU )

E[V ar[xm]] = E
[

d2Z

d(βU )2

]
=

d2E[Z]

d(βU )2
.

Since xm’s are Gaussian random variables according to the standard Gaussian N (x|0, 1),

the probability density of
∑N

m=1 exp(βU xm) can be calculated by the N -fold convolution

of the logarithmic Gaussian distribution N (ln y|0, (βU )2)/y. This convolution is however

complicated. Here, we use the following approximation:

E
[

1

N

N∑
m=1

eβU xm

]
≈

∫ E[x1]

−∞
eβU xN (x|0, 1)dx

= e(βU )2/2
∫ E[x1]−βU

−∞
N (x|0, 1)dx.

Then, we obtain the approximate form of E[Z] as follows:

E[Z] ≈ lnE[
N∑

m=1

eβU xm ]

≈ (βU )2

2
+ ln

∫ E[x1]−βU

−∞
N (x|0, 1)dx,

where we drop a constant term.

Concerning the expectations,

lim
βU →0

E[〈xm〉] = βU lim
βU →∞

E[〈xm〉] = E[x1], (63)

lim
βU →0

E[V ar[xm]] = 1 lim
βU →∞

E[V ar[xm]] = 0. (64)

Concerning the variances,

lim
βU →0

V [〈xm〉] = 1/N lim
βU →∞

V [〈xm〉] = V [x1], (65)

where V [x1] is the variance of x1 and is approximately given by V [x1] ≈ 1/(E[x1]
2 + 1).

We neglect V [V ar[xm]] because of its smallness.

8.3 C: Derivation of eqns (38) and (39)

The W -value and U -value at the stationary state, W ∗ and U ∗, are determined by solving

equations E[∆W ] = 0 (eqn. (36)) and E[∆U ] = 0 (eqn. (37)). The procedure of solving
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the equations is similar to the way that is shown in Appendix C in Aita et al.,(2004). As

a result, the U ∗-value is given by solving the following equation of U ∗:

U ∗ =

√
2V d

ν(1 − (1 − 2d/ν)V ar[xm])
, (66)

where V ar[xm] is the function of U ∗ (eqn. (64)). By using the resulting U ∗-value, we

can determine the W ∗-value as follows:

W ∗ = E +

√
2V ν

1 − (1 − 2d/ν)V ar[xm]
× 1

T̃
, (67)

where T̃ is the following ”search parameter” defined in eqn. (40). In this study, we deal

with cases where β is large enough to satisfy βU ∗ � E[x1] and then V ar[xm] ≈ 0. In

addition, by using eqn. (11), we obtain eqns (38) and (39).
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Figure 1: The stationary point W ∗ as a function of T . The ordinate represents W ∗

normalized by |E |, where E is the mean fitness over all possible sequences. T was calculated

by substituting d = d = µν into eqn. (12). The dashed line represents the theoretical values

described in eqn. (9). Tc represents the critical point for phase transition and is given in eqn. (29).

The plots of each symbol represent the resulting values from an adaptive walk simulation using

the Monte Carlo method. N=10, 100, 1000 and 10000 for M = 1. N=100, 1000 and 10000 for

M = 10. N=1000 and 10000 for M = 100. N=10000 for M = 1000. The µ-values were set as

follows: d = µν = 5, 15, 25, 35, 45 for each M -value. (λ, ν, L) = (200,400,4). νl = 100 for all l.

εl = −4/10 × l.

29



-1 -0.8 -0.6 -0.4 -0.2 0

∆�

0

5

10

15

20

25

30

35

d e
ff

�����������������������������������������������������������

d
��
�5 �������������������������������������������

d
��
�10

���������������������
���������

d
��
�20

�������������������������

d
��
�30

M�1

�: N�10

�: N�100

�: N�1000

����������������������������������������������������������������������������������������

d
��
�5

������������������������������������������������������
������������

d
��
�10

�������������������������������
������������

����
�

d
��
�20

����������������������
���

������
�

��������

d
��
�30

M�1

�: N�10

�: N�100

�: N�1000

����������������������������������������������������������������������������������������������������
d
��
�5

����������������������������������������������������������������
�������������

�
�

��
d
��
�10 ���������������������������������

�
����������

��
�������

�
������

d
��
�20 ��������������������������������������

����������
��

d
��
�30

M�1

�: N�10

�: N�100

�: N�1000

Figure 2: (a): The effective mutation distance, deff , as a function of δW . The values

of δW = W − W ∗ were calculated from the numerical W ∗-values from the simulation (Fig.1).

Four horizontal lines represent d =5, 10, 20 and 30, from the lower line to the upper line. The

values of N , M and d = µν are shown in the Figure. (λ, ν, L) = (200,400,4). νl = 100 for all l.

εl = −4/10× l. (b),(c): The expectation of climbing rate, J, as a function of δW or X.

The ordinate and abscissa (bottom) represent J and δW , respectively, normalized by |E |. The

J-values from the computer simulation are plotted by symbols. The X-values were calculated

from eqn. (22). The solid lines are the theoretically predicted values by J = −deff/ν × δW .
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Figure 3: E[〈xm〉] (upper), V [〈xm〉] (middle) and E[V ar[xm]] (bottom) against βU . The

plotted values were obtained through computer simulation. The filled symbols represent the

values of E[〈xm〉]−2 for their respective outlined symbols, for comparing with V [〈xm〉].32
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Figure 4: The stationary point W ∗ as a function of T̃ . The ordinate represents W ∗

normalized by |E |. T̃ was calculated by substituting d = d = µν into eqn. (40). The dashed line

represents the theoretical values described in eqn. (38). The plots of each symbol represent the

resulting values from an adaptive walk simulation using the Monte Carlo method. The thick

symbols and thin ones are for cases where β ≥ βc and cases where β < βc, respectively. N=10,

100, 1000 and 10000 for each β-value. The µ-values were set as follows: d = µν = 5, 15, 25, 35, 45

for each β-value. (λ, ν, L) = (200,400,4). νl = 100 for all l. εl = −4/10 × l.
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Figure 5: The stationary point W ∗ as a function of Teff (top) or as a function of

T (bottom). The mutation distance d is constant through the walk process. The ordinate

represents W ∗ normalized by |E |. Teff was calculated by substituting deff = d(1 + K) into d in

eqn. (12). The dashed line represents the theoretical values described in eqn. (20) with T = Teff

(top) or with k =
√

V (1 + K)/2ν (bottom). The plots of each symbol represent the resulting

values from an adaptive walk simulation using the Monte Carlo method. Each walk was carried

out up to 400 generations. K=1, 2, 3 and 6. M = 1. N=10, 100, 1000 and 10000. d = 1 ∼ 30.

(λ, ν, L) = (20,100,1). ε = −1.
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Figure 6: The stationary point W ∗ as a function of T . The mutation distance d is

distributed according to the binomial distribution shown in eqn. (27). T was calculated by

substituting d = d = µν into eqn. (12). The dashed line represents the theoretical values

described in eqn. (20) with k =
√

V (1 + K)/2ν. Tc represents the critical point for phase

transition and is given in eqn. (29). Other captions are the same as those in Fig.5.
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